Sparse Systems and Iterative Methods

Paul Heckbert

Computer Science Department
Carnegie Mellon University

PDE's and Sparse Systems

- A system of equations is sparse when there are few nonzero coefficients, e.g. $\mathrm{O}(n)$ nonzeros in an $n \mathrm{x} n$ matrix.
- Partial Differential Equations generally yield sparse systems of equations.
- Integral Equations generally yield dense (non-sparse) systems of equations.
- Sparse systems come from other sources besides PDE's.

Example: PDE Yielding Sparse System

- Laplace's Equation in 2-D: $\nabla^{2} u=u_{x x}+u_{y y}=0$
- domain is unit square $[0,1]^{2}$
- value of function $u(x, y)$ specified on boundary
- solve for $u(x, y)$ in interior

Sparse Matrix Storage

- Brute force: store nxn array, $\mathrm{O}\left(n^{2}\right)$ memory
- but most of that is zeros - wasted space (and time)!
- Better: use data structure that stores only the nonzeros

col	1	2	3	4	5	6	7	8	9	$10 \ldots$
val	0	1	0	0	1	-4	1	0	0	$1 \ldots$

16 bit integer indices: 2, 5, 6, 7,10
32 bit floats: $1,1,-4,1,1$

- Memory requirements, if $k n$ nonzeros:
- brute force: $4 n^{2}$ bytes, sparse data struc: $6 k n$ bytes

An Iterative Method: Gauss-Seidel

- System of equations $A x=b$
- Solve ith equation for x_{i} :
- Pseudocode:

```
until x stops changing
    for i = 1 to n
    x[i] \leftarrow (b[i]-sum{j\not=i}{a[i,j]*x[j]})/a[i,i]
```

- modified x values are fed back in immediately
- converges if A is symmetric positive definite

Variations on Gauss-Seidel

- Jacobi’s Method:
- Like Gauss-Seidel except two copies of x vector are kept, "old" and "new"
- No feedback until a sweep through n rows is complete
- Half as fast as Gauss-Seidel, stricter convergence requirements
- Successive Overrelaxation (SOR)
- extrapolate between old x vector and new Gauss-Seidel x vector, typically by a factor ω between 1 and 2 .
- Faster than Gauss-Seidel.

Conjugate Gradient Method

- Generally for symmetric positive definite, only.
- Convert linear system $A x=b$
- into optimization problem: minimize $x^{\mathrm{T}} A x-x^{\mathrm{T}} b$
- a parabolic bowl
- Like gradient descent
- but search in conjugate directions
- not in gradient direction, to avoid zigzag problem
- Big help when bowl is elongated $(\operatorname{cond}(A)$ large $)$

Conjugate Directions

Convergence of Conjugate Gradient Method

- If $K=\operatorname{cond}(A)=\lambda_{\text {max }}(A) / \lambda_{\text {min }}(A)$
- then conjugate gradient method converges linearly with coefficient $(\operatorname{sqrt}(K)-1) /(\operatorname{sqrt}(K)+1)$ worst case.
- often does much better: without roundoff error, if A has m distinct eigenvalues, converges in m iterations!

