Sparse Systems and Iterative Methods

Paul Heckbert

Computer Science Department Carnegie Mellon University

15-859B - Introduction to Scientific Computing

PDE's and Sparse Systems

- A system of equations is *sparse* when there are few nonzero coefficients, e.g. O(*n*) nonzeros in an *n*x*n* matrix.
- Partial Differential Equations generally yield sparse systems of equations.
- Integral Equations generally yield dense (non-sparse) systems of equations.
- Sparse systems come from other sources besides PDE's.

Example: PDE Yielding Sparse System

- Laplace's Equation in 2-D: $\nabla^2 u = u_{xx} + u_{yy} = 0$
 - domain is unit square $[0,1]^2$
 - value of function u(x,y) specified on boundary
 - solve for u(x,y) in interior

Sparse Matrix Storage

- Brute force: store nxn array, $O(n^2)$ memory
 - but most of that is zeros wasted space (and time)!
- Better: use data structure that stores only the nonzeros

col 1	2	3	4	5	6	7	8	9	10
val O	1	0	0	1	-4	1	0	0	1
16 bit	inte	eger	indi	lces:	2,	5,	б,	7,10	
32 bit	floa	ts:			1,	1,	-4,	1, 1	

- Memory requirements, if *kn* nonzeros:
 - brute force: $4n^2$ bytes, sparse data struc: 6kn bytes

An Iterative Method: Gauss-Seidel

- System of equations *Ax*=*b*
- Solve ith equation for x_i :
- Pseudocode:

until x stops changing

for i = 1 to n

 $x[i] \leftarrow (b[i]-sum{j \neq i}{a[i,j]*x[j]})/a[i,i]$

- modified x values are fed back in immediately
- converges if *A* is symmetric positive definite

Variations on Gauss-Seidel

- Jacobi's Method:
 - Like Gauss-Seidel except two copies of x vector are kept,
 "old" and "new"
 - No feedback until a sweep through *n* rows is complete
 - Half as fast as Gauss-Seidel, stricter convergence requirements
- Successive Overrelaxation (SOR)
 - extrapolate between old x vector and new Gauss-Seidel x vector, typically by a factor ω between 1 and 2.
 - Faster than Gauss-Seidel.

Conjugate Gradient Method

- Generally for symmetric positive definite, only.
- Convert linear system Ax=b
- into optimization problem: minimize x^TAx-x^Tb
 a parabolic bowl
- Like gradient descent
 - but search in conjugate directions
 - not in gradient direction, to avoid zigzag problem
- Big help when bowl is elongated (cond(*A*) large)

Conjugate Directions

Convergence of Conjugate Gradient Method

• If
$$K = \operatorname{cond}(A) = \lambda_{\max}(A) / \lambda_{\min}(A)$$

- then conjugate gradient method converges linearly with coefficient (sqrt(*K*)-1)/(sqrt(*K*)+1) worst case.
- often does much better: without roundoff error, if *A* has *m* distinct eigenvalues, converges in *m* iterations!