
Tasks and Connection Sets:
Choreographed Communication on a

Reconfigurable Connection-Based Parallel Computer

Thomas E. Warfel

April 1996
CMU-CS-96-155

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

Thesis Committee:
H.T. Kung, Chair

Thomas Gross
David R. O’Hallaron
Daniel P. Siewiorek

Jay Strosnider

Copyright c1996 Thomas E. Warfel

This research was sponsored in part by the Defense Advanced Research Projects Agency/CSTO monitored by SPAWAR
under contract N00039-93-C-0152, and in part by the Air Force Office of Scientific Research under contract F49620-92-J-0131.

The views and conclusions contained in this document are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Government.

Keywords: Parallel computing, reconfigurable networks, barrier synchronization, communication
context switch, virtual connections, virtual circuits, bandwidth reservation, communication scheduling

Abstract

High-bandwidth, high-throughput applications with hard latency

constraints are difficult to implement on a general-purpose parallel

computer. Multiple developer-controlled “trial-and-error” cycles

are usually needed before applications can reliably meet

throughput and latency constraints, even on platforms having ample

network bandwidth and computation power. Not only is reliable

execution difficult to achieve for code developed in this manner,

the code itself is difficult to modify or reuse without upsetting

the delicate timing balance achieved.

Local computation performance can usually be bounded, but

communication performance is often more difficult to predict.

While hardware-supported connections can offer minimal quality-of-

service bandwidth and latency guarantees, limited connection

resources make scheduling the full application difficult. This

thesis introduces a new approach: use multiple sets of

connections, and allow tasks to perform local communication

context switches and dynamically swap, within tasks, between

statically scheduled sets of connections.

The mechanics of swapping connection sets, starting a task, and

ending a task can be encapsulated into a small set of control

primitives built upon fast, efficient barrier synchronization . If

the control primitives are constructed to give predictable

performance, the tasks created using those primitives will have

predictable performance as well. Most important, complex tasks

can be hierarchically constructed by assembling simpler tasks into

larger structures while still maintaining predictable performance.

To demonstrate this scalable predictability, the TCS (Tasks and

Connection Sets) programming model is introduced and implemented

on a real target machine, iWarp. The prototype is used to

implement a variety of communication patterns and then compared

with fast message-passing implementations on the same machine.

Finally, the scalable, hierarchical nature of TCS tasks is

demonstrated by implementing a portion of a real-time computer

vision application. TCS is shown to be well-suited not only for

this application, but also for similar applications requiring

continuous high-bandwidth input, low-latency output, and multiple

computations per datum.

Acknowledgements

I would like to thank a number of people who enabled my completing

this work. H.T. Kung, my advisor, for giving me the chance.

Thomas Gross and Dave O’Hallaron, for the late-night/weekend

meetings and discussions. Carl Love, Elaine Lawrence, and Lynn

Philibin for guiding me through myriad vital paperwork over the

years. Joseph Furman, who enabled me to keep my “dual identity”

at Pitt while working at CMU. The support of friends here,

especially Tom Stricker and Anja Feldmann, with whom many ideas

were hatched and nurtured over the years and coffee. The members

of the Nectar/iWarp research group, my office mates through the

years, and the Carnegie Tech Amateur Radio club, for both

critiques and moral support. Last but not least, my family, for

their unflagging love, support and encouragement.

iv

Table of Contents

Chapter 1 - Introduction. 1

Introduction. 1

Why TCS?. 3

The prototypical parallel target machine. 5

"Tasking" - sharing the load. 7

Thesis . 9

Structure of thesis. 10

Chapter 2 - The TCS Programming Model. 12

The model for addressing the problem. 12

Tasking under the TCS model. 14

Task relations . 16

Utilizing reconfigurable connections. 17

Implementing applications. 19

Chapter summary. 20

Chapter 3 - Target Platform Communication Mechanisms. 21

Target machine overview. 21

iWarp array . 21

iWarp Communication agent. 22

PCT-supported connections. 22

Known system irregularities. 27

iWarp platform summary. 29

Measured iWarp communication performance. 29

PCT-based connection communication . 30

RTS Message-passing communication. 35

Deposit message-passing. 36

Chapter summary. 39

v

Chapter 4 - Barrier Synchronization. 40

Introduction. 40

What is a barrier, and what does it do?. 40

Barrier properties. 41

 Issues affecting barrier synchronization implementations. 41

The canonical barrier implementation. 41

Scalability of a barrier implementation. 42

Barrier message memory. 44

Barrier skew. 45

Design Space for Barrier Implementations. 45

Physical signaling scheme. 46

 Messaging protocol. 54

Allowable barrier memberships. 70

Barrier capacity. 72

Design methodology. 74

The questions. 75

Crafting a barrier implementation . 76

Physical signaling on iWarp. 76

Non-broadcast messaging protocols on iWarp. 77

Putting it together. 78

Conclusions. 82

Chapter summary. 84

Chapter 5 - TCS Control Primitives. 85

Introduction. 85

Connection set reconfiguration. 85

 Reconfiguration model. 86

 Measured performance and predictions on iWarp. 86

 Connection-set reconfiguration conclusions. 87

vi

Task creation. 88

Task creation model . 88

Measured performance and predictions on iWarp. 90

Task creation conclusion. 90

Task end . 90

Task end model. 91

Measured performance and predictions on iWarp. 91

Task end conclusions. 92

Chapter summary. 92

Chapter 6 - TCS Validation - Communication Patterns. 94

Introduction. 94

Scatter/gather. 94

Scatter/gather - message-passing. 95

Scatter/gather - TCS Connections. 96

Scatter/gather conclusions. 98

Reduction/broadcast. 98

Reduction/broadcast using message-passing. 99

Reduction/broadcast using TCS connections. 101

Reduction/broadcast conclusions. 102

All-to-all communication. 103

Message-passing implementation. 104

All-to-all communication using TCS connections. 106

All-to-all conclusions. 109

Chapter summary. 109

Chapter 7 - TCS Validation - Hierarchical Tasking. 111

Introduction. 111

Implementing the motion-detector. 112

Requirements. 112

vii

Utilizing multiple processors. 112

The TCS implementation. 113

Predictions. 115

Throughput . 116

Latency . 116

Results. 117

Chapter summary. 120

Chapter 8 - Related Work. 121

Chip/Poker . 121

GF-11 . 122

Polymorphic Torus. 122

Transputer-based systems: C_NET and MARC. 122

iWarp, PCS, ConSet, and PCS+. 123

HeNCE(1991), CODE(1992), and Paralex(1992). 124

Orca-C and ZPL (1992). 125

Fortran M (1994). 125

Fx . 126

Mentat . 126

Static communication scheduling. 127

Chapter summary. 128

Chapter 9 - Thesis Summary. 129

Conclusions. 129

Future work. 131

Barrier hierarchies. 131

Other platforms. 132

Chapter summary. 132

Bibliography . 133

1

Chapter 1 -

Introduction

1.1 Introduction

High-bandwidth, high-throughput applications with hard latency

constraints are often difficult to implement on a general-purpose

parallel computer. Hardware-supported connections can offer

minimal quality-of-service bandwidth and latency guarantees, but

finite connection resources makes application scheduling

difficult; machines usually lack sufficient connections to enable

statically scheduling a complex application. Conversely, a purely

dynamic connection resource allocation scheme may not be able to

guarantee resource availability at run-time, which could lead to

missed latency constraints. A hybrid approach that can work for

many of these applications is to use multiple sets of connections,

allowing tasks to perform local communication context switches and

dynamically swap, within tasks, between statically scheduled sets

of connections.

The mechanics of swapping connection sets, starting a task, and

ending a task can be encapsulated into a small set of control

primitives built upon fast, efficient barrier synchronization .

Expressing the application using these primitives exposes the

application’s potential runtime communication complexity to the

linker, which can then make globally-optimal communication

resource allocations. One knows at link time whether or not

sufficient resources exist to meet the run-time demands; there are

no surprises with run-time resource unavailability. Furthermore,

if the control primitives are constructed to give predictable

performance, the tasks created using those primitives will have

predictable performance. Most important, complex tasks can be

hierarchically constructed by assembling simpler tasks into larger

structures while still maintaining predictable performance.

2

To demonstrate this scalable predictability, the TCS (Tasks and

Connection Sets) programming model is introduced and implemented

on a real target machine, iWarp. TCS allows parallel tasks to

perform local communication context switches , reliably swapping

(in predictable time) between predefined sets of connections

having guaranteed worst-case latency and bandwidth. Three key

machine features are required to support TCS:

 (1) the network switches must allow their connection state

to be directly configured by the local processing

elements,

 (2) connections must be reliable and offer guaranteed

worst-case bandwidth and latency, and

 (3) some form of fast, reliable barrier synchronization

must be available.

Unlike message-passing communication (which handles all

communication resource assignments at runtime), TCS requires that

the connection sets (but not their usage patterns) be known at

compile time; communication resource assignment is resolved at

link time. This link time global foreknowledge of the permissible

runtime connection states allows the TCS toolchain to make

communication resource assignments that will meet the requested

bandwidth criteria, or else return an error message at link time.

If a TCS application successfully links, the requested connection

sets are guaranteed to be available at runtime. Realtime problems

having deadlines on the order of milliseconds can be addressed by

solutions with execution times predictable to within a few

microseconds.

To demonstrate the utility and validity of the idea, the TCS

prototype was used to implement a variety of communication

patterns representative of real application patterns. For

comparison, the same communication patterns were also implemented

using a fast message-passing system on the same machine. While

message-passing and TCS both can provide fast, predictable

performance for uncongested patterns, dense communications

patterns (such as all-to-all) lead to unpredictable link

congestion which causes message-passing to lose both performance

and predictability. TCS is shown to maintain good, predictable

identify ball position
and timestamp (frame #)

Camera

Predict remaining
 ball trajectory

frame count
(time index)

ball
 position

Find ball

videoVideo in

frame count
(time index)

Tee off video
 stream

video

video

Overlay manager
and buffer

predicted trajectory

Merge Overlay
image with video

stream

video

video Convert video stream
to NTSC non-int. video

3

Figure 1.1 Locate a thrown ball in a live video feed, then predict
its future trajectory.

performance even with dense communication patterns.

Finally, the scalable, hierarchical nature of TCS tasks is

demonstrated by implementing a portion of a real-time computer

vision application. The vision application is realized as a TCS

task constructed by assembling smaller TCS tasks. TCS is shown to

be well-suited not only for this application, but also for similar

applications requiring continuous high-bandwidth input, low-

latency output, and multiple computations per input datum.

1.2 Why TCS?

Consider the following problem: a ball is thrown through the field

of view of a watching camera. A computer attached to the camera

locates the ball in several consecutive frames, then plots a

predicted trajectory for the ball. Current ball position and

predicted ball trajectory are superimposed over a display showing

the live camera video (Figure 1.1). No hardware-supported frame-

buffers are used; the only special hardware is a fast, unbuffered

analog-to-digital converter (which converts the incoming video

pixels to binary numbers), a comparitor to detect video sync

edges, and a digital-to-analog converter to convert an output

stream of pixel values to an NTSC video output. The real-time

nature of this problem is apparent in that the incoming video

pixels must be sampled, forwarded through the system, and output

to the video monitor in a timely manner. Latencies are additive,

4

and thus for the system to be useful, the ball’s position must be

detected and future positions predicted and plotted all within one

frame time. Otherwise, the result is just a “comet trail” drawn

behind the ball on the screen. This is a fairly demanding (but

statically schedulable) communication problem. What makes the

problem interesting is that the “ball finding” computations and

the trajectory prediction occur asynchronously with respect to the

incoming video stream.

Other example applications with similar latency, computation, and

throughput constraints include:

 (1) Phased array multi-sensor acoustic processing, such as an

ultrasonic anti-collision system on a car’s rear bumper;

 (2) Phased array sonar processing [35,36];

 (3) Real-time medical imaging, including:

 (a) correcting for patient movements in the imaging plane

“on-the-fly” while doing functional (multiple scan) MR

imaging;

(b) precisely quantifying radiation therapy dosages by

generating a CT-like image “on-the-fly” from the

radiation treatment (realtime noninvasive internal

dosimetry), and comparing these against prior,

conventional CT (Computed Tomography) scans used for

dose planning, so that treatment can be redirected or

aborted if sensitive tissues (such as the spinal cord)

become overly-irradiated. Off-line portal image

evaluation is discussed in [19] and [31] to detect

damage inflicted, but on-line realtime 3D internal

dosimetry is not yet practiced.

While by no means an exhaustive application list, the scope is

broad enough to draw some generalizations. Common features shared

by these examples include:

 1) Large amounts of computation (multiplication and addition)

are required per data point.

 2) Real-world data is sampled in high-bandwidth, time-critical

bursts.

 3) The problems have some inherently parallel aspect, whether it

5

be multiple sensors acquiring data to be processed, or

whether it be the means by which the data itself is processed

 4) The output of the process has a time-critical nature; the

output is often used as feedback in some sort of control loop

which may or may not be completely automated (that is, a

human may be in the loop).

1.3 The prototypical parallel target machine

A parallel computer exists as a group of cells interconnected via

a communication network. Each cell is a single functional

computer within the larger parallel machine, complete with

processor, local memory, specialty I/O devices (if any), and a

connection to the machine's communication network. While some

architectures may use more than one processor per cell, for the

purposes of this thesis the cell is treated as the smallest

functional computing unit. Due to the real-time nature of the

applications being addressed, stand-alone cells must offer

predictable execution times.

Fast, predictable, low-latency interprocessor communication

emerges as a requirement for this parallel machine. While not an

explicit part of any application definition per se, little is

gained if multiple cells can acquire high-speed data in parallel

but cannot pass that data on for correlation at the same rate.

Buffering can compensate for small discrepancies in bandwidth, but

the basic communication capacity needs to be available. Fast

communication involves two major issues: the communication

protocol used (how two cells talk), and the network implementation

(which cells can talk to which other cells, how fast can they

talk, and how many can talk at once).

Conventional supercomputers often accept high latencies as the

price for high bandwidth, and accordingly pipeline their

computations and data transfers in huge blocks[45,47]. For

instance, while image N is being computed, data for image N+1 is

being loaded, and image N-1 is being written out. If the

computation goal is just to generate weather maps, this pipeline

latency is not a problem. Due to the time-critical nature of

6

applications such as those listed in section 1.2, though, long

pipeline delays cannot be afforded. A driver backing up needs to

know what's behind the car now , not what was behind the car

several scans ago.

While general-purpose message-passing (such as offered by MPI

libraries[15,27]) is a commonly used communication paradigm for

parallel machines, a number of characteristics make it undesirable

for the types of applications discussed. First of all, the

overhead and unpredictable delays an interrupt-driven message-

passing system implies can’t be afforded in a real-time control

problem. Second, message-passing systems typically evaluate

routing issues (" how do I send a message from A to B") on a

message-by-message basis at runtime. For all the applications

shown, the necessary communication patterns can be worked out at

compile time. The precise usage of those communication patterns

may be unknown, but the patterns themselves can be known. It is

far more efficient, then, to work out the communication resource

and routing assignments once, when compiling or linking, rather

than re-evaluating them for each and every message sent at runtime

[17,22].

Instead of message-passing, a connection-like mechanism is needed

for communication between processors. A connection acts as a

"first-in, first-out" buffer connecting the output of one cell to

the input of another. Data written into the connection (from the

output of the sending cell) is available to be read out (at the

input of the receiving cell) in the same order it was written in.

The actual means by which connections are implemented is

unimportant, provided that the implementation can offer minimal-

quality-of-service bandwidth and latency guarantees, and that an

adequate number of connections can be supported. These guarantees

are necessary to insure that processors can forward data fast

enough to keep up with input data bursts.

Point-to-point wires between communicating cells are the most

direct means of supporting connections. This approach has several

difficulties, the biggest being that communication paths are

7

essentially "programmed with solder"; reconfiguring to support

different communication patterns becomes impossible. Supporting

multiple applications, each having different connection

requirements, on a machine with finite resources, implies the

ability to reconfigure the machine between application runs.

The ability to reconfigure connections while running an

application (and not just between applications) is also desirable.

To provide low-latency communication, any connection

implementation requires some sort of direct hardware support.

Because low-latency connections must rely on a finite physical

resource, the total number available will have some finite limit.

If an application requires more connections than the underlying

implementation is able to support at one time, the application's

needs could still be met if the implementation supports

reconfigurable connections . Reconfigurable connections allow

resources to be allocated that guarantee minimal-quality-of-

service for one connection, and when the connection is no longer

needed, those resources can be revoked and reallocated to support

another connection. Because most parallel applications exhibit a

"locality of communication", only a few connections are usually

needed during any particular stage of program execution[17].

Thus, a few reconfigurable connections are usually adequate to

meet an application's needs.

1.4 "Tasking" - sharing the load

Once a specific parallel system is established as sufficient to

meet the application's requirements, the challenge becomes mapping

the application components, or tasks, to different cells within

the machine. A task is a functional unit of computation; all

applications consist of one or more communicating tasks. The

specific cells that a task is mapped to are referred to as that

task's allocation . Two tasks running on different cell

allocations are said to be parallel tasks . Two non-communicating

tasks which have at least one cell in common between their cell

allocations are said to be sequential tasks ; they cannot both run

at the same time. A task will not execute until all the cells of

its allocation are ready to run that task.

8

Parallel tasks may either be synchronous or asynchronous. In a

synchronous tasking model, all tasks start together and end

together, much like a marching band. The brass, woodwinds, and

percussion all start together, march together, and stop together.

If an application requires multiple task sets over time, a global

barrier separates the different task sets so that all tasks in a

set begin together. Everything runs on a fixed schedule which

must make worst-case assumptions; thus, tasks can be blocked due

to conditions entirely beyond their concern. In a more flexible,

asynchronous tasking environment, a task will only block until the

resources it needs are available, then execute. This model more

closely resembles dinner in a restaurant: arriving parties are

seated and served as tables become available. Once the resources

become available (a sufficiently large table becomes free), dinner

proceeds independently of the other parties in the restaurant.

Actually, the restaurant analogy can be extended to illustrate

some of the problems of synchronous tasking on a large parallel

system. Consider a large catered dinner event, such as a wedding

reception. In this case, arriving parties are seated and left to

sip ice water until all other guests have been seated. Meanwhile,

the servers are left standing idle. Once all guests are seated,

the meal is served one course at a time. If a sufficient number

of servers are available, all guests are simultaneously given

their soup, then the soup bowls are cleared away. All guests are

simultaneously given their salad, then the salad bowls are cleared

away. No guest receives a salad until the last guest has had his

soup bowl removed. Unfortunately, most catered dinners suffer

from limited “busboy bandwidth”. Food service is not

simultaneous, but rather occurs in a wave, as the servers shuttle

food from kitchen to successive tables. Guests who have finished

their soup are forced to wait until all other guests have finished

their soup before they can begin their salad. The larger the

group of guests (or the larger the number of processors in the

machine) the worse this “wave of waiting” becomes. Globally

synchronous execution in a parallel machine not only forces cells

to wait for their neighbors at each stage, but also magnifies the

problems of finite communication bandwidth. The asynchronous

9

tasking model means cells spend less time waiting, but allocating

communication resources becomes a more difficult problem.

The problem, in essence, is " how can one combine connection-based

communication (which implies static scheduling/resource

allocation), with a flexible tasking model (which inherently

involves dynamic resource allocation)?"

1.5 Thesis

By placing some restrictions on the tasking model (statically

allocating the potential communication resources an application

may need), the application goals (multiple interacting tasks,

high-bandwidth I/O, multiple computations per data point, hard

latency constraints) can be met while maintaining effective

processor utilization. Given a parallel computer with connections

having guaranteed minimal-quality-of-service and a local

connection state that is directly-writable by the local computing

cell, one can construct a small set of barrier-based control

primitives that yield predictable performance. By exposing the

communication complexity to the linker, these primitives can be

used to create parallel tasks which also exhibit predictable

performance, and those tasks can in turn be hierarchically

assembled to create even more complex tasks while still

maintaining predictability.

A prototype programming system, TCS, was created to demonstrate

the validity of this hypothesis. TCS applications are composed of

tasks that communicate via sets of unidirectional connections.

Tasks can be hierarchically constructed by assembling simpler

tasks, and complex communication patterns can be expressed as a

series of local communication phases within the task. Tasks (with

latency constraints in the tens to hundreds of microseconds) are

built with a small set of barrier-based control primitives which

offer predictable (to within a microsecond) performance. Properly

constructed, tasks using these primitives also exhibit predictable

execution times and can be assembled into more complex tasks that

maintain their predictability. Their communication resources are

statically scheduled by the linker as sets of connections within

10

each task, but dynamically invoked by the task at run-time.

1.6 Structure of thesis

The next few chapters explore the characteristics of TCS

connection-based communication and explain the hierarchical nature

of the four TCS control primitives: barrier synchronization , local

communication context switch , task start , and task end . Both the

communication and the control primitives are implemented on a real

target machine, and their performance is measured and compared

with predicted performance.

Chapter 2 explains the TCS programming model in more detail and

explains the functions of the barrier synchronization , local

communication context switch , task start , and task end primitives.

Chapter 3 introduces the target machine, iWarp, and outlines the

three major communication mechanisms it provides: PCT-supported

connections , RTS message-passing , and deposit message-passing .

These communication mechanisms are explored and characterized.

PCT-supported connections are the mechanism used to implement TCS

connections.

Chapter 4 deals with barrier synchronization : what it is, relevant

aspects, and ways to implement it. The interaction between a

barrier implementation’s physical signaling scheme and messaging

protocol is first predicted, then illustrated by constructing and

benchmarking barrier implementations built from the three

communication mechanisms introduced in Chapter 3. Based on these

results, a 1-D (N-1) ring built using PCT-supported connections is

chosen as the basis for the TCS barrier primitive.

Chapter 5 introduces the remaining TCS control primitives. The

barrier primitive introduced in Chapter 4 underlies all dynamic

resource allocation at runtime, and it is used in constructing the

remaining three primitives: local communication context switch ,

task start , and task end .

Chapter 6 uses the TCS control primitives and a prototype

11

connection linker to create three single-task communication

patterns representative of real application communication:

scatter/gather, reduction/broadcast, and all-to-all. The TCS

implementations are shown to have predictable (within a few

percent) performance regardless of transfer size and number of

cells. A message-passing implementation, based on deposits, was

shown to have comparable performance and predictability with

simple patterns on an unloaded machine, but as congestion

increased, message-passing was unable to maintain predictable

performance.

Chapter 7 demonstrates the hierarchical nature of TCS tasking,

constructing a real-time video-rate motion-detector by assembling

several simpler tasks. This composite task was predicted to meet

video requirements as it was assembled, then it was benchmarked to

verify predicted performance.

Chapter 8 discusses related work which is significant for using

sets of connections, dynamic tasking on a parallel machine, or

both.

Chapter 9 is the conclusion and summarizes the key points of the

thesis.

internal connections

external connections

Task A Task B

12

Figure 2.1 Cells within a task communicate via internal
connections . Inter-task communication occurs
via external connections .

Chapter 2 -

The TCS Programming Model

2.1 The model for addressing the problem:

TCS (for Tasks and Connection Sets) is a general computation model

for reconfigurable connection-based parallel machines which

exploits certain machine properties. In particular, special

advantage is taken of hardware-supported, low-latency connections

for communication within and between running tasks. Task-internal

communication, and the synchronization barriers needed for

connection resource management, are all concealed within the task

that decouples the task's internal execution from its neighbors.

Communication between tasks is self-synchronizing and is the only

synchronizing operation crossing task boundaries.

Under this model, all communication occurs through unidirectional

connections . Connections provide communication both within tasks

(internal connections) and between tasks (external connections)

13

(Figure 2.1). While the external connections persist for the

lifetime of a task, internal connections within the task may be

reconfigured under the task's local control. Connections are

grouped into networks , and networks are in turn grouped into

netgroups . A netgroup is just a set of local connections. A

connection may only belong to one network, but a network may

belong to more than one netgroup. A task may have only one

netgroup active at any time. A connection is active if the

network it belongs to is in the active netgroup; active

connections may be used for communication. If the connection does

not belong to the active netgroup, no communication resources are

supporting it and it may not be used for communication. Tasks can

perform communication context switches to change the active

netgroup.

Good candidate applications for the model have the following

characteristics:

 (1) they process multiple "sets" of data;

 (2) they can be expressed as a collection of communicating tasks,

each task having:

 (a) a fixed set of communication patterns (but not

necessarily knowledge of the order in which the

patterns will be used), and

(b) a good estimate of required execution time, though the

actual run time may have data dependencies.

Having a fixed set of communication patterns allows static

allocation of the communication resources, which in turn allows

making some guarantees about minimum runtime communication

performance. Having an accurate estimate of task execution time

is important when mapping tasks to cells; using too few cells to

support a task could result in a computational bottleneck, and

using too many is a waste of resources.

Purely systolic applications, with a static set of connections

ordered at compile-time, can be cleanly implemented using TCS, but

would not see a substantial benefit over globally synchronous

tasking models. TCS will allow efficient use of systolic tasks as

part of a larger, non-systolic application, though.

14

The benefits of using the TCS model include:

 (1) support for mapping problems (such as the examples shown)

onto realizable parallel architectures;

 (2) the ability to express loosely-coupled tasks without any

artificial couplings; there is no requirement for the

developer to construct artificial global phases. Eliminating

artificial couplings enables faster performance by

eliminating unnecessary synchronization barriers.

2.2 Tasking under the TCS model

TCS tasks rely on cell-to-cell connections and four control

primitives: barrier synchronization , connection reconfiguration

(also known as a communication context switch), task start , and

task end . Connection (communication) performance is a function of

the underlying hardware and communication resource scheduling. In

the next few chapters the performance of the control primitives

are characterized and (most important!) shown to be predictable

(to within ten percent or better) using simple models. Barrier

synchronization is the fundamental primitive upon which both

connection reconfiguration and task start are both based. In

fact, the TCS control primitives are hierarchical in nature, and

thus a fast barrier implementation is a key implementation concern

because it is repeatedly encountered at each hierarchical tasking

level.

Tasks consist of program code executing on a predetermined (at

link time) cell allocation as a coordinated entity, together with

all communication generated by that program code, and the external

ports used to communicate with other tasks. A task begins

execution when it is invoked (task start) by a parent task; parent

task operation is suspended on those cells, and the child task

executes. When the child task terminates, parent task execution

resumes. The lifetime of a task lasts from when all task members

(the cell allocation) complete a barrier synchronization on task

startup, until all members complete a barrier synchronization on

task termination. Only one task may be actively executing on a

single cell at a time.

external connections

internal connections

Ball Detect

 Pack
PixelsVideo In Sample

Camera Tee-Off

external connections

internal connections

Ball Detect

Video In Tee-Off

15

Figure 2.3 Video In has invoked two children, Sample
Camera and Pack Pixels .

Figure 2.2 Three of the tasks used in the “predict and
plot the ball’s trajectory” example.

A parent task can pass invocation parameters to the child tasks it

starts. Each cell in the parent task's allocation passes the same

set of parameters to the child task, but the values of the

parameters can vary from cell to cell.

For example, consider Figures 2.2 and 2.3. In 2.2, an application

is starting that includes the tasks Video In , Tee-off , and Ball

Detect .

Video In then invokes two child tasks, Sample Camera and Pack

Pixels (Figure 2.3). Sample camera acquires data from four video

cameras at once (4 bytes, 1 byte per camera, packed as one 32-bit

word), and forwards the data to Pack Pixels , which takes 4 words,

discards data from the 3 irrelevant cameras, and packs the 4 bytes

16

of data from the relevant camera into a new word and outputs it

using an external connection inherited from the parent task (Video

In). Thus, the complex task Video In has been constructed by

assembling two simpler, smaller tasks.

2.3 Task relations

As a task begins execution, all members of the task’s cell

allocation synchronize to verify that all cells needed to run that

task are indeed ready. If the task has any "personal" external

connections (as opposed to an external connection inherited from a

parent), the local work needed to set up an external connection is

done, and another synchronization is performed, which now includes

both communicating tasks' cell allocations. This second barrier

is necessary to ensure that no data is sent before the receiving

end of the connection is established. External connections

persist for the entire lifetime of a task, hence, an additional

barrier synchronization is necessary between communicating tasks

when the task terminates to ensure the connection is no longer

needed before tearing it down.

Because only one task may be actively executing on a cell at a

time, tasks with overlapping cell allocations may not execute

concurrently. Therefore, concurrent tasks that need to

communicate with each other must be mapped onto the machine such

that their allocations do not overlap. Conversely, if a task

wishes to invoke a child task, the child must lie entirely within

the allocation of the parent task. If a task wishes to invoke two

communicating child tasks, both must lie within the parent's

allocation without overlapping (See Figure 2.3).

Child tasks have limited external communication options: they may

have external connections between themselves and other (non-

overlapping) child tasks invoked from the same parent, or they may

communicate with tasks external to the parent's allocation via

external connections inherited from the parent. Child modules may

not create new external connections extending outside the parent’s

cell allocation; this restriction is necessary to keep the

encapsulation “pure”. The parent module presents a particular

17

interface to the application. If an invoked child were to “reach

out” of the parent’s allocation without the parent’s express

knowledge, the parent module’s interface would no longer be

sufficient: a calling task (or application) would need to know

about both the parent and the child. Because knowledge of the

parent’s interface alone would no longer be sufficient, the

parent’s ability to encapsulate communication complexity would be

lost. By allowing child tasks to inherit a parent's external

connections, complicated multi-stage tasks can be assembled from a

collection of simpler tasks, while concealing the internal

complexity from the calling task or application. For example, in

Figure 2.3, Pack Pixels is shown inheriting the external

connection from Video In to Tee-Off .

A parent task may communicate with its child only via parameters

and pointers; there is no concept of a connection between a parent

and child because parent execution suspends while the child task

runs. Parent tasks may invoke children to an arbitrary depth, but

recursion and reentrancy are expressly forbidden. The absolute

depth of task invocation must be known at link time to ensure

adequate communication resources can be available at runtime. If

variable depth recursion were allowed, runtime resources could not

be guaranteed at link time unless some arbitrary depth limit were

pre-established. The depth limit approach is unacceptable because

(1) all scheduling would have to assume the worst-case depth

 limit, resulting in inefficient resource utilization, and

(2) some program would inevitably try to exceed the pre-

 established limit at runtime and crash, violating our

 guaranteed predictability.

Thus, to ensure predictability and allow efficient resource

allocation, the absolute depth of task invocation must be known at

link time.

2.4 Utilizing reconfigurable connections

All communication within and between tasks occurs via

unidirectional connections . A connection is a long-lived

bandwidth reservation between a source port on a source cell and a

destination port on a destination cell. Data put into the source

netgroup #3
active

internal connections

external connections

netgroup #1
active

netgroup #2
active

18

Figure 2.4 Netgroups allow finite physical connection
resources to support multiple local
communication phases.

port is guaranteed to be available at the destination port within

a time interval determined by the connection's level of service.

A port is a software construct belonging to the task which makes

the connection (which is really just a bandwidth reservation)

accessible to the program code. While it is realized by specific

hardware resources belonging to the cell, it is managed as an

entity belonging to the task. A connection can be thought of as a

pipe connecting two cells; the ports are the openings of the pipe.

Data poured into the uphill end of the pipe flows out the downhill

end.

All communication between cells within a task occurs via internal

connections , defined by a source cell, source port name (needed by

the source cell code), destination cell, destination port name

(needed by the destination cell code), and an optional bandwidth

reservation. Connections used together are grouped by the

application developer (or a higher-level compiler) into networks .

Task-local communication phases, called netgroups, are defined by

grouping networks together. A connection may only belong to a

single network, but a network (and hence its connections) may

belong to several netgroups (Figure 2.4). All aspects of internal

connections (connections, networks, and netgroups) are entirely

contained within the task definition. Only one netgroup may be

active within a task at a given time.

19

Communication between tasks occurs through external connections ,

which join external ports on each task. External ports may either

be defined as part of the task, or may be passed in to a child

task from a parent. Because external connections are not wholly

owned by the task (the task only owns one of the external ports,

and cannot specify bandwidth), external connections need to be

defined by a higher-level (parent) task, or at the application

level.

If a task has external ports, a barrier synchronization is

required at the beginning of task execution covering all cells

belonging to both communicating tasks, ensuring that all cells of

each task's allocations are ready. This operation is necessary to

ensure no data is sent via an external port before the connection

is established. Similarly, another barrier is required at task

termination to ensure all communication stops have completed

before reclaiming the external connection resources. Barrier

synchronizations are also needed whenever a task changes the

active netgroup, but requires only the participation of the task's

cell allocation. No other cell, external controller, nor any

other agent outside of the task's allocation is required to

participate when changing the active netgroup. Connection

reconfiguration within a task occurs purely under local control.

Note that all connections are defined by endpoints and bandwidth;

no routing information is included as part of any connection

definition. The mapping of connections to physical communication

resources, including their routing on the target machine, is the

linker’s concern, not the application designer’s.

2.5 Implementing applications

Applications exist as one or more communicating tasks executing on

physical cells on a real machine. A TCS "program" isn't a single

entity; it exists as a database containing the executable program

code for each task for each cell, as well as the hardware-specific

connection resource mappings for each cell. A TCS program is

created by mapping the cell allocations of specific module

20

instances to specific cells on a target machine, linking the

program code of the tasks and their children for the individual

target machine cells, routing the connections and assigning

specific hardware resources to support those connections,

evaluating what barrier synchronizations memberships are needed,

and assigning the necessary resources, then creating the loadable

images for code, synchronization, and communication. To run a TCS

application, the program code, synchronization information, and

communication information must be loaded onto all cells in the

machine, then all cells can begin execution.

2.6 Chapter summary

This chapter introduced the TCS programming model. TCS

applications are constructed from multicellular tasks which

communicate by means of unidirectional connections. Internal task

communication occurs via internal connections, which are grouped

into networks, and networks are grouped into sets called

netgroups. Only one netgroup may be active at a time; tasks may

perform local communication context switches to change the set of

active connections from one netgroup to another. External

connections support communication between tasks and persist for

the lifetime of the task. Task execution is controlled using a

small set of primitives: task start, local communication context

switch, and task end. These primitives are all built upon a

fourth control primitive, barrier synchronization, which will be

covered in more detail in Chapter 4.

21

Figure 3.1 The iWarp array configuration - an 8x8
torus plus a host interface.

Chapter 3 -

Target Platform Communication

Mechanisms
The last chapter introduced the TCS machine model and the notion

of TCS connections . This chapter introduces iWarp[12], the target

machine, and shows how TCS connections can be supported on this

hardware. Two different message passing implementations, RTS

message-passing and deposit message-passing , are introduced for

comparison, and the performance of TCS connections and message

passing communication are characterized in isolation on an

unloaded machine. While both message passing and TCS are shown to

offer good performance and predictability for large transfers, TCS

maintains a substantial performance advantage for small transfers.

3.1 Target machine overview

An iWarp array is the target platform used to validate the TCS

model because it offers a rich set of communication hardware that

allows fair comparisons of different communication models.

3.1.1 iWarp array

The target machine is composed of 64 processing cells arranged as

an 8x8 torus, plus one host-interface cell (Figure 3.1). Each

22

Figure 3.2 iWarp
 connectivity.

cell is composed of an iWarp chip (or iWarp component) plus 512K

static RAM. Each iWarp component contains a VLIW CPU (the

computation agent) and a network interface (the communication

agent).

3.1.2 iWarp Communication agent

Each communication agent has

eight external physical network

connections, four in and four

out. These are designated as X

or Y, Up/Left or Down/Right, and

In or Out. Each external network

connection has a maximum

bandwidth of 40 MB/sec

(Figure 3.2).

Internally, the communication agent has 20 eight-word FIFOs known

as PCTs. Each PCT can be configured to receive data from an

external physical network connection or from the computation

agent, and each PCT can send data either to an external network

connection or to the computation agent.

3.1.3 PCT-supported connections

Connections are built by chaining together PCTs on adjacent cells,

building a contiguous path from source to destination (Figure

3.3). A connection consumes physical link bandwidth only if it is

actively forwarding data. If two connections share the same

physical link but only one is carrying data, the one carrying data

gets full link bandwidth. If both connections are actively

carrying data, each gets only half the link bandwidth, multiplexed

between them on a word-by-word basis. For a given connectivity,

congestion (and therefore available bandwidth) depends on both

routing and connection activity. In Figure 3.4, both examples

show a connection from each cell in the bottom row to the center

cell in the top row. In the left-hand example, if all three

PCT 2

local
PCT

Cell
(0,0)

PCT 0

local
PCT

PCT 2

PCT 1Cell
(1,1)

Cell
(1,0)

 -

 - -

 -

PCT 0

PCT 1 inbound -

PCT 1

PCT 2 PCT 0

(1,0) (1,1)

(0,0) (0,1)

Direction

 -

Direction

inbound

 -

X-Right

Y-Up

Cell
(0,1)

remote
PCT

PCT 1

Direction

Y-Up

 - -

local
PCT

PCT 0

PCT 2

remote
PCT

 -

PCT 1Y-Down

inbound

Direction
local
PCT

PCT 0

PCT 1

remote
PCT

PCT 0

 -

remote
PCT

 -

 -

23

Figure 3.3 Example PCT configuration illustrating how
three connections could be supported via PCTs

Figure 3.4 For a given connectivity, the routing
affects the maximum bandwidth available.

connections are active at once, only one-third of the physical

link bandwidth is available to each connection. In the right-hand

example, the same source/destination connectivity is provided, but

no congestion occurs - each connection is routed over a different

physical network link.

The computation agent can read or write from connections by

accessing the PCTs of the communication agent either through gates

or spools . A gate is a special register that can map an iWarp

24

component’s PCT in the communication agent into the computation

agent’s register file. CPU operations treat a gate like any other

register, but reading a gate pulls data from the front of the

mapped PCT’s FIFO. Writing to a gate appends data at the back of

the PCT’s FIFO. Each iWarp component has two read-only gates and

two write-only gates, which can be mapped to any of the twenty

PCTs.

A spool is a hardware feature that provides DMA-like transfers

between a block of memory and a PCT. Each active spool “steals”

up to one-third of the computation agent’s CPU cycles, but

requires no other direct CPU action once a transfer has been

started.

Connections may be created (or destroyed) by one of two

mechanisms:

 (1) Source routing

Special tagged words may be launched at the connection’s

source that automatically set the state of the communication

agents as they pass through the array. PCT assignments

dynamically occur as the communication agents forward the

connection header along. The computation agent at the

destination can be notified of an incoming connection either

by polling or by an interrupt, depending on how it has

configured its communication agent.

If a resource needed to complete a route is busy, the

communication agent will block the connection until the

resource becomes available.

 (2) Direct configuration

As the name implies, with direct configuration the

computation agent directly writes the state of the

communication agent to set a specific PCT configuration.

While source routing requires only computation agent

participation at the source and destination of a connection,

direct reconfiguration requires the active participation of

computation engines along the entire path from source to

25

destination. Furthermore, while the communication agent is

responsible for PCT assignment/reclamation in the source

routing approach, direct configuration requires all PCT

assignments to be known prior to runtime. Direct

configuration offers two potential performance advantages:

the state of the communication agents along the route of a

connection can all be configured together in parallel, and

multiple connections can be configured in parallel. With

source routing, as a connection header makes its way through

the system, it must sequentially configure the state of the

communication agent at each step of the way. With direct

configuration, the state for the entire path can be

configured at once. Furthermore, with source routing, a cell

can only launch one connection header at a time. With direct

configuration, an entire set of connections may be

established simultaneously.

Because direct configuration requires the participation of

cells other than just the connection source and destination,

some form of barrier synchronization is needed whenever a

connection state change is needed. For instance, in Figure

3.3, the connection from cell (1,0) to (0,1) passes through

(1,1). Cell (1,1) needs to be certain the connection is no

longer needed before it reclaims the PCT.

3.1.4 Physical communication schemes

PCT-based connections form the basis of all iWarp communication

mechanisms, but how those connections are used yields three very

different physical signaling mechanisms.

3.1.4.1 PCT-supported static (TCS) connections

TCS connections are implemented using the direct configuration

approach but allow for PCT subsets to be configured; that is, a

TCS module may only need to reconfigure PCTs 1 through 8, and will

leave the remaining 12 (which may be supporting other connections

or the runtime system) alone.

26

3.1.4.2 RTS message-passing

The iWarp runtime system, or RTS, is a low-level system monitor

that allows programs to be loaded and executed on array cells,

provides proxy I/O service for the array cells, and allows a

cell’s internal state to be examined or modified by the host. To

provide these services, the RTS requires a communication system

that provides connectivity to all cells with minimal use of cell

resources. The RTS communication system is implemented as a

general-purpose message-passing system built upon a unidirectional

token-ring communication structure. Each cell forfeits two PCTs

to the runtime system to build a large, single closed-loop

connection that passes through all cells exactly once; this loop

then supports a token-ring-like communication mechanism. At boot

time, the host interface cell injects a token into this closed

ring; the token circles endlessly until a cell requires RTS

services. When a cell needs to send a message, it acquires the

token, then injects its message into the ring. The message

follows the ring until it reaches its destination, upon arrival it

signals an interrupt at the destination cell, and the destination

cell consumes and processes it. An acknowledgment is sent from

the destination in a ringward direction until it reaches the

message source. The source consumes the acknowledgment then re-

injects the RTS token into the ring.

This communication mechanism, RTS message-passing , is available to

user programs and provides a simple means for any two arbitrary

cells in the array to communicate. All communication requires

circumnavigating the array at least once (the message travels

partway around the ring; the acknowledgment completes the round-

trip), generating interrupts at the source and destination cells

(and consequently causing in program context swaps). Only one

cell pair can use the ring at a time, therefore, the total

bandwidth available through this mechanism is limited, especially

impacting multiple short message transfers which could otherwise

occur in parallel.

3.1.4.3 Deposit message-passing

Deposit message-passing is an iWarp communication library [42,43]

27

providing message-passing services similar to RTS message-passing,

but with vastly improved performance. Features include: multiple

cells can send at once, cells can receive and send at the same

time, and fewer copies and program context swaps are used when

communicating. The sender specifies the address of the buffer to

be used by the receiver. Deposit message-passing requires nine

PCTs and two spools be dedicated to the message-passing system,

but allows all cells to send and receive at once. Messages are

implemented as source-routed dynamic connections. Only one

message at a time is supported over a physical network link, but

the message has the full link bandwidth available to it once it

does go through. The PCTs used by a message are immediately

deallocated as the message trailer passes through each of the

communication agents along its route. Routing is calculated on-

the-fly when a message is launched. Unlike RTS message-passing

(or even Nx-based message-passing), deposit message-passing

assumes a pre-allocated memory buffer at the destination so that

protocol overhead is much reduced. This reduced processing

overhead in turn results in a more efficient implementation.

In summation, three general communication options are available on

the iWarp:

 (1) static PCT-supported connections, which are routed prior to

runtime and can last longer than just one message time,

 (2) RTS message-passing, which provides a token-ring like

communication system, and

 (3) deposit message-passing, which uses source-routed dynamic

connections and allows simultaneous sending and receiving by

all cells at once.

TCS connections are a special form of static PCT-supported

connections that allow small groups of cells to reconfigure

independently of the rest of the array without disturbing existing

connections passing through the cells.

3.1.5 Known system irregularities

While the iWarp is a good target platform, it has a few

eccentricities that make accurate performance prediction

difficult, but not impossible.

28

3.1.5.1 Network contention unfairness

In theory, multiple connections sharing a physical network

connection share the bandwidth fairly. In reality, the on-chip

pathway scheduler views PCTs as four groups of five PCTs each.

Each pass through the scheduler (for each of the four outgoing

physical connections) the scheduler looks at the four groups in a

round-robin fashion, and chooses a PCT within that group in a

round-robin manner. If a group has no PCTs with data to send,

that group is skipped. Thus, scheduling is fair if all PCTs with

data to be sent lie within one group, or if the same number of

PCTs lies in each of the different groups. Otherwise, PCTs

belonging to groups with a small number of active PCTs get a

disproportionately higher percentage of bandwidth.

For example, consider three PCTs with data in group one, and one

PCT with data in group two, all competing for the same outgoing

pathway. The one PCT in group two would get one-half of the

physical pathway bandwidth, and each of the three PCTs in group

one would get one-sixth of the physical pathway bandwidth (rather

than one-fourth as expected under a fair scheduling scheme).

3.1.5.2 DQ contention

Every PCT that receives a word from a network connection must

return an acknowledgment word to the cell that sent the data.

This acknowledgment word is called a DQ (short for “dequeued

message acknowledgment”) and is carried on a special, physically

separate link parallel to the data link but running in the reverse

direction. In an ideal world, the DQ bandwidth would be the same

as the forward link bandwidth. Unfortunately, under certain

conditions, when multiple connections pass through a cell and at

least one connection changes direction in the cell (for example,

the message had been going up but turned left at the cell),

congestion occurs within the cell’s DQ-processing hardware, and

DQs are forwarded in an unfair manner. This amount of congestion

can be predicted, and if the forward links are fed no faster than

the congested rate (by intentionally sending data at a reduced

rate), forward pathway bandwidth is shared fairly (within the

constraints of Section 3.5.1). If one tries to feed the forward

29

pathways faster than the DQ congestion-limited rate, the DQ

signals are returned in an unpredictable manner, and forward data

flow is choked by the lack of DQ signals showing available buffer

space.

3.1.5.3 Uneven forward link bandwidth

Theoretically, the iWarp is supposed to deliver 40Mbytes/sec on

each pathway. In reality, the scheduler tends to “skip” sending a

word every thousand words or so, yielding a true bandwidth closer

to 39.96Mbytes/sec.

3.1.6 iWarp platform summary

While the communication hardware has a few anomalies, they are

known and can be accounted for in performance models that maintain

detailed knowledge of the underlying PCT assignments.

Three general communication methods are available: PCT-supported

connections, RTS message-passing, and deposit message-passing.

While the PCT-supported connections require resource allocation

prior to runtime, both message-passing schemes handle

communication resource allocation on-the-fly. The RTS message-

passing has the lowest resource requirements and, given its token-

ring-like nature, the lowest expected performance.

Because the iWarp cells use static RAM for main memory,

computation performance can be accurately predicted. Figures 3.5

and 3.6 show communication times, both predicted and measured, for

short and long transfers using simple point-to-point PCT-based

connections, demonstrating that communication performance (at the

lowest level) is both predictable and repeatable.

3.2 Measured iWarp communication performance

The iWarp architecture provides three general communication

schemes: PCT-based connections, RTS message-passing, and deposit

message passing. This section quantitatively measures the

performance of these communication schemes for varying quantities

of data and varying distances. Times are measured in “clock

cycles”. Each iWarp component has an on-chip, program-accessible

30

clock/counter. While the iWarp runs at a 20MHz system clock rate,

the counter runs at only one-eighth of the processor clock rate.

Eight system clock ticks occur for every counter clock tick.

Counter ticks are multiplied by 8 to yield the number of system

clock cycles. Thus, while times are reported in “system clock

ticks,” the actual resolution is only to every eighth clock tick.

3.2.1 PCT-based connection communication

Figures 3.5 and 3.6 show the measured times for single-word

exchanges on the iWarp for distances ranging from 1 to 7 cell-

widths. Times are measured by taking the round-trip exchange time

(cell A sends a word to B, B receives the word then sends a word

back to A, cell A receives it) and dividing by 2. Figure 3.5

shows that single-word exchanges have a repeatability well within

the measurement error of the timer, and Figure 3.6 shows that runs

of 8-word exchanges have a time-per-exchange that is repeatable to

within a single clock.

1 2 cells 3 cells 4 cells 5 cells 6 cells 7 cells

cell

Avg time 12 19 22 28 32 38 42

max time 12 20 24 28 36 40 44

min time 12 16 20 28 32 36 40

Figure 3.5 - PCT-supported-connection single-word communication

time (in clocks), average, maximum, and minimum

times vs. distance, for 1000 single-word

sequential exchange runs. Max measured error is 4

clocks.

1 2 cells 3 cells 4 cells 5 cells 6 cells 7 cells

cell

Avg time 10 16 20 26 30 36 40

max time 10 16 20 26 30 36 40

min time 10 16 20 26 30 36 40

Figure 3.6 - PCT-supported-connection single-word communication

time (in clocks), average, maximum, and minimum

times vs. distance, for 1000 eight-word exchanges.

Max measured error less than 1 clock.

31

These measurements (particularly Figure 3.5) demonstrate that

communication latencies within a real machine are neither uniform

nor constant. Notice that in Figure 3.5 the communication time

increments by 6 then 4 then 6 then 4 etc. This variation is due

to the physical construction of the iWarp; cells are grouped four

to a board. Cell-to-cell communication within a board incurs a

latency of 4 clocks/cell, whereas communication between two cells

on adjacent boards incurs a 6 clocks/cell latency. Furthermore,

communication that “turns a corner” at a cell (such as transitions

from left-to-right travel to up-to-down travel) incurs an

additional 1 clock penalty. Assuming a 5 clocks/cell

communication latency is a reasonable approximation that

simplifies the modeling.

Connection communication cost can be modeled as having:

 (1) a fixed set-up cost for sending,

 (2) a per-word transfer cost which is a function of available

network bandwidth (depends on runtime link usage, but known

at link time),

 (3) a distance-dependent network-latency cost, and

 (4) a fixed set-up cost for receiving.

Connection_xfer_time = (Send_Overhead + Recv_Overhead) +

(Msg_size / Network_BW) + (Dist x cost_per_cell_hop)

This simple model allows comparisons between predicted vs.

measured communication using PCT-supported connections for

multiple-word exchanges. The following tables (Figures 3.7 and

3.8) show varying predicted and measured (avg, max, and min)

exchange times for payloads ranging from four bytes to 16 Kbytes

over distances of one to seven cells.

Both single and multi-word exchanges can be measured. Even for

exchanges as large as 16 Kbytes, communication performance on the

unloaded network is both extremely repeatable and predictable (to

within a microsecond). Figure 3.7 shows the results of 1000

“short bursts” of communication; Figure 3.8 shows the results of

longer bursts. As can be seen, even the longer bursts maintain

32

predictability within half a microsecond, which is better than one

percent. The iWarp connection hardware’s high degree of

predictability is key to obtaining fast, predictable barrier

performance, which enables construction of the other TCS control

modules. As will be shown shortly, while certain kinds of message

passing can maintain predictability on an unloaded machine, the

TCS connections will maintain predictability even on a heavily

loaded machine. Certain simplifying approximations at the task

level of modeling will degrade the predictability somewhat from

the degree shown in Figure 3.8; still, predictability within three

percent or better can be expected.

33

 message distance (cells)

bytes 1 cell 2 cells 3 cells 4 cells 5 cells 6 cells 7 cells

 4 43 49 53 59 63 69 73
(predict) (43) (48) (53) (58) (63) (68) (73)

max 43 60 64 68 72 80 84
min 42 48 52 56 60 68 72

16 49 55 59 65 69 75 79
(predict) (49) (54) (59) (64) (69) (74) (79)

max 60 64 68 76 80 88 88
min 48 52 56 64 68 72 76

64 73 79 83 89 93 99 103
(predict) (73) (78) (83) (88) (93) (98) (103)

max 84 88 92 100 104 108 116
min 72 76 80 88 92 96 100

256 169 175 179 185 189 195 199
(predict) (169) (174) (179) (184) (189) (194) (199)

max 180 188 188 196 196 204 208
min 168 172 176 184 188 192 196

1024 553 559 563 569 573 579 583
(predict) (553) (558) (563) (568) (573) (578) (583)

max 564 572 576 580 584 588 596
min 552 556 560 568 572 576 580

4096 2089 2095 2099 2105 2109 2115 2119
(predict) (2091) (2096) (2101) (2106) (2111) (2116) (2121)

max 2100 2104 2112 2116 2120 2124 2132
min 2088 2092 2096 2104 2108 2112 2116

16384 8233 8239 8243 8249 8253 8259 8263
(predict) (8241) (8246) (8251) (8256) (8261) (8266) (8271)

max 8240 8252 8252 8260 8264 8268 8272
min 8232 8236 8240 8248 8252 8256 8260

Figure 3.7 PCT-supported connection communication time (in

clocks), average, predicted, maximum, minimum, vs. size

and distance, 1000 single -ping runs (error +/- 4

clocks/measurement)

34

 message distance (cells)

bytes 1 cell 2 cells 3 cells 4 cells 5 cells 6 cells 7 cells

 4 42 48 52 58 62 68 72
(predict) (43) (48) (53) (58) (63) (68) (73)

max 42 48 52 58 62 68 72
min 42 48 52 58 62 68 72

16 48 54 58 64 68 74 78
(predict) (49) (54) (59) (64) (69) (74) (79)

max 48 54 58 64 68 74 78
min 48 54 58 64 68 74 78

64 72 78 82 88 92 98 102
(predict) (73) (78) (83) (88) (93) (98) (103)

max 72 78 82 88 92 98 102
min 72 78 82 88 92 98 102

256 168 174 178 184 188 194 198
(predict) (169) (174) (179) (184) (189) (194) (199)

max 168 174 178 184 188 194 198
min 168 174 178 184 188 194 198

1024 552 558 562 568 572 578 582
(predict) (553) (558) (563) (568) (573) (578) (583)

max 552 558 562 568 572 578 582
min 552 558 562 568 572 578 582

4096 2088 2094 2098 2104 2108 2114 2118
(predict) (2091) (2096) (2101) (2106) (2111) (2116) (2121)

max 2088 2094 2098 2104 2108 2114 2118
min 2088 2094 2098 2104 2108 2114 2118

16384 8232 8238 8242 8248 8252 8258 8262
(predict) (8241) (8246) (8251) (8256) (8261) (8266) (8271)

max 8232 8238 8242 8248 8252 8258 8262
min 8232 8238 8242 8248 8252 8258 8262

Figure 3.8 PCT-supported connection commuication time (in clocks),

average, predicted, maximum, minimum, vs. size and

distance, 1000 eight -ping runs, (error < 1 clock)

35

3.2.2 RTS Message-passing communication

RTS message passing is the low-resource-overhead communication

mechanism provided by the runtime system. It enables any two

arbitrary cells to communicate over a token-ring-like network

constructed from just two PCTs per cell. While its token-ring

nature serializes all communication and hence makes it undesirable

for high-bandwidth parallel communication, it is worth examining

as a model for a collision-free network with serialized access.

The following table (Figure 3.9) shows measured performance for

messages of varying size.

 message distance (cells)

bytes 1 cell 2 cells 3 cells 4 cells 5 cells 6 cells 7 cells

32 27964 28200 27966 28200 27966 28198 28839
max 28180 28204 28180 28204 28180 28200 28840
min 27884 27600 27884 27600 27884 27600 28540

64 27980 28215 27982 28215 27982 28217 28855
max 28196 28216 28196 28216 28196 28220 28856
min 27664 27904 27904 27904 27904 27900 28844

256 28076 28311 28078 28311 28078 28313 28951
max 28292 28312 28292 28312 28292 28316 28952
min 27996 28016 28000 27992 28000 28000 28940

1024 28460 28695 28462 28695 28462 28695 29337
max 28676 28696 28676 28696 28676 28696 29340
min 28380 28384 28384 28384 28384 28380 29040

4096 29996 30231 29998 30233 29998 30231 30873
max 30212 30232 30212 30236 30212 30232 30876
min 29680 29920 29920 29920 29920 29916 30576

16384 36140 36375 36142 36375 36142 36375 37017
max 36356 36376 36356 36376 36356 36376 37020
min 36060 36064 36064 36060 36064 36064 36752

Figure 3.9 - measured RTS message-passing time (in

clocks), average, maximum, and minimum vs.

payload size and distance for 1000 single-

ping runs

Given that RTS message-passing requires multiple context switches

and utilizes code not accessible to the programmer, one cannot

easily predict communication performance for this communication

mechanism. Thus, Figure 3.9 merely reflects the measured

36

performance. Note that on an unloaded machine, RTS message

passing also shows repeatable performance to within one-half to

one-percent, but its absolute average communication time is

roughly 400 times slower than PCT-supported connections for small

messages (64 bytes) and 4 times slower for large messages (16

Kilobytes). As multiple cells exchange messages, the token-ring-

like nature of this communication mechanism will lead to greater

performance variance as cells vie for the limited ring bandwidth.

3.2.3 Deposit message-passing

Deposit message-passing[22] uses a foreground-send/background-

receive communication model; thus all communication incurs the

cost of a program context switch on every receive. As with PCT-

based connections, communication costs can be modeled rather

simply. Costs include:

 (1) a fixed set-up cost for sending;

 (2) a per-word transfer cost which is a function of

available network bandwidth (depends on physical link

usage at runtime);

 (3) a distance-dependent network-latency cost;

 (4) a fixed set-up cost for receiving. Depending on the

communication pattern, this set-up at the receiving

cell may be done in parallel with the sending cell’s

set-up, and the cost may be “hidden” in the overlap.

Patterns which require simultaneous sending and

receiving cannot hide the receive cost.

Putting these together, the message passing transfer time is

modeled as follows:

 Mp_xfer_time = (Send_overhead + Recv_overhead) +

(Msg_Size/Network_BW) + (Dist x cost_per_cell_hop)

While this looks similar to the formula expressed in Section

3.2.1, the difference is that the Network_BW is not known at link

time, and in fact is resolved on-the-fly at runtime. One group of

messages may block another, temporarily reducing available

bandwidth to zero. The tables shown in Figures 3.10 and 3.11 list

the transfer times predicted by the above equation, as well as the

measured average, maximum, and minimum times for 1000 individual

37

runs. On an unloaded machine (as used for this set of

measurements) 100% of the bandwidth is available for each

measurement as only a single message is flowing at a time. Thus,

one expects (and sees) good repeatability, to the extent that the

4/6 cell latency differences (due to physical board crossings) is

visible in the measurements.

 message distance (cells)

bytes 1 cell 2 cells 3 cells 4 cells 5 cells 6 cells 7 cells

 4 258 264 269 275 278 283 289
(predict) (260) (265) (270) (275) (280) (285) (290)

max 260 268 272 280 280 288 292
min 256 260 268 272 276 280 288

16 324 328 336 340 344 348 356
(predict) (372) (377) (382) (387) (392) (397) (402)

max 324 328 336 340 344 352 356
min 324 328 336 340 344 348 356

64 350 355 360 364 369 375 378
(predict) (396) (401) (406) (411) (416) (421) (426)

max 352 360 364 384 372 380 400
min 348 352 360 360 364 368 372

256 448 451 456 465 465 468 479
(predict) (492) (497) (502) (507) (512) (517) (522)

max 448 452 456 468 476 476 484
min 448 448 456 460 464 468 472

1024 833 835 843 848 849 856 860
(predict) (876) (881) (886) (891) (896) (901) (906)

max 836 840 844 880 880 896 876
min 832 832 840 848 848 856 860

4096 2364 2371 2376 2385 2385 2390 2400
(predict) (2414) (2419) (2424) (2429) (2434) (2439) (2444)

max 2364 2372 2376 2388 2392 2400 2420
min 2364 2368 2376 2380 2384 2388 2400

16384 8510 8515 8520 8524 8529 8536 8540
(predict) (8564) (8569) (8574) (8579) (8584) (8589) (8594)

max 8516 8516 8520 8540 8536 8544 8548
min 8508 8512 8520 8524 8528 8536 8540

Figure 3.10 Deposit message-passing time (in clocks),

average, predicted, maximum, and minimum,

vs. payload size and distance for 1000

single -ping runs

38

Despite requiring a program context-switch for receiving,

performance is still predictable to the same percentage (one

percent or better) as PCT-supported connections. While

performance is worse than connections for small messages (roughly

a factor of six on 64-byte transfers), for large messages (16

Kbytes) the performance difference between deposit message-

 message distance (cells)

bytes 1 cell 2 cells 3 cells 4 cells 5 cells 6 cells 7 cells

 4 255 262 265 271 276 282 285
(predict) (260) (265) (270) (275) (280) (285) (290)

max 256 262 266 271 276 282 285
min 255 262 265 271 276 282 285

16 371 376 379 385 390 395 399
(predict) (372) (377) (382) (387) (392) (397) (402)

max 371 376 379 386 391 395 399
min 371 376 379 385 390 395 399

64 399 402 409 412 416 422 426
(predict) (396) (401) (406) (411) (416) (421) (426)

max 399 402 409 412 417 422 426
min 399 402 409 412 416 422 426

256 492 500 503 508 514 519 522
(predict) (492) (497) (502) (507) (512) (517) (522)

max 492 500 503 508 516 519 522
min 492 500 503 508 514 519 522

1024 880 885 894 896 899 907 910
(predict) (876) (881) (886) (891) (896) (901) (906)

max 881 885 894 897 900 909 911
min 880 885 894 896 899 907 910

4096 2412 2420 2423 2428 2434 2439 2442
(predict) (2414) (2419) (2424) (2429) (2434) (2439) (2444)

max 2412 2420 2423 2428 2434 2439 2444
min 2412 2420 2423 2428 2434 2439 2442

16384 8560 8565 8574 8576 8579 8586 8590
(predict) (8564) (8569) (8574) (8579) (8584) (8589) (8594)

max 8560 8565 8574 8577 8580 8587 8592
min 8660 8565 8573 8576 8579 8586 8590

Figure 3.11 Deposit message-passing time (in clocks),

average, predicted, maximum, and minimum,

vs. payload size and distance for 1000

sixteen -ping runs

39

passing and connections is under five percent. On an unloaded

system, deposit message-passing is between four and one hundred

times faster than RTS message-passing.

3.3 Chapter summary

For simple cell-to-cell transfers on an unloaded system, both

deposit message-passing and PCT-supported connections offer fast,

predictable performance. Relative to message passing, connections

offer better performance with small transfers (only a few words

per exchange). For large transfers, the small amount of

additional overhead incurred by deposit message passing is swamped

by the (Msg_size / Network_BW) factor, and the two offer

comparable performance. Because RTS message-passing requires

multiple context swaps and always requires passage through all

cells in the system (both of which increase latency regardless of

message size), it consistently offers the worst performance, and

offers repeatable performance only on an unloaded system. As

network load increases, RTS ring access is granted on a “first-

come, first-serve” policy regardless of cell bandwidth usage.

For building fast, efficient parallel applications on iWarp, the

choices are thus limited to either deposit message-passing or PCT-

supported connections. TCS uses PCT-supported connections for

communication. Not only were connections shown to be the fastest

of the three available communication methods, they were also shown

to offer predictable performance (better than one percent, which

is less than a microsecond) on an unloaded machine. If the

network bandwidth can be known/controlled, PCT-supported

connections should be predictable even on a heavily loaded system.

40

Chapter 4 -

Barrier Synchronization
4.1 Introduction

Fast barrier synchronization is vital for good TCS performance.

TCS tasks rely on local communication context switches to swap

between sets of connections; each communication context switch

requires three barriers. Barriers are also needed when child

tasks are started or ended. Because barriers play this vital role

in resource allocation, they must have predictable performance

(otherwise tasks using them would not be predictable), and they

need to be fast (since they are used so frequently). This chapter

examines some of the major issues regarding barrier

synchronization and explores the trade-offs made when implementing

a barrier synchronization scheme.

4.1.1 What is a barrier, and what does it do?

A synchronization barrier , or barrier , is a named rendezvous point

in parallel program code which is shared across multiple cells.

When a barrier is encountered in a cell's program, the cell's

foreground execution is suspended until all other cells sharing

that barrier (barrier members) reach the same named barrier in

their code as well. Barrier execution time is defined as the time

elapsed from when the last cell reaches the barrier, until the

last cell exits the barrier, assuming that all members of the

barrier arrive at the same time and that no background processing

occurs. While barrier synchronization is a necessary tool for

sharing resources in a parallel environment, it doesn't accomplish

any productive work. Good application performance requires

minimizing the impact of barrier synchronization on total

application execution time.

Until recently, most parallel applications only needed a barrier

or two at startup and termination; since the time spent

synchronizing was small relative to the total application

41

execution time, barrier execution speed wasn't relevant to overall

application performance. More recently, though, applications have

been developed that require thousands of barriers for connection

reconfigurations, or that rely on barrier synchronization to

control congestion in a message-passing system[25]. As barrier

use increases, barrier execution speed plays a larger role in

overall application performance.

4.1.2 Barrier properties

Regardless of the underlying implementation, a barrier has a name

and a cell membership. The barrier name uniquely identifies the

group of cells (barrier members) who participate in the barrier.

Cells may be members of more than one barrier, and a parallel

computer may support multiple barriers executing at once. Two

barriers with non-overlapping memberships may execute

simultaneously; barriers which share members (overlapping

memberships) will either be forced into sequential execution or

deadlock, depending on the ordering of the barriers in the overlap

cells' programs. A cell may only participate in a single barrier

at one time. (If a cell supports multitasking, each job on the

physical cell will be treated as a single task running on a

separate "logical cell." While the physical cell may be executing

multiple barriers at once, each logical cell is still limited to

executing a single barrier at a time.)

4.2 Issues affecting barrier synchronization implementations

This section will first present the canonical barrier

implementation, then look at some of the issues that must be dealt

with when creating a real implementation.

4.2.1 The canonical barrier implementation

As cells that are members of barrier foo reach the barrier in

their code, they suspend their foreground execution until all

other members reach the barrier point as well. Members resume

foreground execution as they become aware that all other members

have arrived. In essence, barrier execution is an all-to-all

information exchange between the members ("I am here at foo ") that

must occur before execution resumes. How that information

42

exchange occurs is a function of the physical signaling scheme and

the messaging protocol , and will be addressed later. What's

important now is recognizing that barrier execution time is

essentially the time needed for the barrier members to complete an

all-to-all information exchange.

The all-to-all communication occurs via an exchange of messages.

A barrier implementation's performance, the impact of how messages

are encoded, signaled, and distributed, can be modeled with just

two parameters: the message time , and the number of parallel

message times . The message time is the time needed for one cell

to compose and send a message to another, and for the recipient to

receive and decode it. Message time encompasses both the software

overhead of creating/launching the message and receiving/decoding

it, as well as the network latency in delivery. The number of

parallel message times reflects the number of messages which need

to be sent in the barrier and the degree to which multiple

messages may be sent simultaneously. Assuming no other load on

the synchronization network, barrier execution time is just the

product of the effective message time and the effective number of

parallel message times.

4.2.2 Scalability of a barrier implementation

Scalability characterizes how quickly an implementation's

performance changes as the number of cells increases (in other

words, how quickly does it slow down as N becomes large?).

Depending on one's definitions of "performance" and "number of

cells", scalability can have (at least) four different meanings:

 (1) barrier execution time vs. number of barrier members

 (2) barrier execution time vs. number of cells in the machine

 (3) barrier execution time vs. number of simultaneous barriers
supported

 (4) number of simultaneous barriers supported vs. number of cells
in the machine

4.2.2.1 Barrier execution time vs. number of barrier members

As shown earlier, barrier execution time equals the product of the

implementation's message time and the number of parallel message

43

times needed per barrier. Barrier execution time depends on the

scalability of both message time and the number of parallel

message times needed per barrier as the number of barrier members

increases. Just looking at the number of messages needed vs.

number of barrier members is a useless (though oft cited) means of

predicting performance because it ignores the possibility of

message times getting longer with more barrier members, as well as

the speedup allowed by multiple cells sending in parallel.

4.2.2.2 Barrier execution time vs. number of cells in the machine

Again, the real concern is the scalability of message time and the

number of parallel message times needed vs. the number of cells in

the machine. Depending on the implementation, message time may

scale with the number of cells in the machine, the number of

barrier members, or both.

4.2.2.3 Barrier execution time vs. number of simultaneous barriers

The number of parallel message times needed to execute a barrier

is independent of the number of other barriers executing; it is a

measure of the communication overlap allowed by the

implementation, not a guarantee. Since each cell (or logical

cell) can only be executing one barrier at a time, it is unaware

of the existence of other barriers which may be executing on the

machine at the same time. The cell's pattern of message exchange

(who sends what to whom in what order) will thus be the same for a

given barrier regardless of whether or not other barriers are (or

could be) executing, although individual messages may be blocked

or delayed. Thus, only the message time can be affected as the

number of simultaneous barriers on the machine increases. The

scalability of barrier execution time vs. number of simultaneous

barriers thus solely depends on the scalability of the message

time vs. the number of simultaneous barriers. Depending on the

implementation, the message time may scale based on the number of

simultaneous barriers allowed for by the implementation (static

sync network bandwidth allocation), or it may depend on the number

of simultaneous barriers executing (dynamic sync network bandwidth

allocation).

44

4.2.2.4 Number of simultaneous barriers vs. number of cells

This "performance measure" is more of a philosophical question

than a stand-alone metric. Before answering "How hard is it to

allow more simultaneous barriers as the number of cells

increases?", one needs to ask "How many barrier channels are

desirable for a multicomputer of N cells?". A related question

is: "How many distinct simultaneous barriers can be supported at

once by a pool of K barrier resource sets?" In other words, can

two distinct barriers with non-overlapping memberships share the

same underlying resources? The answer to this third question

colors the answer to the first, and is highly implementation

dependent, reflecting both how multiple barriers are implemented

and the allowable barrier memberships supported.

4.2.3 Barrier message memory

When a barrier executes, the member cells perform an all-to-all

information exchange; the details of how information is actually

signaled and received is the responsibility of the

implementation's physical signaling scheme and messaging protocol.

"Barrier message memory" is an important characteristic of all

implementations which ensures barrier synchronization information

is not lost during the all-to-all information exchange. Two major

cases need to be handled:

 (1) If a cell arrives at a barrier in advance of the other

barrier members, its information must not be lost, even

though other barrier members aren't executing the barrier

code yet. If the cell is re-entering a named barrier that it

had previously completed, other members must not confuse the

cell's second execution of the barrier with a continuation of

the first execution of the barrier.

 (2) The programming model states that when a barrier is

encountered in a cell's program, the cell's foreground

execution is suspended until all other barrier members reach

the same barrier in their code as well. Real implementations

have an additional constraint: a cell not only needs to know

that all other members have arrived; it must also be certain

that everyone else will know that it has arrived. Note that

45

the cell does not need to wait until everyone else knows that

it has arrived; the cell merely has to know:

(1) that everyone else has arrived, and

(2) that everyone will know that it has arrived.

This is an important distinction, because forcing all other

cells to know the cell has arrived requires in effect,

executing an unnecessary second barrier.

All barrier synchronization implementations must include some form

of barrier message memory that can satisfy these two cases.

Lacking either one will cause unexplained program behaviour as

barriers randomly fail to complete.

4.2.4 Barrier skew

Real cells running a real application seldom reach a barrier at

the same time; rather than all reaching the barrier together, one

cell will be first and another will be last. Consequently, the

cells reaching the barrier first can start the computations

necessary to process the barrier earlier than the one arriving

last. Barrier skew reflects the difference in time between when

the first cell exits the barrier and when the last cell exits the

barrier. Barrier skew is generally, though not always, influenced

by the timing skew between cells entering the barrier.

Since barrier performance will be no worse than the case of all

cells entering the barrier together, barrier skew will be ignored

in this paper. Still, it remains an interesting area for research

on possible future optimizations.

4.3 Design Space for Barrier Implementations

Synchronization schemes can be roughly categorized by the services

provided and how those services are implemented. Users only see

the functionality offered by the synchronization services:

flexibility for defining (and redefining) barrier memberships, the

number of barriers supported on their target machine, and barrier

execution time. Similar user services could be provided with very

different implementations. Precise classification is complicated

by the fact that sophisticated messaging protocols can emulate

46

capabilities lacking in hardware (usually at the expense of speed

or number of simultaneous barriers supported). Still, a

particular implementation can be placed within a four-dimensional

design space, and certain performance generalizations can be made

from this categorization. The four not-quite-orthogonal axes

describing the design space are:

 (1) physical signaling scheme,

 (2) messaging protocol,

 (3) allowable barrier memberships,

 (4) barrier capacity of the implementation.

Knowing where an existing implementation sits in this space offers

clues to expected barrier performance and scalability.

Conversely, given target platform hardware and membership/capacity

requirements, these axes can help guide choice of an appropriate

signaling scheme and messaging protocol. Initially, each axis

will be looked at in isolation. Later, various combinations of

physical signaling scheme and messaging protocol will be assembled

to show how they interact in real barrier implementations.

4.3.1 Physical signaling scheme

Barrier synchronization requires an all-to-all information

exchange between the barrier members. The physical signaling

scheme determines how information is carried, and who a cell may

directly communicate with. While the messaging protocol

determines which cell talks to whom and when, the physical

signaling scheme puts hard constraints on the messaging protocol

by defining the allowed communication. The message time for a

barrier is strongly dependent on the physical signaling scheme,

ranging from a few clocks for a hardware broadcast/combining

network to thousands of clocks for an implementation based on the

machine's general message-passing facilities. Physical signaling

methods generally fall into one of the following five classes:

Class S1 - low-level hardware broadcast/combining network (1's of
clocks)

Class S2 - multiplexed hardware broadcast/combining network (10's
of clocks)

Class S3 - special messages on a private network (100's of clocks)

47

Class S4 - special messages on the regular communication network
(100s to 1000s of clocks)

Class S5- general messages on the regular communication network
(1000s of clocks)

Lower-class signaling methods generally execute faster but can

support only a limited number of simultaneous barriers. Capacity

of lower-class signaling implementations can be increased at the

cost of greater hardware complexity. Higher-class physical

signaling methods more closely resemble a general-purpose network;

increased capacity occurs at the expense of slowing signal times.

4.3.1.1 Class S1 physical signaling -

Low-level hardware broadcast with network combining

Class S1 signaling is the simplest and most direct method of

signaling, whereby a cell indicates its readiness by setting an

absolute voltage level on a wire to indicate a logical “ready” or

“not ready”. A simple logical combining of all the cells’ signals

is done and the results continually broadcast back to all

participants. Both the combining network and the broadcast

network may either be buffered or unbuffered. Buffering allows

greater scalability, but requires extra hardware and adds latency

with each stage. The unbuffered implementation is faster for

small implementations, but scales poorly with large numbers of

cells.

4.3.1.1.1 Unbuffered broadcast

This scheme provides a true broadcast capability, and allows use

of efficient messaging protocols that can complete in just one

message time because all communication can be simultaneously

overlapped. The simplest hardware broadcast network is the

distributed-NOR circuit shown in Figure 4.1, similar to that

discussed by Hwang and Shang in [29]. This is a NOR circuit,

wired to all cells, such that any cell can pull the signal line

low or let it float high. Only if all cells let the line float

high will the test bit be read as high. The barrier is

initialized with all participating cells pulling their barrier

lines low, and either disconnecting all non-participating cells by

latch

Cell n set Cell n test Cell 0 set

latch

Cell 0 test Cell 1 set

latch

Cell 1 test

Vcc

48

Figure 4.1 A single hardware barrier channel

partitioning the network (Figure 4.15), or having the non-

participating cells let their lines float high (and subsequently

ignore them). When participating cells enter the barrier region,

they release their barrier lines and let them float high. When

the last cell enters the barrier, all cells will then read the

line as high. This barrier only requires one message time to

complete; if all cells enter the barrier together, they will all

release their barrier lines together, and could all probe their

test bits together.

While conceptually simple, this barrier implementation has several

drawbacks. While it only requires one message time to complete,

that "one message time" scales linearly with the number of cells.

Cells need to allow the voltage on the wire to stabilize after

releasing the line before reading it; how fast the line stabilizes

is a function of the line's capacitance and inductance, which is

in turn a function of the line length, with is proportional to the

number of cells wired together. For twice as many cells, one

needs a wire twice as long to hook them up, and the settling time

required also doubles. This implementation’s execution time is

independent of the number of barriers supported; each barrier has

its own copy of the circuit; adding more channels means

replicating hardware but doesn't affect any single barrier's

speed.

Cell n-1 test Cell 2 test Cell 1 set

latch

Cell 0 set

D

Cell 0 test

Q

Cell 1 test

latch

D Q

latch

Cell 2 set

D Q

Cell n-3 set Cell n-3 test

latch

D Q

Cell n-2 test

latch

D Q

Cell n-2 set

latch

D Q

Cell n-1 set

49

Figure 4.2 Single channel buffered hardware barrier
circuit.

4.3.1.1.2 Buffered broadcast

Message time scaling can be reduced from linear to logarithmic by

adding hardware "buffering" to the line. (Figure 4.2) This adds a

constant delay per buffering stage, but by keeping the hookup

wires short, the settling time remains constant. With a buffered

system, message time only scales O(logN) because buffering

latencies are a function of the number of layers (which are

proportional to logN), but the settling time per layer remains

constant. An unbuffered system scales as O(N) because the

settling time needed is proportional to wire length. For a small

multicomputer housed in a single cabinet, the unbuffered system

offers simpler implementation, and the small size ensures a fast

message time. For a system distributed across multiple cabinets,

the buffered system offers a clear advantage. This is similar to

an approach suggested by O’Keefe and Dietz in [37,38] and Beckmann

et al in [7].

An insidious problem with this type of low-level hardware is

supporting barrier message memory. Both the buffered and

unbuffered networks shown can allow a cell to know that everyone

Cell 0 set (to network)

Sync network signal lines

Cell 0 test (from network)

Cell 0 barrier set

Cell 0 barrier set
for all time

Cell 0 barrier clear

Cell 0 barrier test

latch

R

S
Q

latch

R

S
Q

Cell signal lines

50

Figure 4.3 Modifying the cell’s interface to the
synchronization network allows a more
reliable barrier message memory.

else has entered the barrier, but, as shown, they cannot ensure

that everyone else will know that the last cell has arrived. If

the last cell arrives, lets the barrier signal line float high,

sees it as high, and then resets itself, other cells doing

background processing while waiting at the barrier may never see

the line go high. Thus, some form of message memory must be added

either at the message protocol level (in other words, use a

second, uninterruptible barrier to ensure everyone's reached the

first; because the second barrier is uninterruptible, everyone

will complete within a known amount of time), or each channel's

cell interface must be augmented with hardware to provide a

message memory similar to that shown in Figure 4.3.

4.3.1.2 Class S2 physical signaling -

Multiplexed low-level hardware broadcast/combining

Both the buffered and unbuffered broadcast implementations allow

fast information exchange, but the amount of hardware required

scales with the number of simultaneous barriers needed. An

alternate approach to this problem is to time division multiplex

several barrier signals ("barrier channels") onto a single

broadcast network. With this technique, message time becomes the

sum of two components: a propagation/settling time (same as Class

51

S1) that scales with the number of processors, and a serialization

latency that scales linearly with the number of barriers supported

(each channel has to "wait its turn" to be broadcast and

received). The settling time required between each "barrier

channel" sets the reasonable limit on how many channels may be

reasonably multiplexed over a single network. If more channels

are required, additional copies of the synchronization network

will be needed.

4.3.1.3 Class S3 physical signaling -

special messages on a private network

Multiplexing several barriers on a single wire is little more than

static bandwidth allocation to a fixed number of "barrier

channels". A drawback of this approach is that barriers consume

bandwidth whether they are executing or not, limiting the total

number of barriers a machine may support. An application's

barrier synchronization needs must be mapped to the fixed set of

barrier channels, becoming a "graph coloring" problem similar to

register allocation. An alternative is to make the

synchronization network more general-purpose and use more

sophisticated messages (as opposed to single bit ready/not ready)

for barrier communication. While this approach will run about an

order of magnitude slower than simple multiplexed bits on a wire

(due to the greater overhead of processing/decoding the messages),

it allows demand-driven allocation of sync network bandwidth to

barriers as they execute, and, coupled with a more sophisticated

messaging protocol, can allow use of simpler network hardware.

Intelligent choice of a messaging protocol can relax the network

connectivity requirements, resulting in simpler wiring; for

example, explicit hardware broadcasting capabilities may not be

necessary. Furthermore, by using a more general-purpose messaging

scheme, greater numbers of simultaneous barriers may be supported

merely by allocating additional cell memory to buffer barrier

data.

By using a private synchronization network (as opposed to using

the machine's general communication network), communication

latency between cells is controllable. The designer has firm

52

control over the message types and sizes which need to be

supported, allowing for a more restrictive (and hence simpler)

hardware/firmware network design. At the same time, the designer

gains flexibility in terms of protocols allowed (as opposed to a

simple ready-bit-on-a-wire), as well as the number of simultaneous

barriers supported, at the expense of greater processing overhead

and potentially longer communication latencies. The Alliant FX-8

is one example of a shared memory multicomputer that uses a

separate, dedicated bus for barrier synchronization messages.

Rather than tieing up shared memory bus bandwidth with spin-wait

locks on shared variables, the designers elected to give barrier

traffic its own private network[2].

Barrier message memory, particularly handling the early sync

message, is cumbersome to address with hardware alone in a Class

S3 or higher signaling scheme and needs greater involvement of the

messaging protocol. An early sync message may:

 (1) generate an interrupt at the recipient cell and be buffered
for future use,

 (2) block the network until the message can be serviced,

 (3) continue circulating through the network until the message is
actively received, or

 (4) be discarded, relying on a higher software level to guarantee
message arrival (via retransmission until successful).

Each of these options offers the developer a tradeoff between

communication network bandwidth, application bandwidth needs, and

any time-critical CPU demands the application may require.

Applications unfettered with real-time requirements do well with

interrupt-driven buffering, since at most N-1 buffers are needed

(that is, if every other cell in the array tries to execute a

different barrier with the cell in question). On the other hand,

applications with real-time requirements may not be able to afford

servicing interrupts while in their critical loop. If one is

doing only global synchronizations, blocking the synchronization

network until the message can be serviced may yield the fastest

and simplest implementation. Conversely, if multiple subset

barriers are possible, blocking the network will almost certainly

53

cause deadlock. Allowing the message to endlessly circulate

consumes network bandwidth, perhaps slowing down "real" data

transfers in progress (if synchronization shares the general

purpose communication network). Discarding early messages

complicates the necessary handshake protocol and can more than

double the time needed to complete the barrier (since some cells

will always be early).

4.3.1.4 Class S4 physical signaling -

Special messages on a general network

If a private synchronization network is not available (such as

when one is "retro-fitting" an existing machine with barrier

capabilities), one can often "make do" utilizing special-purpose

messages over the general network. Using "virtual channels" or

similar capabilities, one can send barrier data over the general

communication network but utilize private data handlers to launch

and receive barrier information, resulting in lower barrier

communication overhead than obtainable with the regular

communication facilities. This approach still requires having

low-level program access to the machine's communication hardware,

but avoids the need for "programming in solder". Allowable

messaging protocols are restricted by the connectivity allowed by

the private data handlers. Depending on the machine, the private

data handlers may sacrifice some of the connectivity normally

offered by the regular communication facilities in exchange for

lower communication latencies. This would force the use of a

messaging protocol that requires a greater number of parallel

messages, but may guarantee significantly shorter message times.

Barrier message memory issues are the same as for Class S3. This

general signaling approach is discussed in [10] but, as far as we

know, was not implemented.

4.3.1.5 Class S5 physical signaling -

General messages on a general network

This approach offers the most flexibility in choice of messaging

protocols but permits the least control over message times or

connectivity. Due to copying and buffering overhead, this

approach usually has the slowest execution time but the greatest

54

portability to other platforms. Furthermore, if the appropriate

messaging protocol is used, the problems of barrier message memory

can be transparently handled by the underlying communication

services. One cannot avoid the use of interrupts, so one might as

well let the regular communication buffers hold the early

messages.

4.3.1.5 Physical signaling summary

Physical signaling implementations require a tradeoff between

messaging speed and barrier capacity. At one end of the spectrum,

the simple “bit-on-a-wire” scheme of Figure 4.1 provides fast

signaling times but only supports one barrier per hardware

instance. Time-division multiplexing multiple barrier signals on

the wire will increase capacity at the expense of increasing

message latency. At the other end of the spectrum is using the

general purpose communication facilities to send and receive

messages. This allows much greater flexibility for arbitrary

barrier subsets and multiple simultaneous barriers on the machine

at the expense of a much higher latency. Sharing the general-

purpose network can be speeded up by using special, optimized

private messages over the same physical network, at the expense of

the type/shape of barrier subsets (memberships) supported

(completely arbitrary vs. contiguous blocks only). While TCS uses

only one physical signaling method, other real-world barrier

implementations may use a hierarchy of signaling methods.

Barriers that are used infrequently can utilize a slower signaling

implementation that doesn’t require any specialized resources,

whereas a few frequently-executed barriers within an inner program

loop could benefit from rare, specialized hardware. As will be

explored later in Section 4.5, choosing a physical signaling

scheme requires a tradeoff between speed, capacity, and resource

cost.

4.3.2 Messaging protocol

Given a group of N cells entering a barrier, none are allowed to

exit until all have arrived. In essence, this boils down to each

cell asking its N-1 neighbors "Are you ready yet?", and answering

"Yes" when queried by its neighbors. Consider the two-cell

"Are you ready yet?"

A
"Yes."

"Yes."

"Are you ready yet?"

B

"I'm ready. Tell me when you are."

"I'm ready. Tell me when you are."

A B

55

Figure 4.4 The simplest two-cell synchronization

Figure 4.5 Reduced protocol two-cell sync

synchronization shown in Figure 4.4. Once a cell has 1) Answered

"Yes, I'm ready" to its neighbor's query, and 2) received a "Yes"

to its own query, it is free to leave the barrier.

Obviously, this scheme carries some redundant communication.

Assume A enters the barrier first and sends the "Are you ready

yet?" message to B. The message will sit at B until B enters the

barrier as well (barrier message memory). B shouldn't need to ask

A "Are you ready?" because A's message in B's buffer implicitly

indicates readiness. Suppose that instead of a question/answer

exchange, each processor simply sends the message "I'm ready,

tell me when you are" to its neighbor. In effect, the message

sent is "overloaded" so that a single message sent from one cell

to another really carries the weight of two messages sent by two

different cells. Modifying the handshake protocol in this manner

reduces the synchronization to what is shown in Figure 4.5.

How many message times does this barrier require to complete? If

the synchronization network supports multiple simultaneous

56

communications, the cells can overlap their message transmissions,

and the barrier will complete in just one message time. On the

other hand, if the network only supports a single message at a

time (say, the two cells share an ethernet connection), the

messages become serialized due to the network access restriction,

and the barrier requires two message times to complete. In both

cases, two messages were required to complete the barrier. The

number of parallel message times , though, varied based on the

underlying physical signaling scheme. Choosing a protocol that

minimizes redundant communication (whether directly, or because of

serialization at the physical signaling layer) is key to good

barrier performance.

The "ideal messaging protocol" for a given system is strongly

influenced by the underlying signaling scheme being used. Major

issues affecting the choice of protocol include degree of support

for broadcast capabilities, and the number of barrier messages

that can be sent simultaneously (both by the system as a whole,

and by individual cells). Regardless of the protocol chosen, all

cells need to transmit at least one message per barrier. By using

a protocol that takes advantage of the underlying signaling

mechanism, one can execute some of those communications in

parallel, reducing the number of message times needed per barrier.

Messaging protocols fall into two general classes of

communication: those that rely on some form of broadcast or

multicast (Class P1), and those that use only private, point-to-

point messaging (Class P2).

4.3.2.1 Class P1 messaging protocol-

Broadcast communication

Synchronization protocols based on some form of broadcast

messaging can be further subdivided into 4 subclasses:

 (a) shared global channel, all-to-all, with network combining;

 (b) shared global channel, one-to-all;

 (c) private channel, all-to-all, with network combining;

 (d) private channel, one-to-all.

Each of these will be examined in more detail.

Stage 2

Combining
Network

Combining
Network

Stage 1

57

Figure 4.6 Class P1a protocol. Synchronization
completes in one message time when the
protocol and underlying hardware support a
broadcast-combining network.

4.3.2.1.1 Class P1a messaging protocol -

Shared global channel, all-to-all, with network combining

This protocol assumes that the cells have a Class S1 or Class S2

physical signaling scheme, similar to what is shown in Figures 4.1

and 4.2. When executing a barrier, each cell sends a single

message (usually just setting a single bit) to the combining

network to indicate readiness, and waits until the network

combining function indicates that the barrier is complete. Once

the cell is assured that all other cells will know that it reached

the barrier as well, the cell is free to leave. With the correct

underlying hardware, this protocol can complete in one message

time (if all cells enter the barrier together), because all cells

can send and receive at once (Figure 4.6).

4.3.2.1.2 Class P1b -

Shared global channel, one-to-all, no network combining

This assumes an ethernet-like communication network, where one

cell can broadcast and all other cells can listen (Figure 4.7).

Unfortunately, this scheme offers the worst performance of the

Stage 7

Stage 3

Stage 5 Stage 6

Stage 1 Stage 2

Stage 8

Stage 4

58

Figure 4.7 Class P1b protocol. Example of an eight-cell
barrier executing using one-to-all
broadcasts.

broadcast protocols, with best-case execution requiring N

sequential message times to synchronize a barrier with N members.

Because every cell participating in the barrier needs to send

information at least once (otherwise no one can know it has

reached the barrier), because there is only a single, shared

global channel, and because there is no inherent combining in the

network, all N broadcasts occur sequentially. There is no way to

get parallel barrier transmission; the best you can hope for is

parallel receives. The only way to obtain good performance with

this protocol is to have an underlying physical signaling

implementation that offers a very fast message time.

4.3.2.1.3 Class P1c -

Private channel, all-to-all, with network combining

This is similar to Class P1a (shown in Figure 4.6), except that

multiple "barrier channels" are visible at the protocol level.

This means that systems lacking the additional message memory

hardware can still get the functionality of barrier message memory

by utilizing a second "barrier channel" in the network. Cells

which are not members of a barrier simply indicate they are "ready

for all time" to the network, and thereafter ignore that channel.

Stage 2

Stage 4Stage 3

Stage 1

59

Figure 4.8 Class P1d protocol. Optimal for a network that
 allows both private communication and broadcasts.

4.3.2.1.4 Class P1d -

Private channel, one-to-all, no network combining

With appropriate hardware, this messaging protocol offers similar

performance and scalability to Class P2 protocols, except that the

effective message time is somewhat shorter because all

communications are unidirectional. By utilizing "private

channels", multiple cells can communicate at once. The

synchronization is composed of N-1 unidirectional messages

(occurring in log N time with the appropriate underlying signaling2
mechanism), plus one broadcast at the end to complete the barrier.

In this scheme, a cell either transmits or receives, but never

does both at once (Figure 4.8). Note that this is in contrast to

the handshaking done in Class P2 protocols where a cell can send

and receive at the same time. By reducing the overhead per

message (since each communication is unidirectional), this

protocol could have a shorter message time than a Class P2

protocol, which uses only private messages (no broadcasts), but

requires bidirectional communication at each stage.

60

Note that there are still N transmissions being made; if this

protocol is used with a physical signaling scheme that only

supports global broadcasts (such as ethernet), the communications

will become serialized and occur in N message times, not (log N + 2
1).

4.3.2.2 Class P2 -

Point-to-point messaging protocols (no broadcasts)

All of the Class P1 protocols relied on a final broadcast to

inform all member cells that the barrier had been completed. If

the underlying physical signaling mechanism does not allow a final

broadcast, some other means of distributing the information is

required. A further complication is that arbitrary connectivity

may not be supported; cells may be restricted in whom they can

communicate with. If the synchronization services share network

bandwidth with the application, it may also be important to

restrict the total number of messages used to synchronize.

4.3.2.2.1 Optimizing point-to-point messaging protocols

The underlying problem remains: an all-to-all information

exchange has to occur. Since communication is restricted to

point-to-point messages, there are several principles to make a

protocol fast:

 (1) Reduce the per-cell, per-barrier communication;

 (2) Control the synchronization network loading;

 (3) Reduce the total number of messages carried by the

synchronization network;

 (4) Overload messages where possible so that a single

communication carries the information of multiple messages.

Depending on the underlying physical signaling scheme, different

principles carry different weight. While they apply to broadcast-

based protocols as well, they're particularly relevant to point-

to-point messaging protocols.

4.3.2.2.1.1 Reduce the per-cell per-barrier communication

The simplest example of reducing communication is the evolution

of the handshake from a two-message split handshake (Figure 4.4)

Stage 2Stage 1

D C D

A B A

DC

Stage 3

C

AB B

61

Figure 4.9 Four-processor all-to-all handshaking

Figure 4.10 During each communication stage a cell
proxies to its downstream neighbor for all
the upstream neighbors it has heard from. At
the final stage, each cell receives a proxy
message for all other cells.

to the reduced protocol single-message handshake shown in Figure

4.5. Pure hardware schemes (Figures 4.1 and 4.2) take this to an

extreme with the communication consisting of a single voltage

transition.

4.3.2.2.1.2 Control the synchronization network loading

Consider the four-cell synchronization problem shown in Figure

4.9. Each cell sends a single "I'm ready, tell me when you are"

message to each of its three neighbors, then waits until it

receives all three replies.

Allowing one cell to "proxy" for another reduces the all-to-all

communication pattern shown in Figure 4.9 to the three-stage

communication shown in Figure 4.10.

62

Each cell runs the same algorithm. For a barrier of N cells

communicating in a unidirectional ring:

 for I=0 to (N-1) {
send a message to my downstream neighbor;
wait for a message from my upstream neighbor;

 }

Consider cell A. At the beginning of the barrier, stage 1, A

sends a single "I'm ready, tell me when you are" message to B,

then waits until it receives a similar message from D. Once it

has received the message from D, it begins stage 2, and again

sends a single "I'm ready, tell me when you are" message to B.

This second message carries more information that the first,

though, because sending it means that A has received a message

from D. Thus, the stage 2 message B receives from A really means

" A and D are both ready, tell us when you are". (The two parallel

arrows in stage 2 of Figure 4.10 represent a single message

carrying information about two cells; the three parallel arrows in

stage 3 represent a message carrying information about three

cells.) A meanwhile waits to receive the second message from D,

which in turn means " D and C are both ready, tell us when you

are." After receiving this second message, A then sends the third

and final message to B which carries the meaning " A, D, and C are

ready, tell us when you are." Once A receives its final message

from D, it knows that D, C, and B are all ready, hence all cells

have entered the barrier, and that A may now safely exit the

barrier.

While the number of messages sent using the scheme shown in Figure

4.10 is the same as shown in Figure 4.9 (N x (N-1)), several things

are being accomplished. First, only limited network connectivity

is needed; each cell sends messages in a single direction to a

single recipient. This makes it easier to build a separate,

dedicated network for synchronization messages, or to add a small

synchronization facility to an existing messaging system.

Furthermore, the rate at which messages enter the network is

controlled. Each cell can only send a single message at a time;

the cell must then wait until it receives a message before sending

out the next. Finally, the message transmission is fully

parallelized. To the extent the underlying physical signaling

63

scheme allows, each cell can send and receive a message at the

same time, so the barrier completes in only (N-1) message times.

4.3.2.2.1.3 Reduce the total number of messages carried by the

 synchronization network

If the synchronization network does not support multiple

simultaneous sends and receives, then message transmission becomes

serialized. The protocol shown in Figure 4.10, which runs in just

3 message times (on a four-cell membership) if multiple sends and

receives are supported by the underlying physical signaling

mechanism, would require 12 message times to complete if message

transmission were serialized due to network access restrictions.

In other words, if an ethernet-like signaling scheme is all that's

available, a Class P1b messaging protocol using broadcasts (which

could complete in 4 message times) would be more efficient.

Alternatively, the total number of messages sent for

synchronization may need to be limited to conserve network

bandwidth. In both cases, the aim is to use a messaging protocol

that reduces the total number of messages, rather than trying to

achieve parallelism. Such an approach is shown in Figure 4.11.

At stage 1, cell A sends an "I'm ready, tell me when you are"

message to cell B. When B receives A's message, it then sends a

message " A and B are ready, tell me when you are" message to cell

C (stage 2). At the end of stage 3, cell D knows that all cells

have entered the barrier. While D now has knowledge that all

cells have entered the barrier, no one else knows D's status. D

is obliged to send at least one message so that the other cells

can know that D reached the barrier too. At stage 4, cell A

receives the message from D that all cells have entered the

barrier, then forwards that message to B. By stage 6, all cells

are aware that all other cells have entered the barrier and hence

can exit the barrier.

This approach, hereafter referred to as "token twice around" or

token 2x , is fairly easy to program on a message-passing system.

One cell is the "master" (A in Figure 4.11), and runs the

following code:

Stage 2

Stage 5Stage 4

D C

A B

Stage 6

Stage 7

D C

A B

Stage 8

D C

A B

D

A

Stage 1

D C

A B

D

A

C

B

D C

A B

C

B

Stage 3

D C

A B

64

Figure 4.11 The "token twice around" scheme requires fewer
 messages than Figure 4.9, but all messages are
 now serialized. The last two stages carry no
 new information.

(1) send a token to downstream neighbor

(2) wait to receive a token from upstream neighbor
(3) send a token again to downstream neighbor
(4) wait to receive a token from upstream neighbor, and discard it

The other cells are "slaves" and run the "mirror image" of the

above code.

(1) wait to receive a token from upstream neighbor
(2) send a token to downstream neighbor
(3) wait to receive a token again from upstream neighbor
(4) send a token again to downstream neighbor

2D prox ying, 3-member rin gs Simple 1D rin g

65

Figure 4.12 One large ring can be broken up into sets of
smaller rings

While this simple scheme possesses a rather nice symmetry, it

lacks efficiency. In the four-cell example shown above (Figure

4.11), the last two communication stages do not carry any new

information. Keeping those two redundant stages simplifies

implementation, but eliminating them reduces the number of message

times from eight down to six, in this case yielding a 25% speedup.

4.3.2.2.1.4 Overload messages where possible so that a single

 communication carries the information of multiple

 messages

Each of the previous two examples shows some degree of

overloading. As a message is relayed around the ring, it

signifies readiness of greater numbers of cells at each stage. A

transmission indicates not only the sender's readiness, but also

the readiness of everyone the sender has heard from (whether

directly or by proxy). Taken to the extreme, proxying can be

extended across multiple dimensions as well as just for upstream

cells.

Consider the nine cell group shown in the left half of Figure

4.12. Assuming that the synchronization network allows multiple

simultaneous message transmissions, one can see that a

synchronization scheme like that of Figure 4.10 would complete in

N-1 message times (8, in this case). If the one large ring is

split into two orthogonal sets of three rings each (shown in the

right half of Figure 4.12), synchronization occurs in only 4

Stage 3

Stage 1

Stage 4

Stage 2

66

Figure 4.13 Synchronization occurs in four stages: two
horizontal stages, and two vertical stages.

message times, twice as fast as using a single ring.

Figure 4.13 shows how the synchronization proceeds. Stages 1 and

2 synchronize all three processors in each of the three rows.

Stages 3 and 4 not only synchronize the three cells within the

three columns, but also carry information about the rows those

cells are in. The synchronization messages within the columns are

overloaded to carry the information that the rows are already

synchronized. At the end of stage 2, each cell knows that all

other cells in its row have entered the barrier. At the end of

stage 4, each cell knows that all cells have entered the barrier.

By proxying in two dimensions rather than just one, the problem of

67

synchronizing nine cells is reduced into two sequential

synchronizations of three parallel three-cell groups. Each three-

cell synchronization requires 2 message times to complete. Thus,

the total synchronization requires just 2*(3-1) = 4 message times.

This is only half the time required for synchronization using a

single ring and only a quarter of the time needed for a "token

twice around" barrier.

The general method of overloading messages by splitting the rings

into more groups of smaller loops can be continued until only

loops of two or three cells remain. In essence, one embeds the

largest complete hypercube into a group of processors, then

"buddies up" the remaining processors with members of the

hypercube. The synchronization algorithm then becomes:

 (1) handshake with your buddy if you have one,

 (2) if you are a hypercube member, complete the hypercube
synchronization,

 (3) handshake with your buddy.

Assuming the network can handle multiple messages, and that all

messages have the same latency, this is the fastest way to

synchronize a group of processors with N>9.

Consider the group of thirteen processors shown in Figure 4.14.

Logically, they can be thought of as a 3-ary 2-cube, with five of

the eight nodes having "buddies". Stage 1 is the hypercube and

non-hypercube buddies handshaking. Stages 2 through 4 are the

hypercube members handshaking along each dimension. Stage 5 is

the hypercube buddies and non-hypercube buddies handshaking again.

Obviously, powers-of-two cell groups will run one or two message-

times faster than non-powers of two because the hypercube/non-

hypercube buddy handshakes at the beginning and end are

eliminated.

While the underlying communication network has a certain

dimensionality, the messaging protocol can "embed" and use a

higher order dimensionality. For instance, in a sixty-four cell

system, a global 1D ring-based synchronization would take N-1, or

63, message times, and require N*(N-1) messages. One could embed

Stage 5

Stage 2

Stage 4

Stage 1 Stage 3

68

Figure 4.14 Thirteen cell synchronization with hypercube
buddies

a 6-ary 2-cube into the ring, and reduce the communication

requirements to N*6 messages, occurring in 6 message times. In a

machine where message time is dominated by network latency rather

than processing overhead, though, message times for the two may be

different and are not directly comparable . In the global 1D (N-1)

ring, the message time is merely the time needed to send to one's

adjacent neighbor. With a hypercube embedded in a ring, though,

message times are longer by a factor of N/2 to N, because one of

the handshake partners is always somewhere between half-way around

the ring to all the way around the ring. Even though the embedded

hypercube uses fewer total messages and completes in “fewer

message times", its message times are N/2 to N times longer due to

the higher network latency. When embedding higher-order

communication into a lower-order network, message time isn't a

constant; rather, it scales with N. The N-1 ring, a "worse"

technique (because it runs in N rather than log N time) will 2
always run faster than a "more efficient" higher-order embedded

network in a network latency-dominated system (as opposed to a

message-processing overhead-dominated system) because the N-1 ring

69

needs only 1 message-trip-time around the ring to complete.

Embedded higher-order schemes will require multiple trips around

the ring.

If multiple network dimensions are available, using them will

speed things up by reducing message latency. For instance,

splitting an 8x8 2D torus into a set of horizontal eight-member

rings and vertical eight-member rings reduces the total message

distance (and hence time) per ring from 63 hops (N-1 where N=64)

to only 7 hops (N=8). Thus, by using proxying in 2 dimensions,

total synchronization time drops from 63 next-neighbor message

times to 2*(8-1) = 14 next-neighbor message times, a better than

4-fold improvement.

4.3.2.3 Messaging Protocol Conclusions

Barrier messaging protocols fall into two general classes: those

that rely on some form of broadcast, and those that rely on

private messages. All private-message protocols reduce to some

combination of two basic schemes:

 (1) pass a token twice around a ring of cells (referred to

hereafter as the token 2x method), or

 (2) for each cell in a ring of N cells to perform (N-1) sends and

receives (referred to hereafter as (N-1) send/recv).

At its most parallel, the token 2x method becomes a

reduction/broadcast tree embedded into the physical network, and

the (N-1) send/receive becomes handshakes on an embedded hypercube

(Figure 4.14). For best performance, when using a non-broadcast

physical signaling scheme that serializes message transmission

(such as RTS-based message-passing), one should use the token 2x

method (good) or the embedded reduction/broadcast (better) to

minimize the number of messages sent. If the underlying physical

signaling scheme supports parallel messaging, the 1D (N-1) method

(or some higher embedding) is a better messaging choice (by

roughly a factor of two) over the token 2x method. A number of

people have observed that reduction/broadcast maps nicely (that

is, no congestion) to hypercubes[46], but the reduction/broadcast

requires two separate send and receive stages. Handshaking allows

simultaneous sending and receiving, thus completing in roughly

2D prox ying, 3-member rin gs Simple 1D rin g

70

Figure 4.15 Faster barrier schemes can't handle arbitrary
subsets and still deliver high performance.
Some tradeoffs are necessary.

half the time of a reduction/broadcast.

4.3.3 Allowable barrier memberships

Connectivity between participating barrier members affects both

proxying efficiency as well as the amount of information needed to

identify the participating members. For example, a compact 3x3

block can be represented more compactly (and with less

information) than 9 random cells which are scattered throughout

the array. Consider a group of nine cells with a connecting

message ring. Assume that any cells not participating in the

barrier would simply let messages pass through. This scheme

easily lets one synchronize an arbitrary subset of N cells out of

the nine in (N-1) message times, assuming all cells in the subset

knew how many were participating.

If two dimensional connectivity were available, synchronizing all

nine could be done more efficiently using 2D rings as shown in

Figure 4.13. This requires only four message times, but requires

more information at each cell than the single 1D loop. All cells

now need to know the number of participating cells in each

dimension of communication , and some subgroups are completely

impossible to synchronize with this scheme.

Figure 4.15 shows a subset of five cells out of the nine. While

the simple 1D ring is able to synchronize the shown subset of

71

five, the 2D proxying scheme (twice as fast when synchronizing the

whole group of nine) is unable to work with this barrier

membership. The upper-right-hand cell is simply unable to

communicate with the other members either directly or via proxying

through another member cell. Thus, by restricting the allowable

subsets, faster barrier implementations may be used. It is

generally faster, and less complex, to implement a synchronization

scheme that allows restricted partitioning than to implement one

that allows arbitrary subset partitions.

Four general classes of barrier membership exist; listed in order

of increasing implementation complexity, they are:

 (1) a single global, system-wide barrier;

 (2) multiple barriers with fixed, non-overlapping memberships;

 (3) multiple barriers with fixed, overlapping memberships;

 (4) multiple barriers with arbitrarily overlapping memberships.

The following sections describes each in more detail.

4.3.3.1 Class M1 -

A single global, system-wide barrier

The simplest barrier is the single global barrier which

synchronizes the entire array. Only one sync may be pending at

any cell; anything else is a deadlock condition. For any given

implementation style (dedicated hardware vs. general message-

passing), this barrier can be made faster than any comparable

subset-capable design that synchronizes the whole array because

only a minimum of information is needed in the synchronization

message. The underlying physical signaling scheme doesn’t even

need to carry a barrier ID because it can have only one value.

Only a single "barrier message memory" per cell is required, since

at most one message can be outstanding.

4.3.3.2 Class M2 -

Fixed, non-overlapping memberships

Subset barriers are allowed, but only certain subsets are

permissible, and the subsets may not overlap. If one builds a

dedicated synchronization network in hardware, one can easily

allow for partitioning within the network by isolating a

72

particular subset (Figure 4.16). A system using Class S3 or S4

physical signaling may want to use a partitioning scheme like this

in the interest of performance, such as restricting subsets to

rectangles on a 2D mesh or blocks on a 3D mesh, so that more

efficient handshake protocols may be used. Because barriers are

non-overlapping, only one sync may be pending at a single node at

any one time. This restriction means only a single wire is needed

for a hardware implementation, or a single buffer for a message-

based or hybrid implementation.

4.3.3.3 Class M3 -

Fixed, overlapping memberships

Subset barriers are allowed, and may overlap. This is more

difficult to implement with a low level (Class S1 or S2) physical

signaling scheme because multiple barriers may be pending at each

cell. The sync and acknowledgment signals must be kept separate,

so multiple hardware instances are necessary. If a cell has three

pending syncs, three copies of the synchronization hardware at

each cell are needed, along with three copies of the fan-in/fan-

out network. This resource issue isn’t as significant in a

higher-class physical signaling implementation, but additional

buffering (one buffer per pending sync) is still needed.

4.3.3.4 Class 4 -

Arbitrarily overlapping memberships

This implementation is the most difficult to directly build in

hardware, as this scheme requires either building multiple copies

of a reconfigurable synchronization network, or else suffering a

configuration dependent performance. Essentially, one copy of

network interface hardware is necessary per possible pending sync

allowed per cell.

4.3.4. Barrier capacity

Barrier capacity is a measure of "how many different barriers can

be supported simultaneously"? Since hardware and bandwidth are

required to support each pending sync, this is an important design

decision. Even a pure message-passing-based system needs hardware

memory buffers to store the incoming messages until they can be

latch

Cell n set Cell n test

latch

Cell n-1 set Cell n-1 test

Vcc

Cell 0 set

latch

Cell 0 test Cell 1 test Cell 1 set

latch

Vcc

73

Figure 4.16 A simple implementation of a single hardware
barrier that can be partitioned to provide two
distinct, non-overlapping barrier channels.

processed. Barrier IDs can be virtualized (so that over the

course of an application, a cell may participate in hundreds or

thousands of different barriers by re-using barrier resources),

but the total number that may be pending at a single cell, or on

the machine as a whole, is a constraint of the physical

implementation.

Consider the simple hardware barrier scheme shown back in Figure

4.1. Now imagine adding a second pull-up resistor, and a switch

in the middle of the network capable of splitting it into two

parts (Figure 4.16). Within the restriction of the barrier

memberships being non-overlapping, one barrier channel

implementation is serving the needs for two barriers. If two

barriers with an overlapping membership (one cell can be a member

of both) were needed, then two distinct channels must be

implemented.

While only a hardware implementation example is shown here, the

same sort of techniques apply to message-based systems. For

instance, suppose one used a 1D ring snake passing through a group

of cells to carry the barrier messages. One could either use two

distinct barrier IDs on the barrier messages, or one could re-

route the 1D ring snakes so that they do not overlap (Figure

4.17)[16]. Using two disjoint ring snakes for communication

allows reuse of the barrier IDs, meaning fewer barrier IDs have to

One barrier ID on two
dis joint rin g snakes

Two barrier IDs sharing
the same rin g snake

74

Figure 4.17 By splitting the communication network, a
message-passing based system can use fewer
barrier IDs while still providing the same
number of disjoint subsets.

be supported overall, which implies fewer bits are needed to

communicate readiness, resulting in shorter barrier messages and

smaller storage requirements for buffering early sync messages.

If fewer "barrier channels" are implemented, less buffer space

must be reserved.

Because "number of simultaneous barriers supported" can be a vague

number, "barrier capacity" is a more accurate description of the

implementation's capabilities. Barrier capacity has two

components:

 (1) How many barriers can be pending simultaneously at a single

cell with a particular implementation, and

 (2) Does the implementation allow partitioning (as shown in

Figures 4.16 and 4.17)?

The answer to (1) tells us about the intrinsic "capacity" of the

synchronization implementation, and the answer to (2) tells us how

effectively that capacity can be allocated to support application

barrier needs.

4.4 Design methodology

Now that the design space (physical signaling scheme, messaging

protocol, allowable barrier memberships, barrier capacity) has

been defined, this knowledge can be used to create an appropriate

barrier implementation with a given a set of finite resources.

75

4.4.1 The questions

The relevant design questions cover three general areas:

(1) Resources availablity (physical signaling and messaging

 schemes) on the target machine.

Physical signaling

What physical signaling schemes are available? What connectivity

do they offer, and to what degree do they allow sending messages

in parallel?

Messaging

For the physical signaling schemes available, what message schemes

make sense? How fast is a message time for each, and will it

allow messaging in parallel?

(2) What demands will be placed on the implementation (memberships

 (global, non-overlapping subsets, arbitrary subsets) and when

 they are defined (compile time, link time, run time))?

Barrier memberships

What memberships are required, and when are they set (compile

time, link time, run time)?

Barrier capacity

What kind of capacity is needed? Is a single global barrier

sufficient, or are multiple (potentially overlapping) barriers

required?

(3) What are the performance criteria for declaring a “better”

 implementation (raw execution speed, minimal resource

 consumption, or speed within some resource constraint)?

How frequently is this barrier going to be used (thus how

important is barrier speed)? Is a barrier’s overhead execution

allowed to interrupt a foreground program, or must the barrier

avoid delaying foreground execution? How much importance is

attached to speed vs. minimizing communication resource

consumption?

76

4.5 Crafting a barrier implementation

The first part of the chapter outlined a barrier synchronization

design space (physical signaling scheme, messaging protocol,

barrier memberships, and barrier capacity), followed by a general

methodology for creating a barrier. This section reviews the non-

broadcast physical signaling options on iWarp, then combines them

with various prototypical messaging protocols to show how barrier

performance is affected by the combination of signaling scheme and

messaging protocol. Design assumptions include:

 (1) barrier memberships will be contiguous blocks with dimensions

that are multiples of two, and

 (2) multiple simultaneous barriers need to be supported, with up

to four possible barriers pending at a given cell.

4.5.1 Physical signaling on iWarp

Figure 4.18 summarizes the results of Chapter 3: PCT-based

connections offer about an order of magnitude better performance

than deposit message passing, and several orders magnitude better

performance than RTS-based message passing.

Physical

signaling 1 cell 2 cells 3 cells 4 cells 5 cells 6 cells 7 cells

RTS-based 27964 28200 27966 28200 27966 28198 28839
message-
passing
(32 bytes)

Deposit 258 264 269 275 278 283 289
message-
passing
(4 bytes)

PCT-based 10 16 20 26 30 36 40
connections
(4 bytes)

 Figure 4.18 Measured average message times (clocks) on iWarp

for the three signaling schemes vs. distance.

These results strongly support using PCT-based connections for the

TCS barrier, but it is worth studying the interaction of all three

signaling schemes with the different messaging protocols. RTS-

based message passing is a good model for any real-world single-

77

access collision-free communication method (such as FDDI).

Deposit message-passing is a reasonable model for general-purpose

message-passing in a machine that supports parallel communication

(such as an MPI library on a group of machines connected through a

crossbar switch), and PCT-based connections serve as a general

model for connection-based communication.

4.5.2 Non-broadcast messaging protocols on iWarp

Two general non-broadcast messaging models exist for barrier

synchronization: one is passing a token twice around a ring of

cells (token 2x), and the other is performing (N-1) send and

receive operations at each of the N cells in the ring ((N-1)

send/recv). At their most parallel, the token 2x method evolves

to a ring-embedded reduction/broadcast tree, and (N-1) send/recv

becomes handshakes on a hypercube.

Figure 4.19 shows the models for barrier execution time for the

two prototypical barrier messaging schemes, and their two fully-

parallel derivatives, for a group of N cells. The token 2x

method generates a total of 2N messages and has an expected

execution time of [startup + (2N x message_ time)]. "Startup" is

the time required to enter the barrier subroutine and obtain

control of the particular communication resource, and was measured

at 40 clocks in the test code. The (N-1) send/recv method

generates a total of Nx(N-1) messages; execution time depends on

the degree to which parallel messaging can occur. If the

underlying physical signaling scheme serializes all messages,

execution requires [startup + (N x (N-1) x message_time)] clocks.

If the physical signaling scheme supports full parallel messaging,

execution requires only [(N-1) x message_time]. The number of

messages sent is (N x (N-1)) in both cases, but the non-parallel

case takes N-times longer to send them. The parallel derivatives

(embedded reduction/broadcast tree, handshakes on a hypercube) are

listed as well, but note that their values for message_time may be

larger.

The following constants were measured on iWarp, and should be used

when evaluating the model equations of Figure 4.19:

78

 startup time is 40 clocks (measured);

 RTS-based message_time is 28340 clocks (measured as an average

 of all cell-to-cell communication times);

 Deposit-MP message_time is 260 clocks (derived from Figure 4.17);

 PCT-based message_time is 11.5 clocks (derived from Figure 4.17).

Messaging Number of Fully-Parallelized Fully-Sequentialized
Scheme Messages Messaging Messaging

Execution Time with Execution Time with

1D ring, startup + ((N-1) startup + (N x (N-1)
(N-1) N x (N-1) x message_time) x message_time)
send/receives

fully-embedded N x (log N) startup + (log N startup + (N x (log N)
hypercube, x message_time) x message_time)
handshakes on
each dimension

2 2 2

1D ring, token 2x startup + (2 x N startup + (2 x N
around x message_time) x message_time)

2N*

fully-embedded startup + (2 x log N startup + (2 x N

reduction / 2 x (N-1) x message_time) x message_time)

broadcast tree

2

* The 1D ring, token 2x method is generally implemented using 2N

message times, but the last two messages, as shown earlier in this

chapter, carry no new information and could be omitted, yielding

2N-2 messages.

 Figure 4.19 Relevant iWarp barrier messaging schemes

This table implies that a physical signaling scheme that supports

parallel messaging (such as PCT connections or deposit message-

passing) runs faster using the (N-1) send/recv method (or a more-

parallel derivative of it) than the token 2x method. Conversely,

(N-1) send/recv and its derivatives do worse on a fully-

sequentialized messaging system (such as a token-ring or

ethernet).

4.5.3 Putting it together

Now that the major components (the physical iWarp signaling

schemes and the messaging schemes) have been introduced, they are

put together in various combinations to show how their interaction

affects real-world barrier performance.

79

4.5.3.1 RTS message-passing and various messaging schemes

Figure 4.18 shows the measured message time for communication

across distances of 1 to 7 cells, using RTS-based message passing,

deposit message-passing, and low-level hardware-supported (PCT)

connections. These data indicate that PCT-based next-neighbor

message time is 11.5 clocks and RTS-based message time is around

28,340 clocks. Using these derived message times, performance

can be predicted for synchronization barriers using the different

messaging schemes.

Figure 4.20 shows measured barrier performance on iWarp using RTS

message-passing as the underlying signaling scheme for a variety

of messaging schemes. The token 2x messaging scheme inherently

serializes all messages (Figure 4.11), and performance is as

predicted. The r eduction/broadcast messaging scheme attempts to

send multiple messages at once. Given the token-ring-like nature

of the underlying RTS message-passing system, one expects (and

indeed sees) execution time scaling as O(N) for both the token 2x

and reduction/broadcast barriers using RTS message-passing,

whereas the (N-1) send/recv messaging scheme’s execution times

explode exponentially with increasing numbers of cells due to the

N messages being serialized. The absolute performance of
2

reduction/broadcast is better than the token 2x method (3.6

million clocks vs. 2.1 million clocks at 64 cells), despite

sending the same number of messages on a serial network, because

the on-cell computation needed for messaging can be done in

parallel even though the actual sending of messages on the token

ring remain serialized. The (N-1)send/recv also showed that some

messaging overlap occurred (performance was not as bad as

predicted for “no overlap” during sending), but not much. For RTS

message-passing, the (N-1) send/recv method offered the worst-

overall performance, and the embedded reduction/broadcast (the

most-parallel form of token 2x) offered the best performance.

80

Messaging 4 cells 8 cells 16 cells 32 cells 64 cells

scheme

RTS/Token2x 223,564 448,371 910,282 1,815,121 3,648,581

(predicted) (226,760) (453,480) (906,920) (1,813,800) (3,627,560)

RTS/Reduction- 136,592 264,622 511,648 1,043,711 2,119,398

Broadcast

(pred overlap) (113,400) (170,080) (226,760) (283,440) (340,120)

RTS / (N-1) 220,961 950,134 4,021,443 16,485,541 23,861,298

send/recv

-100runs

(pred overlap) (85,060) (198,420) (425,140) (878,580) (1,785,460)

(no overlap) (340,120) (1,587,080) (6,801,640) (28,113,320) (114,266,920)

 * the (N-1) send/recv implementation was measured over just 100

runs

 Figure 4.20 - Predicted and measured barrier execution times in

clocks (1000 runs) using RTS message passing with

various messaging schemes for varying barrier

membership sizes.

Messaging 4 cells 8 cells 16 cells 32 cells 64 cells

scheme

DMP/ Token 2x 2,141 4,339 8,706 17,403 34,798

(predicted) (2,200) (4,400) (8,800) (17,600) (35,200)

DMP/Reduction/ 1,488 2,079 2,623 3,142 3,687

Broadcast

(predicted) (1,692) (2,322) (2,952) (3,582) (4,212)

DMP/1D (N- 1)

send/recv 1,264 2,982 6,669 13,569 27,361

(predicted) (1,515) (3,535) (7,575) (15,655) (31,815)

DMP/hypercube 822 1,244 1,673 2,074 2,532

(predicted) (1,090) (1,635) (2,180) (2,725) (3,270)

 Figure 4.21 - Predicted and measured barrier execution times (in

clocks) using deposit message-passing (1000 runs)

with various messaging schemes for varying barrier

sizes.

81

4.5.3.2 Deposit message-passing and various messaging schemes

Figure 4.21 shows the results of similar performance predictions

and measurements for deposit message-passing. Unlike the RTS

message-passing implementation, the deposit message-passing

implementation of (N-1) send/recv shows better performance than

the token 2x method, and the logical extension of (N-1) send/recv ,

handshakes on a hypercube, offers between 1.5 and 2 times better

performance than the reduction/broadcast.

4.5.3.3 PCT-supported connection and various messaging schemes

Figure 4.22 shows the performance of the token 2x and (N-1)

send/recv methods using connections supported by two PCTs-per-

cell. The error in the predictions is primarily due to the use of

a simplified latency model. Note that PCT-supported connections

allow overlap of sending and receiving, as well as allowing all

cells to send at once. As a result, the (N-1) send/recv method

outperforms the token 2x method by almost a constant factor of 2.

Because PCTs are scarce, higher order embeddings (such as a full

hypercube for hypercube handshakes) are too expensive to

implement, especially since one of the design criteria for this

exercise is to be able to support four pending barriers per cell.

Thus, a 2D (N-1) send/recv implementation, with proxying in 2

dimensions, was only implemented for the 64-cell case because, at

that size, it could map cleanly onto the underlying network using

the array “backloops” (because the underlying network is a torus

rather than a flat array) requiring only a single additional PCT.

To implement the 2D (N-1) send/recv for any other size would

require 3 additional PCTs; more resources than can be afforded.

In any event, even the simple 1D (N-1) send/receive implemented

with two PCTs is roughly three times faster than the fastest

deposit message-passing implementation, and for special, whole-

array cases, the 2D implementation is achievable for even greater

speed. Furthermore, the worst-case difference between predicted

and measured performance is 1 to 2 microseconds.

Figure 4.23 demonstrates how barrier skew (the time between when

the first cell exits a barrier and the last cell exits) is

affected by the messaging scheme. While not extensively covered

82

Messaging 4 cells 8 cells 16 cells 32 cells 64 cells

scheme

PCT/Token 2x 152 247 426 795 1513
(predicted) (160) (264) (448) (816) (1552)
max 160 248 432 808 1520
min 152 240 424 792 1512

PCT/1D (N-1)
send/recv 97 146 242 423 800
(predicted) (110) (156) (248) (432) (800)
max 104 152 248 432 808
min 88 144 232 416 792

PCT 2D (N-1)
send/recv 448
(predicted) N/A N/A N/A N/A (456)
max 448
min 448

Figure 4.22 - Predicted and measured barrier execution times

PCT-supported connection-based barriers (1000

runs) for varying messaging schemes and barrier

membership sizes.

by this thesis, it is worth noting that the “token 2x” method has

a constant skew whether any stragglers (cells which enter the

barrier much later than all the other participants) are present or

not because cells always exit the barrier sequentially in a

ringward order. Also note that in the presence of stragglers

(real-world conditions) the higher-order embedded ring (2D in this

case) has a lower skew than the lower-order embedded ring (1D) (64

cells is the only example shown). This result will hold for

higher-order embeddings because the maximum skew is a function of

the total number of parallel message times needed to complete:

high-order embeddings will have fewer parallel message times

total, and hence cannot “get as far behind”.

4.5.4 Conclusions

PCT-supported connections let us build fast barriers with

predictable and repeatable performance. Furthermore, while the

physical signaling scheme has a great effect on barrier

performance, getting the best performance from a particular

signaling scheme implies choosing a messaging scheme appropriate

83

Messaging 4 cells 8 cells 16 cells 32 cells 64 cells

PCT/Token 2x
No stragglers
avg skew 32 79 170 336 711
max skew 32 80 176 360 712
min skew 32 64 168 336 704

PCT/Token 2x
1 straggler
avg skew 32 76 168 351 712
max skew 40 80 168 352 712
min skew 32 72 168 344 712

PCT/1D (N-1)
No stragglers
avg skew 8 8 10 11 8
max skew 16 16 16 16 16
min skew 8 8 8 8 8

PCT 1D (N-1)
1 straggler
avg skew 22 63 131 267 547
max skew 24 64 136 272 552
min skew 16 56 128 264 544

PCT 2D (N-1)
No stragglers
avg skew N/A N/A N/A N/A 96
max skew 96
min skew 96

PCT 2D (N-1)
1 straggler
avg skew N/A N/A N/A N/A 122
max skew 128
min skew 128

Figure 4.23 - Measured barrier skews (in clocks) for the three

PCT-supported connection-based barriers (1000

runs) with all cells entering barrier together (no

stragglers), and with one cell entering 2000

clocks after all other cells (1 straggler).

to the physical scheme. Because PCT-supported connections allow

full overlap of sending and receiving, Figure 4.22 shows that the

(N-1) send/recv method (which generates Nx(N-1) messages) runs

nearly twice as fast as the token 2x method (which only generates

2N messages). As a compromise between resource economy and speed,

84

the TCS barrier will use 1D rings of PCT-supported connections for

barrier memberships smaller than the whole array, and 2D rings for

whole-array barriers, with the (N-1) send/receive messaging

protocol. Resource cost will be 1 outgoing PCT, plus one PCT per

possible pending barrier per cell (five total if the goal is to

support up to four pending barriers per cell).

4.6 Chapter summary

This chapter explained the function of barrier synchronization,

examined means of efficiently implementing barrier schemes, and

explored some of the advantages/drawbacks of various

implementations. Those principles were applied to implement

barrier synchronization on a real target machine, iWarp. Finally,

those implementations were benchmarked to demonstrate that their

measured performance agrees well with the p redictions. In the

end, a barrier mechanism was developed for TCS that can

synchronize a group of 4 cells in under 160 clocks (8

microseconds), and a group of 32 cells in less than 816 clocks (41

microseconds). As a special case, the entire array (64 cells) can

be synchronized is just 456 clocks (23 microseconds). Not only

fast, this barrier mechanism is predictable to within 1 to 2

microseconds. This fast barrier mechanism allows tasks to

coordinate at a very fine granularity level (tens of microseconds,

in contrast to application latency requirements in the

milliseconds).

85

Chapter 5 -

TCS Control Primitives

5.1 Introduction

Chapter 4 provides a fast (8 to 40 microseconds), predictable

(within one microsecond) barrier synchronization primitive. This

chapter uses this primitive to construct the three remaining TCS

control primitives: connection set reconfiguration, task start,

and task end. Given the fast, predictable barrier synchronization

primitive, the remaining primitives can also be implemented to

yield fast, predictable performance.

5.2 Connection set reconfiguration

Connection sets can be reconfigured on the iWarp in one of two

ways: source-routed connection setup/tear down, and switch-based

reconfiguration. Because each iWarp cell has direct access to its

network switch state, the cell can simply do a direct, brute-force

reconfiguration of the relevant PCT entries. The general

procedure is:

 barrier_sync(task_members);
 Turn off global events;
 barrier_sync(task_members);
 reconfigure switch(new_set);
 barrier_sync(task_members);
 Turn global events back on;

This direct approach offers several advantages, including

 (1) exact knowledge of the communication resources each

connection will be using,

 (2) switch reconfiguration time is a constant, regardless of the

connection set being switched, and

 (3) simple implementation.

The operation to "reconfigure the switch" amounts to a few

memory-to-register transfers (which have a predictable execution

time), and a barrier_sync() operation is just the primitive

86

discussed in the previous chapter. Thus, because each component

has predictable performance, the total operation should have

predictable performance as well, and we discuss this aspect

(hierarchical predictability) in Chapter 7.

5.2.1 Reconfiguration model

As shown in the pseudocode in Section 5.2, switch-based connection

set reconfiguration requires three barrier synchronization

operations plus the time for the actual reconfiguration. The

first barrier ensures all cells are executing foreground code,

preventing any possible deadlocks with a cell waiting for RTS

services (such as file I/O). Once the first barrier completes,

interrupts (such as event handlers) are turned off and a second

barrier executes. This barrier is necessary to safely put the RTS

to sleep. At this point the cells can reconfigure their switch

state. A final barrier is needed to let all cells know the

reconfiguration is complete, and then interrupts can be turned

back on. The reconfigure execution time model is therefore:

 reconfig_time = switch_reconfiguration_time +

 (3x(barrier_lookup_time + barrier_time(N)))

where barrier_lookup_time is the time needed to look up the

resource configuration needed for the barrier (that is, what

dimensionality of embedded rings does this barrier use, how many

cells are in each dimension, and which PCTs are used for each

dimension), and barrier_time(N) is just the barrier execution time

from Figure 4.21 (the PCT 1D ring (N-1) send/recv row).

5.2.2 Measured performance and predictions on iWarp

Barrier_lookup_time was measured as 12 clocks, and

switch_reconfiguration_time was measured as 162 clocks; no

variations are expected in these as they are just local memory

operations.

Figure 5.1 uses the barrier times from Figure 4.21 for the 1D PCT

ring, and the equation expressed in Section 5.2.1, and combines

them to predict reconfiguration time vs. numbers of cells. Those

87

4 cells 8 cells 16 cells 32 cells 64 cells

reconfigure time 444 598 872 1425 2551
(predicted) (465) (612) (900) (1443) (2574)
max 448 616 888 1456 2584
min 440 576 848 1392 2520

Figure 5.1 Reconfiguration times (in clocks) for various-sized

groups of cells, using the simple 1D (N-1) ring

barriers as shown in Figure 4.9, 1000 runs.

predictions are then compared to the measured reconfiguration

times.

Figures 5.1 (for 1-D barrier rings) and 5.2 (a 64-cell 2-D set of

barrier rings) shows good repeatability for the reconfigurations,

although the predictions tend to diverge from the measured values

by roughly 5%. These measured reconfiguration times are used in

future pattern predictions rather than predicted reconfiguration

times.

64 cells

reconfigure time 680
(predicted) (692)

max 712
min 680

 Figure 5.2 Reconfiguration times (in clocks) for whole array,

using a more complex 2D (N-1) ring barrier, 1000

runs.

5.2.3 Connection-set reconfiguration conclusions

Given a predictable barrier synchronization primitive, one can

construct a predictable reconfiguration primitive. Because the

reconfiguration primitive requires multiple barriers, barrier

performance has a significant impact on reconfiguration

performance. Using a barrier synchronization method based on PCT-

supported connections yields a reconfiguration primitive capable

of reconfiguring the entire array over 7,800 times per second, and

by using a faster barrier synchronization scheme, that number can

be driven even higher.

88

5.3 Task creation

A parent task can create child tasks within its cell allocation.

When a child is started, parent execution on the child task's

cells is suspended until the child task ends. Child tasks may

communicate with each other via "external connections". Children

located within the same parent may create their own “external

connections”; children located within different parent tasks must

“inherit” the appropriate external connections from their parents.

Consider a parent task's child tasks to be vertices of a graph.

Let external connections between these child tasks be represented

as edges joining the vertices representing those tasks. Thus, two

vertices are joined by an edge if and only if there is an external

connection between the tasks they represent. These vertices and

edges form connected components, whose "size" is equal to the

number of all the cells in each of the connected child tasks.

When created, these connected child tasks require a barrier with a

membership of all the cells belonging to the connected component;

separate barriers for each task are not adequate. Because

connected child tasks communicate, one child task could

conceivably start before another. The connected component barrier

prevents this unwanted early data arrival.

Reconfiguring a single task requires only local barrier

synchronization once the task is running, but starting the task

requires the participation of all cells belonging to the larger

connected component.

As long as the child task cell allocations are disjoint, deadlock

cannot occur on task creation.

5.3.1 Task creation model

Creating a task requires the following operations on each cell of

the child task:

 Do the overhead operations necessary for switching task contexts:

 Push the parent task info onto a stack;

 Look up the barrier information for the task being created;

89

Look up the external connection information for the task

being created;

Set the task's internal connection pointers to the correct

 structure representing the "Connection-to-PCT" mapping they

 should be using.

 Perform a reconfiguration as shown in Section 5.2:

barrier_sync(Connected_component);

Turn off global events;

barrier_sync(Connected_component);

reconfigure switch(Connected_component's external

 connections);

barrier_sync(Connected_component);

Turn global events back on;

Task create (or task start) is essentially the reconfiguration

primitive (applied to a larger connected component rather than an

individual task), prefixed by some additional information table

look-up and pointer-reassignment.

The execution model is nearly the same as the reconfiguration

primitive with only the addition of the task-change overhead.

Each part of the task-changing operation occurs in a fixed amount

of time: pushing the parent task info, looking up the barrier and

connection information, and setting the pointer values for the

child task. All the connection information and barrier

information is pre-computed at link time; at runtime the

information is retrieved via a predictable-time indexed table

look-up. The execution model is then:

Task_start_time = task_change_overhead_time +

 reconfiguration(N)

Note that in the above equation, N is the number of cells in the

total connected component, not just the number of cells in the

task.

90

5.3.2 Measured performance and predictions on iWarp

Task change overhead was measured as 130 clocks.

Figure 5.3 shows the predicted task creation times, based on a

measured task change overhead of 130 clocks and the measured

reconfiguration times from Figure 5.1, and then compares them to

the actual, measured creation times. As expected, performance is

similar to that of Figure 5.1, plus some additional overhead.

4 cells 8 cells 16 cells 32 cells 64 cells

creation time 575 725 1000 1550 2681
(predicted) (574) (728) (978) (1555) (2681)
max 576 736 1008 1560 2688
min 568 704 992 1544 2680

 Figure 5.3 Child task start times (in clocks) vs.

connected-component size (in cells) (using 1D ring

barrier), 1000 runs. Measurement error 8 clocks.

5.3.3 Task creation conclusion

The iWarp RTS is minimal, supporting only a single foreground

process at a time. Only a small amount of state needs to be

stored when creating a child task, and this can be done in a fixed

amount of time. The task creation primitive is constructed by

combining this process context switch with the reconfiguration

primitive from Section 5.2. Because the process context switch

can be quickly done in predictable time, and Section 5.2

established that a communication context switch can be quickly

done in predictable time, one can build a task creation primitive

that is both fast and predictable (to within 1.5 microseconds).

5.4 Task end

Once a child task completes, it cedes control back to the parent.

If the child task has external connections to other child tasks,

it must ensure that those other tasks have completed as well

before it terminates. This is necessary to prevent the external

connections from being destroyed until both ends of the connection

agree that the connection is no longer needed. Thus, the same

connected component that synchronized on task creation will again

91

synchronize on the task end.

No actual reconfiguration needs to be done at the end of a task;

control is merely returned to the parent task. Only one barrier

is required at the end of a task, and no reconfiguration is

needed, so the execution time is therefore both predictable and

repeatable.

5.4.1 Task end model

The task end is functionally very simple: a barrier ensures all

connected component cells are done, parent task information is

restored from a stack, and control is returned to the parent. No

additional reconfiguration is needed at the task end because a

child is not allowed to disturb an existing parent’s connection

when the child was invoked. Because the child couldn’t disturb

the parent’s connections, there is nothing of the parent’s state

that must be restored when the child terminates.

Appropriate pseudocode for task end is simply:

 barrier_sync(connected_component);

 restore parent task info from stack;

and the execution model is simply:

task_end_time = barrier_time(N) + parent_task_restoration_time

where N is the size of the connected component, and

barrier_time(N) is the barrier execution time from Figure 4.21.

5.4.2 Measured performance and predictions on iWarp

Parent_task_restoration_time was measured as 70 clocks.

Figure 5.4 shows the predicted and measured "task end" times using

the model of 5.4.1, and the barrier prediction information from

Figure 4.21.

92

4 cells 8 cells 16 cells 32 cells 64 cells

task ending time 165 216 310 489 870
(predicted) (167) (218) (312) (493) (870)

max 168 216 312 496 872
min 152 216 304 488 864

 Figure 5.4 - Child task ending times (in clocks) vs.

connected-component size (in cells) for 100 runs.

5.4.3 Task end conclusions

Because ending a task simply implies returning control to the

parent, little work beyond a simple barrier is needed.

Predictable task termination simply requires a predictable

barrier.

5.5 Chapter summary

Several key points emerge from this chapter. First of all, the

four TCS primitives can be built so that they run in a predictable

manner. Locally reconfigurable connections, with predictable

reconfiguration time, combined with fast, predictable barrier

synchronization, are sufficient for implementing the four TCS

primitives. The four TCS primitives have a simple, hierarchical

construction, and imply a particular construction order. Barrier

synchronization is needed for connection reconfiguration and task

end, and connection reconfiguration is needed for task creation.

Perhaps not as obvious is the fact that connections with local,

directly writable state make predictable connection

reconfiguration very easy to implement, as opposed to source

routed connections. Source-routed connections require a set-up

dependent upon the both the number of connections being set-

up/torn-down, as well as the runtime bandwidth utilization (since

connection set-up/take-down latency is increased if the link is

heavily loaded). Because of this uncertainty with source-routed

connections, connections with source routing alone are not

sufficient to enable predictable reconfiguration times, as

reconfiguration time becomes dependent on runtime network load.

This chapter demonstrated that the TCS primitives have predictable

performance in isolation. The next chapter will show how they can

93

be assembled to create tasks that maintain predictable

communication performance for a variety of communication patterns.

94

Chapter 6 -

TCS Validation - Communication

Patterns

6.1 Introduction

Chapter 3 showed that both message-passing and TCS connections can

be accurately characterized in isolation; however, real-world

applications involve multiple, potentially interacting

communications. In this section, three representative

communication patterns are modeled and implemented using both TCS

connections and deposit message-passing. We use deposit message-

passing because it offers the best performance of all message-

passing systems available on iWarp. These patterns are

scatter/gather, reduction/broadcast, and all-to-all.

Scatter/gather serializes all communication and thus provides

predictable performance with both models. Reduction/broadcast

involves a small amount of parallel communication; as a

consequence, message-passing loses some of its predictability.

This loss of predictability is shown to be the result of spurious

runtime link congestions, and by carefully re-mapping the

processors so runtime link congestion is avoided, the

reduction/broadcast using message-passing again becomes

predictable. All-to-all is a massively parallel communication

pattern. While deposit message-passing loses its predictability,

TCS maintains both a high degree of predictability (within a few

percent) while offering substantially better performance than

message-passing for large transfers.

6.2 Scatter/gather

Scatter/gather consists of:

 (1) one cell sending data to all other cells;

 (2) a barrier;

 (3) one cell receiving data from all other cells.

95

This simple pattern is easily modeled because all sends are

serialized (because only one cell is sending), and all incoming

data goes to a single cell (so reception becomes serialized as

well). If one cell is sending to N-1 other cells, the

scatter/gather time is just the time to do N-1 sends, a barrier,

and N-1 receives. Although all cells are trying to send during

the gather phase, only one incoming message can be processed at a

time by the gathering cell, and hence no parallel messaging occurs

in this pattern.

6.2.1 Scatter/gather - message-passing

A simple model is sufficient to predict pattern execution time for

deposit message-passing. The predicted pattern time is :

 mp_predict = Constant_Overhead +

 ((Number_of_cells - 1) x (Msg_Send_Time + Avg_Net_Latency +

(Msg_size / Network_BW))) +

 Barrier_time +

 ((Number_of_cells - 1) x (Msg_Recv_Time + Avg_Net_Latency +

(Msg_size / Network_BW)))

where

Constant_Overhead was measured at 100 clocks;

Msg_Send_Time was measured at 359 clocks;

Msg_Recv_time was measured at 230 clocks;

Avg_Net_Latency is 20 clocks (avg 4 hops on a torus x 5

clocks/hop);

Network_BW = 1.998 bytes/clock.

Figure 6.1 shows the predicted and measured message-passing

scatter/gather times. Because the communication is serialized,

congestion is avoided, and predictability (and good performance)

are maintained. Because 4-byte transfers have a substantially

different communication implementation (no spools used), all

patterns will be evaluated using 16 bytes or more. This approach

keeps the comparisons between TCS and message-passing fair.

96

bytes 4 cells 8 cells 16 cells 32 cells 64 cells

16 2433 4845 9643 19299 38445

(predict) (2407) (4907) (9907) (19907) (39907)

max 2436 4848 9648 19300 38448

min 2432 4844 9640 19296 38444

64 2551 5136 10266 20594 41093

(predict) (2551) (5243) (10627) (21395) (42931)

max 2552 5140 10268 20596 41096

min 2548 5136 10264 20592 41092

256 3082 6379 12942 26061 52206

(predict) (3127) (6587) (13507) (27347) (55027)

max 3092 6380 12948 26064 52208

min 3080 6376 12940 26060 52204

1024 5375 11735 24408 49791 100475

(predict) (5431) (11963) (25027) (51155) (103411)

max 5376 11748 24416 49796 100504

min 5372 11724 24404 49760 100444

4096 14602 33265 70542 145101 294126

(predict) (14659) (33495) (71167) (146511) (297199)

max 14608 33268 70548 145104 294128

min 14600 33260 70540 145100 294124

 Figure 6.1 Scatter/gather message-passing time (in clocks),

vs. size and number of cells for 1000 runs.

6.2.2 Scatter/gather - TCS Connections

A simple model is adequate for modeling connection-based

scatter/gather communication time as well, and gives us a

prediction within one or two percent. The major error source is

that the added latency per phase (due to the connection distance)

really isn't an average, but a worst case. Furthermore, at the

start of each gather phase, all N-1 cells returning data try to

send at once; this eagerness causes a momentary link congestion

that retards the first returned data. This brief effect can

quintuple the

97

bytes 2x2 cells 4x4 cells 8x8 cells

16 1113 4204 35150

(predict) (1115) (4146) (35222)

max 1120 4296 35152

min 1112 4200 35144

64 1257 5032 38184

(predict) (1259) (4866) (38246)

max 1264 5120 38184

min 1256 5032 38168

256 1848 7984 51519

(predict) (1835) (7746) (50342)

max 1848 8072 51520

min 1848 7984 51496

1024 4144 19504 99636

(predict) (4142) (19266) (98726)

max 4144 19592 99640

min 4144 19504 99616

4096 13360 65584 293171

(predict) (13367) (65406) (292514)

max 13360 65672 293176

min 13360 65584 293152

16,384 50232 249904 1067315

(predict) (50268) (249906) (1067414)

max 50232 249992 1067320

min 50232 249904 1067296

Figure 6.2 Scatter/gather TCS connection times (in clocks), vs.

payload size and number of participating cells for 1000

runs.

expected latency for the first gather. The effects of this

momentary "latency explosion" are limited to moderate size

transfers: for small transfers there isn't enough data to cause

the congestion, and for large transfers the network transfer time

swamps all other factors.

With this caveat, the predicted completion time can be modeled as:

98

predict = Constant_Overhead +

 ((Number_of_cells-1) x 2 x (Avg_Net_Latency +

(Msg_size / Network_BW))) +

 (Reconfiguration_time x Number_of_phases)

where

Constant_Overhead was measured at 398 clocks;

Network_BW = 1.998 bytes/clock;

Avg_Net_Latency = 38 clocks for 2x2,

 59 clocks for 4x4,

 66 clocks for 8x8;

Reconfiguration time = 444 clocks for 2x2,

 872 clocks for 4x4,

2551 clocks for 8x8.

(these are the measured average reconfiguration times from Section

5.2)

Figure 6.2 shows the measured vs. predicted pattern communication

times for connections, with the predicted times based on the

measured reconfiguration times in Chapter 5. As with messages

alone, the TCS connection-based implementation outperforms

message-passing best for small transfers on small arrays. For

large transfers (in this mostly congestion-free pattern) the

transfer time is dominated by the link bandwidth, and both

message-passing and TCS connections yield similar performance

results.

6.2.3 Scatter/gather conclusions

Because the pattern is inherently serial, both message-passing and

TCS connections show predictable performance with this

communication pattern, with TCS offering significantly better

performance with the smaller-sized transfers.

6.3 Reduction/broadcast

Reduction occurs in log (N) stages, with half as many cells2

sending in each stage as in the previous stage. Broadcast is the

reverse of reduction, requiring another log (N) stages. Parallel2

99

messaging occurs in all but the last stage of reduction, and all

but the first stage of the broadcast. This parallel messaging

creates link congestion for message-passing that causes it to lose

predictability. By carefully remapping the processors to

eliminate congestion the predictability can be regained; this

shows that the loss of predictability is due to the unknown link

congestion. TCS maintains its predictability (and performance)

throughout.

6.3.1 Reduction/broadcast using message-passing

Because the scatter/gather communication pattern focused all

communication through a single cell, all sends and receives were

serialized, and performance can be predicted with a fairly simple

model. In constrast, the reduction/broadcast communication

pattern involves different numbers of cells sending and receiving

during each stage, resulting in differing available network

bandwidths. Message-passing loses some of its predictability

because link congestion becomes unpredictable, yielding uncertain

link bandwidths for the different stages. Unless one has special

knowledge of the underlying network and cell mapping, only in the

final reduction stage and the first broadcast stage can the link

bandwidth be known with absolute confidence (100%). None of the

other stages can be absolutely known.

The predicted performance model is as follows:

mp_predict = Constant_Overhead +

 (2 x Log (Number_of_cells) x (Per_Iteration_Overhead + 2

Msg_Send_Time +

Avg_Net_Latency +

 (Msg_size/Network_BW)) +

 Barrier_time;

where

Constant_Overhead measured at 100 clocks;

Msg_Send_Time measured at 359 clocks;

Per_Iteration_Overhead measured at 40 clocks;

Avg_Net_Latency (for torus routing) is 20 clocks;

Network_BW = 1.998 bytes/clock (assume full network bandwidth even

100

though this probably isn’t true for any stage except the last

reduction stage and the first broadcast stage);

Barrier_time = 448 clocks regardless of the number of cells.

Note that a different barrier is being used here between the

stages. For ease of implementation, the 2D 64 cell (global)

barrier from Figure 4.22 (last line in the table) is used which

runs in 448 clocks.

Figure 6.3 shows the predicted vs. measured performance number for

the message-passing-based reduction/broadcast. As can be seen,

with large numbers of cells and large transfer sizes, the

predictive power is lost; with 1Kbyte transfers and 64 cells, the

predictions are off by almost a factor of 2. This loss of

bytes 4 cells 8 cells 16 cells 32 cells 64 cells

16 2321 4071 4901 6125 7567

(predict) (2140) (2994) (3848) (4702) (5556)

max 2328 4072 4952 6200 7624

min 2040 3608 4472 5416 6584

64 2463 4276 5246 6583 8087

(predict) (2236) (3138) (4040) (4942) (5844)

max 2464 4448 5432 6680 8088

min 2128 3928 5072 5904 7656

256 3031 5644 6824 8473 10908

(predict) (2620) (3714) (4808) (5902) (6996)

max 3040 5728 7048 8488 11064

min 2848 5616 6488 8232 10896

1024 5327 10604 12555 15756 20891

(predict) (4156) (6018) (7880) (9742) (11604)

max 5328 10608 12560 16480 22448

min 5200 10600 12424 15048 19352

4096 14549 30681 35590 45015 60230

(predict) (10308) (15246) (20184) (25122) (30060)

max 14560 32960 37864 47296 61112

min 14416 28408 33344 42544 58616

Figure 6.3 - Reduction/broadcast message-passing time (in

clocks), vs. payload size and number of cells for

1000 runs, link bandwidth unknown.

101

predictability is due to unknown link congestions; this can be

demonstrated by utilizing special knowledge of the message-passing

routing engine to map the problem to cells so that no pathway

contention occurs within any stage. This contention-free mapping

guarantees 100% net bandwidth during each stage. Using the same

program but this alternate processor mapping, Figure 6.4 shows

that the predictions regain their accuracy.

bytes 4 cells 8 cells 16 cells 32 cells 64 cells

16 1958 2803 3682 4507 5383

(predict) (2140) (2994) (3848) (4702) (5556)

max 1976 2808 3696 4512 5384

min 1952 2744 3664 4464 5336

64 2085 2967 3865 4747 5629

(predict) (2236) (3138) (4040) (4942) (5844)

max 2088 2968 3872 4752 5632

min 2048 2944 3856 4704 5576

256 2465 3553 4649 5703 6789

(predict) (2620) (3714) (4808) (5902) (6996)

max 2472 3560 4656 5704 6800

min 2424 3456 4568 5616 6696

1024 3999 5839 7701 9512 11368

(predict) (4156) (6018) (7880) (9742) (11604)

max 4000 5840 7712 9528 11384

min 3968 5760 7624 9464 11280

4096 10145 15073 20003 24913 29830

(predict) (10308) (15246) (20184) (25122) (30060)

max 10152 15080 20008 24920 29832

min 10136 14976 19920 24824 29744

Figure 6.4 - Reduction/broadcast message-passing time (in

clocks), vs. payload size and number of cells for

1000 runs, remapped to avoid link congestion

6.3.2 Reduction/broadcast using TCS connections

As with message-passing, the connection model for the

reduction/broadcast communication pattern is a bit more complex

than the scatter/gather. 2 x log (N) stages are required: log (N)2 2

102

reduction stages, and log (N) broadcast stages. Each reduction2

stage has half as many cells sending/receiving as the previous

stage, and each broadcast stage has twice as many

sending/receiving cells as the previous stage. The execution time

for the whole exchange can be modeled as follows:

 Connection_predict = Constant_Overhead +

 (Log (Number_of_cells) x (Per_iteration_overhead + 2

 (2 x (Avg_Net_Latency +

 (Msg_Size/Network_BW))))) +

 (Reconfiguration_time x Number_of_phases)

Where Constant_Overhead = 302 clocks;

Avg_Net_Latency = 38 clocks for 2x2,

 59 clocks for 4x4,

 66 clocks for 8x8;

Reconfiguration_time = 441 clocks for 2x2,

 869 clocks for 4x4,

 2550 clocks for 8x8;

Network_BW = 1.998 bytes/clock.

Figure 6.5 compares the measured to the predicted communication

times. Again, a fairly simple communication model is being used

(assuming average latencies, no link congestion, etc); still, even

at this level TCS maintains good predictability. Using the

measured reconfiguration times from Chapter 5 allows accurate

prediction (within two percent) of execution time with this more

complex communication pattern. In essense, TCS has traded

message-passing's unknown link congestion for a known

(programmer-visible and linker-visible) node congestion while

maintaining better performance.

6.3.3 Reduction/broadcast conclusions

While TCS connections still provide predictable performance,

message passing loses its predictability when the link congestion

becomes unknown. If extraordinary steps are taken (with regards

to placement and routing) to make the link congestions known,

message passing can regain its predictability at this level. TCS,

103

on the other hand, maintains its predictability with no extra

effort.

bytes 2x2 cells 4x4 cells 8x8 cells

16 908 1687 3801

(predict) (927) (1715) (3752)

max 912 1688 3808

min 904 1664 3712

64 1003 1879 4089

(predict) (1023) (1907) (4040)

max 1008 1880 4096

min 992 1856 3992

256 1388 2647 5241

(predict) (1407) (2676) (5193)

max 1392 2648 5248

min 1384 2632 5152

1024 2924 5719 9848

(predict) (2945) (5751) (9806)

max 2928 5720 9856

min 2920 5696 9760

4096 9067 18007 28281

(predict) (9095) (18051) (28256)

max 9072 18008 28288

min 9064 17984 28192

16,384 33643 67159

(predict) (33695) (67252)

max 33648 67160

min 33640 67136

102009

(102058)

102016

101912

Figure 6.5 Reduction/broadcast times (in clocks) using TCS

connections vs. payload size and number of cells for

1000 runs.

6.4 All-to-all communication

Personalized all-to-all communication requires each cell to send a

distinct message to every other cell, and each cell to receive a

104

message from every other cell. Thus, N cells generate Nx(N-1)

sends and receives. Unlike the reduction/broadcast pattern, no

simple remapping exists that can eliminate this pattern’s

congestion.

6.4.1 Message-passing implementation

The predictive model for all-to-all communication using message-

passing is similar to the previous two communication patterns. To

prevent obvious congestions (such as every cell trying to send to

cell 0 first, leading to massive congestion at cell 0 and little

traffic elsewhere, followed by every cell trying to send to cell

1, etc.), each cell instead sends data using a randomly-ordered

schedule. Because message passing allows (in theory) everyone to

send and receive at once, one expects to be able to model the cost

of an all-to-all exchange among N cells as (N-1) sends, (N-1)

receives, program loop overhead, and a barrier at the end.

The predictive model is therefore just:

mp_predict = Constant_Loop_Overhead +

 (Number_of_cells-1) x (Per_Iteration_Overhead + Msg_Send_Time +

 Avg_Net_Latency +(Msg_Size/Network_BW)) +

 (Number_of_cells-1) x (Msg_Recv_Time + Avg_Net_Latency +

(Msg_Size/Network_BW)) +

 Barrier_time(Number_of_cells);

where

Constant_Loop_Overhead measured at 100 clocks;

Msg_Send_Time measured at 359 clocks;

Msg_Recv_Time measured at 230 clocks;

Per_Iteration_Overhead measured at 40 clocks;

Avg_Net_Latency (for torus routing) is 20 clocks;

Network_BW = 1.998 bytes/clock;

Barrier_time = 77 clocks for 2x2,

 127 clocks for 2x4,

 219 clocks for 4x4,

 404 clocks for 4x8,

 780 clocks for 8x8.

As with the reduction/broadcast pattern, unknown link congestion

105

makes reliable message-passing predictions difficult. Figure 6.6

shows the predicted vs. measured execution times for varying data

sizes and numbers of cells. For small numbers of cells (4 or 8

cells) and small exchanges (16 to 64 bytes), predictions remain

within a factor of two. As the problem size scales up, by the

bytes 4 cells 8 cells 16 cells 32 cells 64 cells

16 2837 6365 13365 28373 60269

(predict) (2072) (4782) (10194) (21019) (42675)

max 3424 7752 14984 30632 63000

min 2528 5768 12432 26592 57680

64 3088 7082 14956 34957 75197

(predict) (2216) (5118) (10914) (22507) (45699)

max 3832 8144 16792 38664 82760

min 2760 6344 13992 31416 71224

256 4044 9408 20403 54229 121200

(predict) (2792) (6462) (13794) (28459) (57795)

max 4984 11008 23040 59760 133120

min 3608 8184 18464 48816 114976

1024 7612 18441 41221 119557 279247

(predict) (5096) (11838) (25314) (52267) (106179)

max 9096 23112 46408 129328 296944

min 6336 15712 36872 110184 264488

4096 22112 54369 125301 384586 922385

(predict) (14324) (33370) (71454) (147623) (299967)

max 26976 69112 146600 428480 974512

min 16848 45472 112152 359008 874536

16,384 80240 198183 460277 1457334 3491392

(predict) (51224) (119470) (255954) (528923) (1074867)

max 101424 256624 518296 1595544 3477144

min 66024 162664 409808 1353016 3274592

32,768 157033 392011 907588 2880807 6932091

(predict) (100424) (234270) (501954) (1037323) (2108067)

max 195816 477376 1044800 3274680 7353728

min 121392 333128 796152 2640976 6507808

Figure 6.6 - All-to-all (randomized schedule) message-passing

time (in clocks), vs. payload size and number of

cells for 250 runs.

106

time one is doing 16 Kbyte or 32 Kbyte transfers with 64 cells,

the predictions are off by more than a factor of three.

6.4.2 All-to-all communication using TCS connections

Supporting the all-to-all pattern using TCS connections

proved a bit more difficult than the other two patterns because

its complexity exposes some of the eccentricities of the iWarp

link scheduler (unfair forward bandwidth and DQ congestion -

introduced in Chapter 3). Because these eccentricities can be

modeled, they can still be accounted for in performance

predictions at the expense of a more complicated model.

Two types of congestion are present: forward link congestion, and

"DQ congestion". While the hardware can be coaxed to provide fair

forward link bandwidth by careful choice of PCT assignments, DQ

congestion greater than 2 is not handled fairly. Feeding data

into a link suffering from DQ congestion may result in

unpredictable bandwidth. Fortunately, if one "throttles" the rate

at which data is fed into a congested link so that the rate does

not exceed the DQ congestion, then bandwidth remains predictable.

For example, if a link has a DQ congestion of "3" and a forward

congestion of "2", things will work reliably provided no

connection through that link is fed at a rate greater than 1/3

link bandwidth. For links with a forward congestion of "1" and a

DQ congestion of "2", no throttling is necessary; the bandwidth

can be modeled as either full bandwidth (where DQ congestion=1) or

half-bandwidth (where DQ congestion=2).

For each array size (2x2, 4x4, 8x8) a set of communication

patterns was created using the "dragon router" AAPC code as

explained in [25]. The TCS communication linker analyzed those

routes to determine forward link congestion and DQ congestion in

each phase (something that is impossible to do with any message-

passing system as the message-passing model precludes a global

view of the machine’s communication state). Based on the linker's

analysis, DQ congestion was detected in half of the 4x4 phases,

and in all of the 8x8 phases. In the 4x4 case, the DQ congestion

was only 2; no throttling was needed to maintain fairness. The

107

model was updated to reflect a forward link bandwidth of either

full bandwidth or half-bandwidth, depending on whether DQ

congestion is present or not. For the 8x8 case, it is necessary

to throttle all links down to 1/3 bandwidth to maintain scheduling

fairness (and thus predictability).

Additionally, a more complicated communication scheme is used in

this pattern to allow simultaneous sending and receiving: all

cells do foreground sends (throttled where necessary), and

background receives (spooling - Section 3.1.3). With the previous

communication patterns (scatter/gather and reduction/broadcast),

cells would only send or receive at each stage of the

communication pattern so message passing’s ability to send and

receive at once didn’t offer an unfair advantage. With all-to-all

communication, cells can ideally be sending and receiving

simultaneously. To prevent an unfair 2x memory bandwidth

advantage to message-passing (which would render our comparisons

meaningless), “spooling receives” were added to the TCS

implementation. While all communication still uses connections,

data is put into the connection via a foreground send, and

received from the connection via a background receive. This

allows a more fair performance comparison between the two models.

As would be expected, the performance model for all-to-all

communication using foreground and background connections (with

throttling) is a bit more complicated than earlier models. The

current model involves the sum over all communication phases of

quantities that can vary in each phase, but all are known or can

be calculated by the communication linker. The model is

predict = 10; /* constant overhead */

for each communication phase {

 predict += maximum_connection_path_latency_in_phase /*determined by

linker*/

 predict += Msg_size / Network_BW_in_phase ; /* determined by linker

 and throttling needed*/

 predict += Barrier_time + Reconfiguration_time + Spool_setup +

 other_overhead;

}

108

Barrier time was measured as 432 clocks;

Reconfiguration time was measured as 162 (using a faster

reconfiguration routine than presented in Section 5.2);

Spool_setup + Other_overhead was measured at 459.

bytes 2x2 cells 4x4 cells 8x8 cells

16 3384 17054 68951

(predict) (3762) (18426) (75130)

max 3392 17088 68984

min 3384 17016 68920

64 3507 17603 73422

(predict) (3870) (19098) (79738)

max 3512 17640 73864

min 3504 17536 73384

256 3938 20074 91860

(predict) (4302) (21786) (98170)

max 3944 20128 92248

min 3936 20016 91808

1024 5666 30823 165587

(predict) (6030) (32538) (171898)

max 5672 30824 166016

min 5664 30816 165536

4096 12578 73851 460496

(predict) (12942) (75546) (466810)

max 12584 73856 460912

min 12576 73840 460448

16,384 40226 245810 1640150

(predict) (40590) (247586) (1646394)

max 40232 245816 1640536

min 40224 245808 1640088

32,768 77090 475204 3212189

(predict) (77454) (476978) (3219194)

max 77096 475232 3212584

min 77088 475200 3212152

Figure 6.7 All-to-all communication time for TCS connections (in

clocks), vs. payload size and number of cells for 1000

runs.

109

Figure 6.7 shows the predicted and measured performances for a

wide variety of transfer sizes. In many cases the predicted

values are within one percent of the measured values and,

performance-wise, usually a factor of 2 better than deposit

message-passing. For example, the 64 cell 32 Kbyte transfer takes

more than 6.9 million clocks under message-passing, but runs in

just a little over 3.2 million clocks with TCS.

6.4.3 All-to-all conclusions

While TCS requires a more sophisticated performance model

(involving different latency and bandwidth values for each phase),

the linker can easily generate the required analysis and still

make useful predictions of runtime performance, usually to within

a tenth of a percent. The message passing model has no good way to

account for link congestion, and its performance suffers

accordingly. Unlike the scatter/gather, no simple remapping

exists for the all-to-all pattern to completely avoid link

congestion.

6.5 Chapter summary

This chapter demonstrates that the TCS tasking primitives can be

assembled to construct tasks with complex communication patterns

on real hardware while maintaining predictable performance. On

unloaded hardware, both message-passing and TCS connections offer

predictable performance; scatter/gather was predictable when

implemented with both deposit message-passing and with TCS. As

communication patterns become more complex, though, message

passing hides the increased complexity as an unknown link

congestion, making reliable performance predictions difficult, if

not impossible. The reduction/broadcast implementations showed

deposit message-passing losing its predictability as link

congestion increased; it could only regain predictability by an

explicit re-mapping that avoided link congestion. The all-to-all

message-passing pattern was beyond simple modeling, whereas the

TCS implementation remains predictable, worst-case, to within 10%

(overestimate) of execution time. TCS exposes both link

congestion and node congestion to the programmer and to the

linker, allowing accurate performance predictions to be made.

110

Furthermore, by exposing the communication to the linker, a TCS

implementation can account for known system eccentricities. For

instance, the prototype TCS linker for iWarp identifies potential

DQ bandwidth problems and recommends the appropriate throttling

strategy where needed to guarantee scheduling fairness,

maintaining its predictive capabilities.

Finally, regardless of any hardware idiosyncracies, deposit

message-passing is restricted to a local, run-time view of array

congestion, while TCS maintains a more global view of the

communication state at link time. TCS can thus choose routes

based on information that message-passing won’t discover until

runtime. This information allows TCS to use globally optimal

routing; message-passing only has a local view of run-time

congestion at runtime and hence cannot perform global

optimizations. Thus, even for complex communication patterns, TCS

offers both better performance and better predictability than

deposit message-passing.

111

Chapter 7 -

TCS Validation - Hierarchical Tasking

7.1 Introduction

Chapter 3 showed that connection-based communication can be done

in a fast, predictable manner. Chapter 4 used predictable

connections to create fast barriers with execution times

predictable to within a microsecond. Chapter 5 used the

predictable barriers to create predictable task control

primitives: connection reconfiguration, task create, and task end.

Chapter 6 showed how those primitives can be combined with

connections to create tasks having complex communication patterns

that still maintain predictable execution time. This chapter

shows how to compose more complex TCS tasks by assembling simpler

TCS tasks while still maintaining predictability.

TCS's dynamic tasking allows modular, continuous-flow, predictable

low-latency computations within a parallel application. Fast

barrier synchronization enables predictable task control at a

level of microseconds. The ability to construct complex tasks

from simpler tasks allows low-level complexity to be hidden from

higher level tasks. This encapsulation allows a modular approach

to application development as well as enabling reuse of functional

task blocks from one application in another.

This chapter demonstrates hierarchical tasking by giving an

example: constructing the real-time video motion-detector

introduced in Chapter 1 as part of the “predict a thrown ball’s

trajectory” application. Incoming pixels are compared against a

weighted moving average, then those new values are used to update

the average. The output is a video-rate binary image with an

output pixel value of 1 if the new value exceeds the moving

average by 20 or more, and an output pixel value of 0 otherwise.

This task will be implemented as a collection of smaller,

predictable tasks; the performance of the larger composite task

112

then is shown to be predictable based upon the known performances

of the smaller component tasks.

7.2 Implementing the motion-detector

This section discusses the performance requirements for the

motion-detector, the TCS module design of the motion detector, and

the testing setup for the module.

7.2.1 Requirements

When coded in a mixture of C and assembler and compiled for iWarp,

the motion-detection algorithm requires 28 clocks-per-pixel if no

motion is detected at the pixel, and 33 clocks-per-pixel if motion

is detected. Each incoming video frame arrives as 240 lines of

256 pixels per line. Because the data is sampled at video rates,

incoming data arrives in bursts of 256 pixels in 51.2 microseconds

during each 66.7 microsecond scanline, with a pause of roughly 600

microseconds occurring between frames. To maintain video

processing rates the motion detector needs to handle (240 x 256 =

61,440) pixels within no more than 16,666 microseconds.

Given a worst-case processing time of 33 clocks-per-pixel, 61,440

pixels would require 2,027,520 clock cycles worst case. Given that

the CPU executes 20 clocks per microsecond, a single processor

only has 333,333 clock cycles per video frame time. To meet the

processing requirements, at least 2,027,520/333,333 = 6.1

processors (which rounds up to 7) are required.

The amount of memory needed per processor also needs to be

considered. At a minimum, storage is required for the fresh pixel

data, the moving average, and the output image. For 61,440

pixels, this is 3 x 61,440 = 184,320 bytes of storage, which

easily fits within a single iWarp cell.

7.2.2 Utilizing multiple processors

At first glance, the simplest multiprocessor implementation would

seem to be to just distribute each incoming video image to a

separate cell. Not only does this introduce a rather high latency

(since no computation occurs until the whole frame is first read

in), but this approach also makes it difficult to maintain an

113

accurate moving average for the comparison. Instead, the data

needs to be distributed among the processors so that the same

portion of each successive video frame arrives at the same

processor each time.

By distributing the data in a block-cyclic fashion, information

locality from one frame to the next can be maintained across the

different processors. The module has two special cells which act

as "gatekeepers": one for the fresh video data flowing into the

module, and the other for detector output video leaving the module

(See Figure 7.1). The remaining module cells are "workers", which

are given data by the incoming gatekeeper, and send their output

to the outgoing gatekeeper. Data is distributed and gathered in

fixed blocksizes, with the number of distribution/gather cycles

necessary per-frame determined by the blocksize.

7.2.3 The TCS implementation

While the “back-of-the-envelope” calculations in 7.2.1 mandated a

minimum of seven cells to meet performance goals, additional time

is needed for data distribution and gathering. If the work were

partitioned such that seven cells were working at any one time,

with one cell loading new data and another cell writing old

results, a total of nine worker cells would be needed. To

simplify the implementation by maintaining worker symmetry, the

number of worker cells was rounded up to ten. The detect motion

task is implemented roughly as follows:

detect_motion(NUMBER_OF_FRAMES, BLOCKS_PER_FRAME) {
 for (i=0; i<NUMBER_OF_FRAMES; i++) {
 switch(cell type) :
 case WORKER:
 id=WORKER cell ID
 for (j=0; j<BLOCKS_PER_FRAME; j++) {

taskstart(FILL(id));
taskstart(COMPUTE);
taskstart(DRAIN(id));

 }break;
 case GATEWAY_IN:
 for (j=0; j<BLOCKS_PER_FRAME; j++) {

taskstart(FILL(j mod NUMBER_OF_WORKERS))
 }break;
 case GATEWAY_OUT:
 for (j=0; j<BLOCKS_PER_FRAME; j++) {

taskstart(DRAIN(j mod NUMBER_OF_WORKERS))
 }break;
 } /* switch */
 } /* for NUMBER_OF_FRAMES */
taskend();

Worker Cell s
(0 thru 9)

compute

compute

Gateway In
Cell

Gateway Out
Cell

Drain 1

Video Out

idle

compute
Fill 9

compute

computecompute

compute

Detect motion Video In

114

Figure 7.1 The “detect motion” task is implemented using
multiple small, dynamic tasks.

Because ten worker cells are sharing the load, and there are 240

lines of video per frame, each cell is responsible for processing

24 lines of video per frame. 24 lines of 256 pixels implies

between 172,032 and 202,752 clocks of processing, plus the drain

and fill times, per 333,333 clocks (frame time). Thus, the worker

efficiency will be between 51% and 62%. If a means existed to

somehow ensure there would be no phase variance between drain

rates and fill rates, the filling and draining could be bundled

into a single module, yielding a reduction of the number of

workers to eight cells. This would imply 30 lines of video per

cell, for 236,544 to 253,440 clocks, boosting efficiencies to

between 70% and 76%.

115

For the ten worker cells implementation, latency as a function of

blocksize is predicted as

 latency = network_latency + data_loading_latency + compute_time .

The network latency for 10 cells plus two “gatekeeper” cells,

using the 5 clocks-per-hop estimate, is 12x5 = 60 clocks. An

additional 3 hops are needed to travel from the cell doing the

timing to the module and back again, so this adds an additional 15

clocks for a total expected path latency of 75 clocks.

Because the data is coming in as live video samples, it can’t

arrive any faster than video rates. A standard NTSC video signal

is 30 interlaced frames/second, or 60 non-interlaced

frames/second. In either case, a scanline (including sync,

leading and trailing blanking (overscan), and pixel data) occurs

every 66.8 microseconds, of which only about 51.2 microseconds is

active pixel data. If we sample each line at 256 pixels per line,

the data arrives as 64 4-byte words over a 51.2 microsecond

interval, every 66.8 microseconds. At 20 clocks/microsecond, this

works out to 1,336 clocks per scanline; the rate is fixed by the

camera. If the module were unable to accept data at this rate,

incoming data would be lost.

Computation time is either 28 or 33 clocks per pixel, depending on

whether motion is actually detected or not. At 256 pixels per

scanline, this means a worst-case compute time of (33*256) = 8,448

clocks per scanline, and a best-case compute time of 7,168.

TCS task start and task end overheads are completely hidden within

the “idle” time between scanlines. A scan line lasts 66.8

microseconds, but the active video portion is only 51.2

microseconds, so there are (66.8 - 51.2 microseconds) = 15.6

microseconds => 312 clocks available per scanline.

7.3 Predictions

Because the video detect task has hard realtime input and output,

and the output needs low latency, we need to verify both that the

task can maintain throughput and meet specified latency

constraints.

116

7.3.1 Throughput

As designed, provided there is sufficient time during the

horizontal retrace for task start and task end to execute, the

application should be able to support and maintain video-rate

throughput regardless of the block size of the data distributed

among the cells. Because of the nature of the pipeline, the

critical points are at the gateway cells executing the task

start(FILL) and task start(DRAIN), and the FILL/DRAIN task ends.

As implemented for this module, task start for both FILL and DRAIN

occurs in 225 clocks, and task end occurs in 60 clocks. The total

time to start and terminate a fill or drain is just (225 + 60)=285

clocks, which is less than the 312 clock limit. Thus, throughput

is expected to be sustainable.

7.3.1 Latency

The next issue is latency: the time from when a pixel first enters

the gateway in cell to it leaving the gateway out cell (See Figure

7.1). Because the fill task start and the drain task end

operations are interleaved within the horizontal refresh interval,

their execution times don’t affect pixel latency. Only fill task

end and drain task start, plus computation, plus network latency,

affects pixel latency. Best case latency occurs with the smallest

possible block size; in this case, one scanline of data (256

pixels).

From previous measurements, computation time is 28 clocks/pixel

for no motion, and 33 clocks/pixel for motion.

For a data block size of 1 video line, then, worst-case latency

can be predicted by summing the various component worst-case

latencies:

 network latency - 12 cells x (approximately) 5 clocks/cell

= 60 clocks (Chapter 3);

 data loading latency (512 pixels @ 40 pixels/clock)= 1280 clocks;

 fill task end - 60 clocks (measured);

 compute task start - 20 clocks (measured);

 compute latency - 7168 (no motion) or 8448 (motion)

(computed from single-pixel measurements);

 compute task end - 20 clocks (measured);

 drain task start - 225 clocks (measured).

117

Total latency is computed as 60 + 1280 + 60 + 20 + 7168 + 20 + 225

= 8,833 for a line with no motion, and

60 + 1280 + 60 + 20 + 8448 + 20 + 225 = 10,113 clocks for a line

with motion detected at every pixel. In reality, latency should

be slightly better than this because the drain task start should

complete faster due to a slight skew between the compute and the

previous worker’s drain. Measured drain task starting times

assume (worst case) that both cells entered the start barrier

together. In reality, one cell gets there first and waits; when

the second cell enters, due to the way the barrier is implemented,

the latecomer writes a value to its output PCT, reads a value from

its input PCT (which is already waiting from the early arriver),

and proceeds. The overhead of the network latency is hidden

because the network latency overlaps with the late-arriving cell’s

previous operations. Due to barrier skew, the task start

completes at the late-arriving cell in less than worst-case time.

For data blocks larger than one scan line, the data loading

latency is calculated by multiplying the additional number of scan

lines by the time for a complete video scan line (66.8

microseconds = 1336 clocks). Thus, while a single line of video

has a data-loading latency of 1280 clocks, additional lines

include the overhead of the horizontal blanking interval and hence

cost 1336 clocks. Unless one adds additional upstream buffering

(bad, because this increases total application latency), one can’t

get the per-line data loading latency lower than 1336 clocks.

7.4 Results

Given a 10-cell implementation and a fixed data size, the only

variable parameter is the block size of the cyclicly distributed

data. The TCS module is implemented to accept the "number of

video frames" and the "block size" (in number of lines) as

parameters, and is invoked as part of a larger module with varying

block sizes as shown in 4.23. As expected, the module latency

gets smaller with the smaller block sizes. Note that we can

predict (and achieve) latencies of milliseconds with accuracies in

the microseconds. Figure 7.2 represents a “best-case” video

input, with no motion detectable, and 7.3 is a “worst-case”, with

motion detected at every pixel. Note that the “maximum time” for

118

Scanlines Avg, predicted, Avg, max, and min Worker

per block max, and min completion time Utilization

latency to first

pixel

24 203,040 33,533,136 51.5%
(204,425) 33,533,136

203,040 33,533,136
203,040

12 101,618 33,433,898 51.9%
(102,377) 33,433,904

101,624 33,433,896
101,616

 8 67,824 33,400,834 52.3%
(68,361) 33,400,904

67,824 33,400,832
67,824

 6 50,912 33,384,284 52.5%
(51,353) 33,384,288

50,912 33,384,280
50,912

 4 34.019 33,367,755 52.9%
(34,345) 33,367,760

34,024 33,367,744
34,008

 3 25,560 33,359,476 53.3%
(25,841) 33,359,480

25,568 33,359,472
25,560

 2 17,119 33,351,223 53.9%
(17,337) 33,351,224

17,120 33,351,208
17,112

 1 8,659 33,342,940 54.8%
(8,833) 33,342,944
10,008 33,342,936
8,640

 Figure 7.2 Best-case (no motion) latency and completion times

(in clocks) for the detect motion task vs. block

size (in scanlines) for 100 frames of video.

the 1 scanline/block entry in Figure 7.2 (10,008 clocks) is a

measurement artifact; the first run of the system was the 1

scanline/block, and that first frame through the system registered

119

Scanlines Avg, predicted, Avg, max, and min Worker

per block max, and min completion time Utilization

latency to first

pixel

24 235,903 33,566,763 61.5%
(235,145) 33,566,768

236,296 33,566,760
235,896

12 117,953 33,450,728 62.1%
(117,737) 33,450,736

118,112 33,450,728
117,952

 8 78,751 33,412,054 62.5%
(78,601) 33,412,056

78,872 33,412,048
78,744

 6 59,148 33,392,694 62.7%
(59,033) 33,392,696

59,232 33,392,688
59,144

 4 39,544 33,373,352 63.1%
(39,465) 33,373,360

39,576 33,373,352
39,544

 3 29,696 33,363,680 63.7%
(29,681) 33,363,680

29,704 33,363,680
29,696

 2 19,866 33,354,028 64.4%
(19,897) 33,354,032

19,872 33,354,024
19,744

 1 10,005 33,344,342 65.5%
(10,113) 33,344,344

10,008 33,344,336
10,000

 Figure 7.3 Worst-case (motion at every pixel) latency and

completion times (in clocks) for the detect motion
task vs. block size (in scanlines) for 100 frames
of video noise (simulates extreme motion).

motion at all pixels. In fact, this agrees well with the

predicted value for the 1 scanline/block entry in Figure 7.3.

120

7.5 Chapter summary

While TCS primitives allow construction of single tasks with

predictable execution time, the real power of the TCS model is

that complex tasks can be created by assembling simpler tasks

while still maintaining predictable performance. Because the

synchronization barriers can be performed so quickly (on the order

of a few microseconds), complex applications can be composed at a

very fine level of granularity, which allows very low latency

while maintaining high bandwidth. For instance, with the video

motion detector task developed in this chapter, motion can be

continuously detected at video rates with latencies as low as 7.5

scanlines (10,008 clocks / 1335 clocks/scanline).

By expressing the application (or task) using the TCS primitives,

the application’s potential runtime communication complexity is

exposed to the linker, which can then make globally-optimized

communication resource allocations. Because these primitives are

built upon a very fast, predictable barrier synchronization

implementation, they enable task implementations to achieve a fine

level of granularity. Because the control primitives are

constructed to give predictable performance, the tasks created

using those primitives have predictable performance. Finally,

complex tasks can be constructed by assembling simpler tasks into

larger structures while still maintaining predictable performance.

121

Chapter 8 -

Related Work

8.1 Chip/Poker (1982)

In the early 1980's Lawrence Snyder introduced the CHiP

architecture, a reconfigurable connection-based machine positioned

as a SPMD system[39]. Connections were established through off-

cell switching elements configured by a separate, global

controller. The individual cells executed locally-stored

programs, but network reconfiguration was an inherently global

operation due to the external, global switch control.

The physical network supported only a single channel per physical

link, but fanout configurations were supported.

Poker, the programming language/environment for ChiP, introduced

the concept of the "XYZ levels" necessary for effectively

programming this sort of machine. When using connections for

communication, a distinction needed to made between program code

(which executed the computations) and network code (which defined

the communication). Individual algorithms were expressed as a

combination of program and network code (the X and Y levels,

accordingly), and the full applications was created by combining

sets of algorithm implementations together (the Z level) [41].

The Poker programming environment was developed to support program

development at all levels. In his words,

... what does a whole Poker program look like? Answer: It
cannot be seen in toto. Unlike "regular" programs, Poker
programs are not monolithic pieces of program text. Instead,
they are databases[40].

The major drawbacks of the CHiP system were 1) lack of local

processor control over network configuration, and 2) lack of

virtual channel support. The former enforced a global synchronous

tasking model, and the latter made global reconfigurations more

expensive, since only a few connections can be supported per

configuration.

122

8.2 GF-11 (1987)

While the IBM GF-11 was actually a SIMD machine rather than a MIMD

machine, it is worth mentioning here because it also carried the

idea that network connections constituted a separate program from

the actual computation program. A special switch controller

stored a program of 1024 different network configurations (each

requiring 8640 bits) that the main controller could summon at

runtime by sending a 10-bit configuration request. Since the

machine was SIMD, it only supported a single global task, but it

could rapidly reconfigure its connection setup, changing from one

configuration to another in only 200 nanoseconds[6].

8.3 Polymorphic Torus (1989)

Li and Maresca introduced a SIMD polymorphic torus machine that

combined the network switch with the individual processor. The

network switches are dynamically configured under local processor

control[32]. In one sense this was a step backward, in that

connection configuration must again be explicitly built into the

computation program code, but it was also an advance in that it

gave the local processors the power to self-configure on demand,

freeing the system of the control bottleneck an external

configuration agent would imply.

8.4 Transputer-based systems: C_NET and MARC

The INMOS T800 Transputer provides direct, on-chip hardware for

connections, but no routing support. A number of different

systems have been built combining the T800 chips with an external

routing/communication network.

C_NET (1992) supported reconfigurable connections between

processors, but relied upon an external agent for

reconfigurations. The C_NET programming model is similar to the

XYZ levels of Poker; program (computation) code is written for the

cells (similar to Poker X-level), a topology definition program is

written to define the communication that occurs (similar to Poker

Y-level), and phase programs map the program code and the

connection definitions to particular cells on the physical machine

(Poker Z-level)[1].

123

MARC (1991) is another programming tool for a networked T800s, but

focusses on automatically placing and routing a set of

communicating processes than providing programmer support for

communication[11].

The T9000 promised support for virtual channels, so that multiple

channels could be time-division-multiplexed over a single physical

connection, but by the time the chip materialized with the

promised capabilities and clock rate, the computational

performance was no longer very competitive with conventional CPUs.

8.5 iWarp, PCS, ConSet, and PCS+

iWarp is a reconfigurable connection-based MIMD machine that

offers register-mapped network ports to allow low-latency

communication. It provides local network configuration control at

each cell, but the network can also operate in a semi-autonomous

manner. The first application development tools for it either

treated the machine as a SPMD device and used static communication

channels for data distribution and collection (Adapt, Apply), or

else set up a collection of static tasks (Assign) that utilized

static communication channels.

PCS was the first tool enabling explicit task-level programming on

the iWarp, but like Assign, PCS supported only a single

configuration per application. PCS generated only program code;

network configuration information was embedded by the toolchain

within the cell program code.

ConSet was the first iWarp tool to enable multiple sets of

different connections over the course of a single application.

While it used a SPMD view of the array (only a single global

task), it partitioned communication into a series of phases,

allowing more connections to be realized over a period of time

than was explicitly allowed by the available logical channels.

ConSet produced both cell program code and a separate network

program for the needed connection states[16].

PCS+ was an augmented version of PCS which kept the tasking model

of PCS, but allowed tasks to be partitioned into "global

124

communication phases". Each global phase was allowed to have a

different network configuration, but changing from one phase to

the next required global participation; the need for global

participation precluded PCS+ from supporting asynchronous tasking.

PCS+ kept the distinction between program code and network code

introduced in ConSet, and generated both a program code executable

and a network code executable as output[27,28].

8.6 HeNCE(1991), CODE(1992), and Paralex(1992)

A number of tools have been created for developing parallel

tasking applications running on top of a PVM or PVM-like message-

passing environment (high-latency, low-bandwidth network). The

basic "task unit" in each of these models is the graph. Mapping

of tasks to machines is based on a user-defined "cost matrix";

heterogeneous processors can be used in all of these systems.

HeNCE uses a static mapping of tasks to processors, determined at

compile time[8], whereas Paralex supports dynamic load

balancing[3]. CODE restricted mapping tasks to nodes within a

single multicomputer (a Sequent Symmetry), but also allows runtime

mapping of tasks to cells[34]. For all ow these tools,

communication and task ordering is specified by drawing "arcs" in

the graphs, which represent unbounded FIFO buffers connecting

"computation units". While these models and environments provide

a connection-like communication model, the implementations rely

upon a message-passing underpinning to provide the desired

functionality and cannot offer any sort of guaranteed bandwidth or

latency to the application designer.

One of CODE's major strengths is that the basic "task unit" in

CODE is the graph, and graphs may be hierarchically defined; that

is, one graph may invoke or "Call" another graph. CODE graph

instances do not exist until called at runtime; task creation is

dynamic. Like TCS, this design allows the hierarchical

composition of complex tasks by assembling and encapsulating a

collection of smaller, simpler tasks.

A characteristic of all of these models is that the programming

model is defined in terms of the capabilities of the toolchain

provided. The programming model, in effect, is the toolchain.

125

8.7 Orca-C and ZPL (1992)

While Poker introduced the idea of dividing parallel code into

three levels: X-level (single-cell program code), Y-level

(communication phases), and Z-level (problem level), it was

restricted to a single Z-level routine per application. Orca-C

and ZPL ("Z-level Programming Language") were an attempt to

 1. Allow more complex Z-level routines to be created from

simpler Z-level routines in a hierarchical fashion, and

 2. Create scalable, reusable Z-level code.

The intent was that both Y and Z levels would be parameterized in

terms of size and connectivity, and that X-level code could have

easy access to block-partitioned data structures. This does allow

for easier scaling, but prohibits use of communication patterns

that cannot be easily expressed (short of a wirelist)[33].

8.8 Fortran M (1994)

Fortran M is essentially Fortran 77 plus a set of extension to

support tasking and communication between tasks.[13,18] While HPF

(High-Performance Fortran) provides a convenient means of

expressing data-parallel code, it does not really allow task-

parallel programming; Fortran-M allows modular, task-parallel

program creation. Programs create processes that communicate by

sending formatted messages over point-to-point channels. The

mapping of processes to physical cells is handled by explicit

directives in the program code. Communication and code placement

are bundled into a Fortran M program itself; process

creation/placement and communication channel creation/destruction

are dynamic. This allows greater program flexibility, but makes

any sort of static communication scheduling impossible.

Communication is “connection-like” in that data ordering is

preserved, but no guarantees are made regarding when data gets

delivered. Channel communication occurs via formatted packets

only, and is carried out by a lower-level message-passing

subsystem. In one of the creators words:

the primary difficulty that arises in compiling [Fortran-M]
is to achieve efficient implementations of communication,
synchronization, and process-management mechanisms.[13]

126

8.9 Fx (1994)

Fx is an experimental Fortran compiler that “incorporates task

parallelism as directives in a data-parallel language based on

HPF.” Unlike Fortran M, which depends on explicitly written send s

and receive s for communication, the Fx compiler is responsible for

generating all program communication.

An Fx program begins execution as a single data-parallel task
running on all nodes. When the flow of control reaches a
parallel section, the tasks specified by calls to task
subroutines are executed subject to data-dependence
constraints; that is, each task waits for its input,
executes, sends its output, and terminates. Parallelism is
obtained by executing different tasks on different sets of
nodes.[23]

Fx has several (rather severe) limitations. First of all, tasking

only goes one level deep; a task may not invoke child tasks.

Further, only one task-parallel region may exist per Fx program.

Finally, because communication is implied (and compiler generated)

rather than explicitly programmed, implementing systolic tasks or

algorithms requires a bit of “smoke and mirrors” work. While Fx

has been used for such tasks as real-time computer vision [44],

routing the communication to obtain sufficient bandwidth to

support continuous video was a user-controlled “trial-and-error”

operation [23].

8.10 Mentat (1987)

Mentat is a C++ -based “macro data flow” system intended to

provide a more-or-less transparent means of achieving parallelism.

Mentat computations are called “actors”, and “arcs” represent the

data dependencies between actors. Tokens, which represent data

and control information, flow between the actors along the arcs.

When an actor has tokens present on all of its incoming arcs, the

actor is “enabled” and then executes, sending the appropriate

tokens out on its outgoing arcs when complete. “Persistent

actors” can maintain state information between firings. Mentat

objects map one-to-one as processes running on a virtual machine,

which in turn is mapped onto a parallel computer. [20,21]

Because Mentat applications are written for a virtual machine,

127

programs can be expected to be portable across different parallel

platforms. The downside is that by writing for a virtual machine,

programs cannot easily take advantage of machine-specific “special

features” that may offer better application performance. Object

creation (actors and arcs) is dynamic, allowing maximum

programming flexibility, but precluding static scheduling of

communication or placement.

8.11 Static communication scheduling

Bianchini and Shen developed a “communication compiler” in 1986

that completely scheduled deterministic communication at compile

time, offering repeatable (and guaranteed) runtime communication

performance. In this system, “switching nodes” handled

communication switching and routing, and physically separate

“computation modules” handled computation. Each computation

module would communicate with other processors through its

corresponding switching node; the switching node would route the

message through other switching nodes to the appropriate

destination, according to a routing scheme evaluated at compile

time.[9] This approach works well for synchronous, deterministic

single-task systolic applications, but does not easily support

multiple tasks which may communicate non-systolicly, or a group of

tasks which, over time, execute on the same group of processors

and switching nodes, switching between tasks in a data-dependent

fashion.

The “Virtual Wires” work done more recently at MIT is a variant of

this approach, geared towards scheduling communication within and

between functional units of FPGAs. “Virtual wirelists” specifying

connectivity and bandwidth between logical functional components

are programmed and compiled, then mapped to available physical

connections and scheduled in a time-division-multiplexed manner.

In essence, “virtual wires” gave “logical channels” to the pins

and interconnects of FPGAs. The increased utilization of pin and

interconnect bandwidth allowed greater explotation of each gate

array’s capabilities, resulting in a physically smaller system

[4,14].

128

8.12 Chapter summary

A number of machines were built with explicit support for

reconfigurable connection-like communication, each having a

particular programming paradigm for utilizing connections. The

CHiP only allowed a single connection per “phase” per cell with an

external agent controlling network configuration; the GF-11 and

polymorphic torus were SIMD machines. All of these enforced a

globablly synchronous view of communication. More flexible,

dynamic programming paradigms were introduced that allowed

asynchronous tasking (and communication reconfiguration) (HeNCE,

CODE, Mentat), but these require a general-purpose message-passing

communication base that forfeits runtime communication guarantees.

They also differ in how they can encapsulate the complexity of

multiple, distributed communicating tasks as reusable program

elements. For instance, Fortran M allows nested task definitions,

while Fx does not.

The TCS model is unique in that it allows runtime communication

guarantees to be requested at compile time (and confirmed at link

time) while still allowing non-communicating tasks to execute

asynchronously. The enabling technologies for these features are

(1) cells have local control over their network configuration,

(2) places where barrier synchronization is needed can be detected

(and inserted) at link time, and

(3) fast barrier synchronization services are available.

129

Chapter 9 -

Thesis Summary

9.1 Conclusions

The results of this thesis can be summarized as follows:

(1) Connections that provide minimal quality-of-service
guarantees on latency and bandwidth are sufficient to build
fast, predictable barrier synchronization.

Chapter 4 showed that barrier synchronization is a special case of

all-to-all information exchange; the design space encompasses

physical signaling scheme , messaging protocol , allowable barrier

memberships , and barrier capacity . Connections provide a fast

physical signaling mechanism; by choosing a messaging protocol

appropriate to the barrier memberships and capacity required, one

can achieve fast yet predictable worst-case barrier performance.

The TCS barrier implementation on iWarp can synchronize a group of

4 cells in under 160 clocks (8 microseconds), and a group of 32

cells in less than 816 clocks (41 microseconds). As a special

case, an entire iWarp torus (64 cells) can be synchronized is just

456 clocks (23 microseconds). Not only fast, this barrier

mechanism has a worst-case performance predictable to within 1

microsecond. This fast barrier mechanism allows tasks to

coordinate at a very fine granularity level (tens of microseconds,

in contrast to application latency requirements in the

milliseconds).

(2) Given a connection implementation with connectivity state
directly writable by the local cell, and fast, predictable
barrier synchronization, a group of cells can perform
communication context switches in predictable time.

A communication context switch allows cells within a task to swap

between sets of active connections, hence allowing greater

effective connectivity than the hardware could statically provide.

Locally-writable connection state is important to prevent the

130

unknown delays and artificial serialization that would be

inflicted by queuing requests at an external reconfiguration

agent, and fast barrier synchronization is necessary to keep the

cost of doing the communication context swap affordable. By

keeping the reconfiguration mechanism local to the cells affected,

their reconfigurations are unaffected by activity in the rest of

the array. By combining this local reconfiguration with a barrier

implementation that is predictable as well as fast,

reconfiguration itself can occur in predictable (to within

microseconds) worst-case time.

(3) Given connections offering minimal quality-of-service
guarantees and communication context switches, tasks can
perform complex communications in predictable time. If the
total connectivity required exceeds the intrinsic
capabilities of the target platform, communication can be
split into a series of local phases, each with its own set of
connections.

A number of communication patterns representative of real-world

application communications were implemented on the iWarp and

benchmarked. Scatter/gather, reduction/broadcast, and all-to-all

were implemented using both the TCS programming model and a fast

deposit message-passing implementation for a variety of data sizes

and varying numbers of cells. While message-passing offers

arbitrary connectivity, its predictability falters as the

communication patterns become more complex due to unknown runtime

network congestion. TCS, using sets of local connections,

maintained its predictability even for the all-to-all pattern.

(4) Given fast, predictable barrier synchronization, a simple set
of task control primitives can be constructed with
predictable performance. Tasks can then be constructed with
those primitives to have predictable execution time.

Chapter 5 outlines the three basic control primitives that are

built upon barrier synchronization: task start , task end , and

local communication context switch . Chapter 6 showed how those

control primitives are used to create tasks with communication

patterns of varying complexity, and demonstrated on the iWarp that

they did indeed maintain predictable (to within a few

microseconds) execution time.

131

(5) Complex tasks can be hierarchically constructed from simpler
tasks; if the component tasks have predictable performance,
the resultant task can have predictable performance as well.

Chapter 7 showed how a complex task, a pipelined scatter/gather,

could be constructed from a collection of simpler tasks. This

complex composite task was predicted to meet, then demonstrated as

meeting, the throughput and latency constraints of the larger

application. Herein lies the power of the programming model:

complex tasks can be built to offer predictable runtime

performance by hierarchically assembling smaller, simpler tasks.

The task granularity achievable is limited by the performance of

the underlying barrier synchronization implementation; the faster

the barrier performance, the finer the granularity achievable.

(6) By expressing an application in this manner, its potential
runtime communication patterns are exposed at link time,
allowing the toolchain to make global communication and
barrier optimizations.

Link time routing allows the router to minimize runtime network

congestion, in turn providing better performance. For instance,

in Chapter 6, the TCS implementation of all-to-all data exchange

outperformed the message-passing implementation by a factor of

nearly three for 64-cell 32 Kbyte transfers. This performance was

due to congestion avoidance allowed by link time routing.

9.2 Future work

9.2.1 Barrier hierarchies

Just as a choice of routing can be done at link time, the choice

of barrier implementation can be made as well. A target platform

may have more than one barrier implementation: a fast but small

capacity barrier, and a slower, higher-capacity barrier. By doing

the barrier allocation at link time, the fast barrier can be used

in those “inner loop” situations where it provides greatest

benefit, and the slower barrier used where execution time is less

critical. This hierarchy of barrier implementations with a small

fast-barrier capacity and larger capacities with slower

performance is similar to a memory hierarchy, where one has only a

few bytes of on-chip register space but Megabytes of slower DRAM.

132

Programs can be written in terms of generic barriers and

memberships, with the linker deciding which implementation to use.

Much as an optimizing compiler might promote a variable from a

memory variable to a register variable, so too could a linker

promote a barrier from one based on general-purpose messages based

on the general machine network to one which runs on scarcer,

special-purpose barrier hardware.

9.2.2 Other platforms

While most of this thesis’s work was done on iWarp, it should be

possible to carry it to other machines that offer similar

communication capabilities. Prospective target machines should

offer connection-based communication with minimal quality-of-

service bandwidth and latency guarantees, and a locally-accessible

connection state. Mesh-based architectures (which put the

switches close to the cells) are thus more likely candidates than

tree-based architectures (which put the cells at the base of a

hierarchy of switches). Furthermore, latency guarantees are as

critical as bandwidth guarantees, especially for connection-based

barrier implementations. Barrier messages are usually just a few

bytes of information; barrier execution time is thus dominated by

the physical signaling latency rather than signaling bandwidth.

9.3 Chapter summary

Connections with minimal quality-of-service bandwidth and latency

guarantees are sufficient to implement fast, predictable barrier

synchronization. Predictable barrier synchronization combined

with locally-writable connection state enables local communication

context switches, extending the connectivity within a task beyond

what the target platform intrinsically supports. Given fast,

predictable barrier synchronization and communication context

switches, a small set of task control primitives can be built that

allow task creation, execution, and destruction in predictable

time. Tasks that are built from those primitives can be

constructed to run in predictable time, and can be assembled into

more complex tasks while maintaining predictable performance.

Finally, by exposing an application’s potential runtime

communication to the linker, global communication optimization can

be performed.

133

Bibliography
1. Adamo, J.; Bonello, C.; and Trejo, T. “The C_NET Programming

Environment: An Overview,” Parallel Processing: CONPAR’92-VAPP V

The Second Joint International Conference on Vector and Parallel

Processing , Lyon, France, September 1992; pp. 115-120.

2. Alliant Computer Systems Corporation, FX/SERIES Architecture

Manual , Part Number 300-00001-B, January 1986.

3. Babao �lu, Ö.; Alvisi, L.; Amoroso, A.; Davoli, R.; and Giachini,

L.; "Paralex: An Environment for Parallel Programming in

Distributed Systems," ICS-92 ; Washington, DC. USA, July 1992; pp.

178-187.

4. Babb, J.; Tessier, R.; and Agarwal, A.; “Virtual Wires: Overcoming

Pin Limitations in FPGA-based Logic Emulators,” Proceedings of the

IEEE Workshop on FPGAs for Custom Computing Machines ; Napa,

California, USA, April, 1993; pp. 142-151.

5. Bailey, D.A.; Cuny, J.E.; and MacLeod, B.B.; "Reducing

Communication Overhead: A Parallel Code Optimization," Journal of

Parallel and Distributed Computing , vol. 4, 1987; pp. 505-520.

6. Beetem, J.; Denneau, M.; and Weingarten, D.; "The GF11 Parallel

Computer," in Dongarra, J., ed., Experimental Computer

Architectures ; Elsevier Science Publishers, B.V., 1987; pp. 255-

298.

7. Beckmann, C.; and Polychronopoulos, C.; “Fast Barrier

Synchronization Hardware,” Proceedings of Supercomputing ‘90 ,

IEEE Computer Society and ACM SIGARCH; New York, New York, USA,

November 1990; pp. 180-189.

8. Beguelin, A.; Dongarra, J.; Geist, G.; Manchek, R.; and Sunderam,

V.; "Graphical Development Tools for Network-Based Concurrent

Supercomputing", Proceedings of Supercomputing ‘91 . IEEE Computer

Society and ACM SIGARCH; Albuquerque, NM, USA, November 1991; pp

435-444.

9. Bianchini, R.; and Shen, J.; “Interprocessor Traffic Scheduling

Algorithm for Multiple-Processor Networks,” IEEE Transactions on

134

Computers ; C-36, no. 4 April 1987; pp. 396-409.

10. Birk, Y; Gibbons, P; Sanz, J; and Soroker,D.; “A Simple Mechanism

for Efficient Barrier Synchronization in MIMD Machines,”

Proceedings of 1990 International Conference on Parallel

Processing, vol II; Penn State Press, University Park, PA, 1990;

pp. 195-198.

11. Boillat, J.; Iselin, N.; and Kropf, P.; “MARC: A Tool for

Automatic Configuration of Parallel Programs, ” Transputing ‘91 ;

Sunnyvale, CA, USA, April 1991; pp. 311-329.

12. Borkar, S., et. al; "iWarp: An integrated solution to high-speed

parallel computing," Proceedings of Supercomputing '88 , IEEE

Computer Society and ACM SIGARCH; Orlando, FL, USA, November 1988;

pp. 330-339.

13. Chandy, M.; Foster, I.; Kennedy, K.; Koebel, C.; and Tseng, C.;

“Integrated support for task and data parallelism,” International

Journal of Supercomputer Applications ; vol.8, no.2; Summer 1994;

pp. 80-98.

14. Dahl, M.; Babb, J.; Tessier, R.; Hanono, S.; Hoki, D.; and

Agarwal, A.; “Emulation of the Sparcle Microprocessor with the MIT

Virtual Wires Emulation System,” Proceedings of the IEEE Workshop

on FPGAs for Custom Computing Machines ; Napa, California, USA,

April, 1994; pp. 14-22.

15. Dongarra, J., ed; “MPI: A Message Passing Interface Standard,”

International Journal of Supercomputer Applications and High

Performance Computing , vol. 8, no. 3-4, Fall-Winter 1994; pp. 169-

416.

16. Feldmann, A.; Gross, T.; O'Hallaron, D.; and Stricker, T.;

"Subset Barrier Synchronization on a Private-Memory Parallel

System," Proceedings of the 4th Annual ACM Symposium on Parallel

Algorithms and Architectures, SPAA92 ; San Diego, CA, USA, June

1992; pp. 209-218.

17. Feldman, A.; Stricker, T.; and Warfel, T.; "Supporting Sets of

Arbitrary Connections on the iWarp through Communication Context

Switches", Proceedings of the 5th Annual ACM Symposium on Parallel

135

Algorithms and Architectures, SPAA93; Velen, Germany, June 1993;

pp. 203-212.

18. Foster, I.; “Task parallelism and high performance languages,”

IEEE Parallel & Distributed Techology: Systems & Applications ;

vol. 2, no.3; Fall 1994; pp. 27-36.

19. Giap, H.; and Macey, D.; “Validation of a Dose-Point Kernel

Convolution Technique for Internal Dosimetry,” Physics in Medicine

and Biology ; vol. 40, no. 3, March 1995; pp. 365-381.

20. Grimshaw, A.; and Liu, J.; “MENTAT: An object-ordiented macro data

flow system,” OOPSLA ‘87: Conference on Object-Oriented

Programming Systems, Languages, and Applications; Orlando, FL,

USA; October 1987; pp. 35-47.

21. Grimshaw, A.; Strayer, W.; and Narayan, P.; “Dynamic, object-

oriented parallel processing,” IEEE Parallel & Distributed

Technology: Systems & Applications ; vol. 1, no. 2, May 1993; pp.

33-47.

22. Gross, T.; Hasegawa, A.; Hinrichs S.; O'Hallaron, D.; and

Stricker, T; "Communication Styles for Parallel Systems," IEEE

Computer ; vol. 27, no. 12, Dec 1994; pp. 34-44.

23. Gross, T.; O’Hallaron, D.; and Subhlok, J.; “Task Parallelism in a

High Performance Fortran Framework,” IEEE Parallel & Distributed

Techology: Systems & Applications; vol. 2, no.3; Fall 1994; pp.

16-26.

24. Hempel, R. “The MPI Standard for Message Passing,” Proceedings of

the High-Performance Computing and Networking International

Conference 1994, vol II: Networking and Tools ; Springer-Verlang,

Berlin, Germany, 1994; pp. 247-252.

25. Hinrichs, S.; Kosak, C.; O'Hallaron, D.; Stricker, T.; and Take,

R.; "An Architecture for Optimal All-to-All Personalized

Communication," Proceedings of the 6th Annual ACM Symposium on

Parallel Architectures and Algorithms, SPAA 1994 ; Cape May, NJ,

USA, June 1994; pp. 310-319.

136

26. Hinrichs, S.; “Compiler-Directed Architecture-Independent

Communication Optimization”,Thesis CMU-CS-95-155, Carnegie Mellon

University, School of Computer Science, 1995.

27. Hinrichs, S.; “PCS+ Tool Chain User’s Guide, Version 3.0+”,

November 1993.

28. Hinrichs, S.; “Simplifying Connection-Based Communication,” IEEE

Parallel and Distributed Technology ; vol. 3, no. 1; April, 1994;

pp. 25-36.

29. Hwang, K.; and Shang, S.; “Wired-NOR Barrier Synchronization for

Designing Large Shared-Memory Multiprocessors,” Proceedings of the

1991 International Conference on Parallel Processing vol I ; Penn

State Press, University Park, PA, 1991; pp. 171-175.

30. Le Boudec, J.; Przygienda, B.; and Sultan, R.; “Routing Metric for

Connections with Reserved Bandwidth,” IBM Research Report RZ 2560

(#83867) , 2/7/94; pp. 1-7.

31. Lee Grahm, M.; Cheng, A.; Geer, L.; Binns, W.; Vannier, M.; and

Wong, J.; “A Method to Analyze Two-Dimensional Daily Radiotherapy

Portal Images from an On-Line Fiber-Optic Imaging System,”

International Journal of Radiation Oncology, Biology, Physics ;

vol. 20, no. 3, March 1991; pp. 613-619.

32. Li, H.; and Massimo, M.; "Polymorphic-Torus Network," IEEE

Transactions on Computers ; vol. 38, no. 9, September 1989; pp.

1345-1351.

33. Lin, C.; and Synder, L.; "Data ensembles in ORCA C", Languages and

Compilers for Parallel Computing, 5th International Workshop

Proceedings ; New Haven, CT, USA, August 1992; pp. 112-123.

34. Newton, P.; and Browne, J.; "The CODE 2.0 Graphical Parallel

Programming Language", ICS-92 ; Washington, D.C., USA, July 1992;

pp. 167-177.

35. O’Hallaron, D. “Real-time airborne sonar processing on iWarp”.

iWarp Forum , Washington D.C., August, 1991.

137

36. O’Hallaron, D.; Subhlok, J.; and Webb, J.; “Performance Issues in

HPF Implementations of Sensor-Based Applications.” Scientific

Computing , 1996. to appear.

37. O’Keefe, M.; and Dietz, H.; “Hardware Barrier Synchronization:

Dynamic Barrier MIMD (DBM),” Proceedings of the 1990 International

Conference on Parallel Processing, vol I ; Penn State Press,

University Park, PA, 1990; pp 43-46.

38. O’Keefe, M.; and Dietz, H.; “Hardware Barrier Synchronization:

Static Barrier MIMD (SBM),” Proceedings of the 1990 International

Conference on Parallel Processing, vol I; Penn State Press,

University Park, PA, 1990; pp.35-42.

39. Snyder, L.; "Introduction to the Configurable, Highly Parallel

Computer," IEEE Computer ; January, 1982; pp. 47-56.

40. Snyder, L.; "Parallel Programming and the Poker Programming

Environment", IEEE Computer ; July 1984; pp. 27-36.

41. Snyder, L.; "The XYZ Abstraction Levels of Poker-Like Languages",

in Gelernter, D.; Nicolau, A.; Padua, D.; editors, Languages and

Compilers for Parallel Computing ; MIT Press, 1990; pp. 470-489.

42. Stricker, T.; Stichnoth, J.; O'Hallaron, D.; Hinrichs, S.; and

Gross, T.; Decoupling communication services for compiled parallel

programs . Technical Report CMU-CS-94-139, Carnegie Mellon

University, School of Computer Science, 1994.

43. Subhlok,J.; Stichnoth, J.; O'Hallaron, D.; and Gross,T.;

“Programming task and data parallelism on a multicomputer,”

Proceedings of the ACM Symposium on Principles and Practice of

Parallel Programming (PpoPP) , May 1993; pp. 13-22.

44. Webb, J.; Warfel, T.; and Kang S.B.; "A Scalable Video Rate Camera

Interface", Technical Report CMU-CS-94-192, Carnegie Mellon

University, School of Computer Science, 1994.

45. West, J.; Stephens, M.; and Turcotte, L.; “Adaptation of Volume

Visualization Techniques to MIMD Architectures Using MPI,”

Proceedings of the 1994 Scalable Parallel Libraries Conference ;

IEEE Computer Society Press, Los Alamitos, CA, 1995; pp. 147-156.

138

46. Xu, H.; McKinley, P.; and Ni, L.; “Efficient Implementation of

Barrier Synchronization in Wormhole-Routed Hypercube

Multicomputers,” Journal of Parallel and Distributed Computing ;

vol 16, no. 2. Oct 1992; pp 172-184.

47. Zhuang, X; Zhu, J.; “Parallelizing a Reservoir Simulator using

MPI,” Proceedings of the 1994 Scalable Parallel Libraries

Conference ; IEEE Computer Society Press, Los Alamitos, CA, 1995;

pp. 165-174.

