Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (A), Fall 2014

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...7”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew

Username

Full

Name

Question | Max Points Grader
1. 10
2. 15
3. 20
4. 20
5. 10

75

Please note that there are system-call and thread-library “cheat sheets”
at the end of the exam.

Andrew ID:

1. | 10 points| Short answer.

Give a definition of each of the following terms as it applies to this course. We are expecting three
to five sentences or “bullet points” for each definition. Your goal is to make it clear to your grader
that you understand the concept and can apply it when necessary.

(a) “Atomic instruction sequence”

(b) “South Bridge”

Page 2

Andrew ID:

2. |15 points | Concurrency

As your first project at your new internship at the hot new startup “Yo!”, you are given the
responsibility of verifying the correctness of Yo’s backend server code—in particular, a library re-
sponsible for allowing one master thread to generate work to be completed by a fixed-size collection
of worker threads. To your surprise, you find the code quality not up to the standards you have
come to expect based on your studies at this highly esteemed institution of higher education: the
work-distribution code is broken!

When reading the following code, you should assume that the pointers passed to master() and
worker () are valid; the workqueue_t struct has been properly initialized; mutexes and condition
variables have been initialized before use; generate_some_work() and do_important_work() return
in finite time without tromping on work-distribution state variables, etc. In gemeral, you should
report a problem with code that is visible to you rather than assuming a problem in code that you
have not been shown. At any given time, it is guaranteed that there will be at most one instance
of master () running and at most (WORK_QUEUE_SIZE—1) instances of worker () running.

#define WORK_QUEUE_SIZE 64
#define WRAPPED_NEXT(i) (((i) + 1) % (WORK_QUEUE_SIZE))

typedef int work_t; // for exam purposes: in real life, "work" is more exotic

typedef struct {
work_t queue [WORK_QUEUE_SIZE];
int next_write; // initialized to O
int next_read; // initialized to O
mutex_t lock;
cond_t writer_cv;
cond_t reader_cv;

} workqueue_t;

/* Guaranteed to only be one of these running. */
int master (workqueue_t *work) {
while (1) {
work_t new_work = generate_some_work();
mutex_lock (&work->lock) ;
if (WRAPPED_NEXT(work->next_write) == work->next_read) {
cond_wait (&work->writer_cv, &work->lock);
}
work->queue [work->next_write] = new_work;
work->next_write = WRAPPED_NEXT (work->next_write);
if (work->next_write == WRAPPED_NEXT(work->next_read)) {
cond_broadcast (&work->reader_cv) ;
}

mutex_unlock (&work->lock) ;

Page 3

Andrew ID:

/* Guaranteed to be strictly fewer than WORK_QUEUE_SIZE running. */
int worker (workqueue_t *work) {
while (1) {
mutex_lock (&work->lock) ;
int next_read_index = work->next_read;
while (work->next_write == next_read_index) {
cond_wait (&work->reader_cv, &work->lock);
}

int was_full

(WRAPPED_NEXT (work->next_write) == work->next_read);
work_t to_do = work->queue[work->next_read];
work->next_read = WRAPPED_NEXT (work->next_read) ;
if (was_full) {
cond_signal (&work->writer_cv);
}
mutex_unlock (&work->lock) ;
do_important_work(to_do) ;

Unfortunately, this code contains a concurrency bug. We will ask you to briefly explain (in 1 to
3 sentences) how a concurrency bug occurs; we will also ask you to provide a clear, convincing
execution trace that demonstrates the error (missing, unclear, or unconvincing traces will result in

significant point deductions). Finally, we will ask you to sketch out a solution to the problem you
identified.

Suggestions for working on this problem:

1. When tracing the execution of the code, we recommend a tabular format very similar to

this:
master worker 1
wait(writer)
signal(writer)
unlock(lock)

2. It is strongly recommended that you write down a draft version of any execution trace
using the scrap paper provided at the end of the exam, or on the back of some other page,
before you begin to write your solution on the next page. If we cannot understand the
solution you provide, your grade will suffer!

3. Be sure that your trace can actually happen, and that it convincingly shows the phe-
nomenon you wish to demonstrate. For example, if you claim that the work queue data
structure can become corrupted in some way, you should show a concrete sequence of
statements and values which lead to a specific corrupt state.

Page 4

Andrew ID:

(a) Briefly describe (1 to 3 sentences) the concurrency bug you have identified. If
you find multiple concurrency bugs, describe one that is relatively easy to trace (below),

as long as it’s “at least reasonably interesting.”

Page 5

Andrew ID:

(b) |10 points | Provide a clear, convincing execution trace that demonstrates the error you
identified.

Page 6

Andrew ID:

You may use this page as extra space for the first part of the work-distribution question if you wish.

Page 7

Andrew ID:

(c) Briefly describe how to fix or restructure the code so that it does not contain the

bug you identified in parts (a) and (b). Full-credit answers which are clear and convincing
don’t necessarily need to show code, though we expect many answers will involve at least
a bit of code.

Page 8

Andrew ID:

3. Deadlock.

During a summer internship, you have been hired to write system software for a company that sells
snake-like robots. Here are some details regarding the robo-snakes and how they are programmed:

Occupying space: The robotic snakes move along the ground, which is represented by a 2D
grid. Each robo-snake consists of four contiguous segments, where each segment occupies
its own coordinate in the 2D space (no two segments can share the same position). As one
follows the chain of segments from head to tail, contiguous segments must be adjacent to
each other in the 2D space either horizontally (i.e. along the X dimension), vertically (i.e.
along the Y dimension), or diagonally (i.e. along both X and Y). For example, a given robo-
snake might occupy the following coordinates (from head to tail): {(2,2),(2,3),(3,4), (4,4)}.

O L N W b U

01 2 3 45

Enforcing mutual exclusion: Multiple robo-snakes can operate within the same 2D space at
the same time, as long as no part of them occupies the same grid coordinate. It is okay for
two snakes that are arranged diagonally to cross over each other, as long as no part of them
is in the same coordinate (as shown below). To enforce this invariant, the robo-snake control
software uses 2D arrays of (i) mutex locks (called “grid_occupied_lock”) and (ii) flags (called
“grid_occupied flag”).

5 5
4 N 4
3 N NN
2 N 2
1 N 1
0 0

0 1 2 3 45 012 3 45
Diagonal crossing okay. Not okay! Both
(Not in same coordinate.) occupy (2,3).

Robo-snake motion: A robo-snake moves by advancing its head forward one position—either
horizontally, vertically, or diagonally—into an unoccupied space in the 2D grid. When this
happens, the last tail segment of the snake is retracted from the space that it previously
occupied; hence the snake will always occupy four adjacent positions on the grid as it moves.
The appropriate elements of the grid_occupied_lock array are locked and unlocked as this
occurs, as shown in the move_snake_one_step() procedure on a subsequent page.

(Continued on the next page.)

Page 9

Andrew ID:

Initial placement of robo-snakes: Before your robo-snake software begins, the system is ini-
tialized as illustrated below. (Note that this step is beyond your control.) You should assume
the following about the initial placement of the robo-snakes (in addition to the “occupying
space” discussion above):

e The 2D space is evenly divided into 4x4 sub-grids, where the four segments of each snake
are placed within the 2x2 square in the center of its sub-grid, leaving the outer squares
of the 4x4 sub-grid initially empty. (Note that this condition does not necessarily hold
once the snakes start to move.) Although this picture shows a 16x16 grid, the code must
operate on larger grid sizes also (that are even multiples of sub-grid size).

e Within the 2x2 square where each snake is initially located, the snake’s head segment is
in the square closest to the center of the overall 2D space (as illustrated below).

e Each snake has successfully locked the four grid_occupied_lock elements corresponding
to its location, and set the corresponding grid_occupied_flag elements to 1.

Exit for Exit for
lower right % lower left
quadrant f f quadrant
JU%N JU%
G CHY W
Exit for ' J ' J i “" 1 “‘I Exit for
upper right | — upper left
quadrant ~>R (%€ quadrant

Robo-snakes move concurrently to exits: After the snakes are successfully placed in their
initial locations, each snake is given a target exit coordinate, which is a specific square where
it can exit the 2D space. For each snake, its exit coordinate is the corner of the 2D space that
is farthest away from its initial location. For example, snakes located in the top left quadrant
must exit through the bottom right corner of the 2D space, etc. Each snake must move
concurrently through the 2D space such that its head arrives at the its target exit coordinate
while its body trails along intact, such that none of its segments occupy the same square as
another snake along the way. Assume that once a snake’s head reaches its exit, the snake
disappears (releasing its locks). The initial draft of the code that attempts to accomplish
this is the “move_snake_to_target()” procedure, which is called by concurrently running
processes that control each snake. An important metric of success is getting the snakes to
their exits as quickly as possible.

The next two pages show the current implementation of the robo-snake control software, which
uses a simple greedy algorithm to move each snake toward its target.

Page 10

Andrew ID:

#define SNAKE_LENGTH 4 /* Number of segments in a snake */

#define SUBGRID_SIZE 4 /* Size of sub-grid, used for initial placement */
#define GRID_SIZE 64 /* Overall size of 2D space (larger than illustration) */
#define NUM_SNAKES ((GRID_SIZE/SUBGRID_SIZE)*(GRID_SIZE/SUBGRID_SIZE))

mutex grid_occupied_lock[GRID_SIZE] [GRID_SIZE];

int grid_occupied_flag[GRID_SIZE] [GRID_SIZE];

typedef struct { /* 2D coordinate */
int x;
int y;

} location;

struct snake_info_struct {

int head_index; /* Circular buffer representing the snake’s location */
location segment [SNAKE_LENGTH] ;
location my_exit; /* assume initialized to farthest-away corner */

} snake_state [NUM_SNAKES] ;

/* Moves a given snake robot from current to target location. */
void move_snake_to_target(int which_snake) {

struct snake_info_struct *this_snake = &snake_info[which_snake];

int head = this_snake->head_index;

int head_x = this_snake->segment [head] .x;

int head_y = this_snake->segment [head].y;

int target_x = this_snake->my_exit.x;

int target_y = this_snake->my_exit.y;

/* Repeatedly move snake one step at a time until it reaches target. */
while ((head_x != target_x) || (head_y != target_y)) {
int delta_x, delta_y;
calculate_delta_xy(target_x, target_y, head_x, head_y, &delta_x, &delta_y);
move_snake_one_step(which_snake, delta_x, delta_y);
head_x += delta_x;
head_y += delta_y;
};
return;

}

/* Head of snake moves by only one grid position at a time (including diagonally). */
void calculate_delta_xy(int target_x, int target_y, int head_x, int head_y,
int *delta_x, int *delta_y) {
/* Simple greedy algorithm: move one step closer to target. */
calculate_greedy_delta(target_x, head_x, delta_x);
calculate_greedy_delta(target_y, head_y, delta_y);
}

int calculate_greedy_delta(int target, int current, int *delta) {
assert((target >= 0) && (target < GRID_SIZE));
if (target > current) *delta = 1;
else if (target < current) *delta = -1;
else *delta = 0;

Page 11

Andrew ID:

/* Move snake robot one step. The "delta" values are either 0, 1, or -1. %/
void move_snake_one_step(int which_snake, int delta_x, int delta_y) {

struct snake_info_struct *this_snake = &snake_info[which_snake];

int old_head = this_snake->head_index;

int old_head_x = this_snake->segment[0ld_head] .x;

int old_head_y = this_snake->segment[0ld_head].y;

int new_head_x = old_head_x + delta_x; /* Calculate new head location. */
int new_head_y = old_head_y + delta_y;
int old_tail = (old_head + 1) % SNAKE_LENGTH; /* Vacating old tail location. */

int old_tail_x = this_snake->segment[old_tail].x;
int old_tail_y = this_snake->segment[0ld_tail].y;

mutex_lock(&grid_occupied_lock[new_head_x] [new_head_yl); /* acquire new head */
grid_occupied_flag[new_head_x] [new_head_y] = 1; /* mark space as occupied */
grid_occupied_flaglold_tail_x] [old_tail_y] = 0; /* mark space as unoccupied */
mutex_unlock(&grid_occupied_lock[old_tail_x] [old_tail_y]); /* release old tail */

/* update circular buffer that stores snake segment locations */
int new_head_index = old_tail;

this_snake->segment [new_head_index] .x = new_head_x;
this_snake->segment [new_head_index] .y = new_head_y;
this_snake->head_index = new_head_index;

Unfortunately, this implementation of move_snake _to_target () can deadlock.

(a) Using the four necessary conditions for deadlock, explain why this implementa-
tion meets all of those conditions.

Page 12

Andrew ID:

(b) If the calculate_delta xy() procedure is modified to use a different algorithm

for controlling the motion of the snakes (along with other necessary code changes), can
deadlock prevention be successfully applied in this case? (Note that the values of delta x
and delta_y must still be either 0, 1, or -1.) Assume that the move_snake_one_step()
should still perform at least the same steps, and that you are free to add additional
synchronization (or other state and computation) throughout the code as necessary. If so,
then show code (or at least detailed pseudo-code) that implements deadlock prevention,
and explain why it works. If not, then provide a convincing explanation of why this cannot
work.

Page 13

Andrew ID:

...space for deadlock implementation...

Page 14

Andrew ID:

(c) Rather than using deadlock prevention, your boss has asked you to instead
use deadlock avoidance to fix the original robo-snake control code (shown on the previ-

ous pages). Can you successfully implement deadlock avoidance for this case? (Keep in
mind that a key metric of success is how quickly you can remove all snakes from the 2D
space.) If so, show what changes you would make to the original code (show either real
code or detailed pseudo-code), and describe the algorithm that the new resource manager
would use to decide whether to grant or defer requests. If not, then provide a convincing
explanation of why deadlock avoidance is not possible for this scenario.

Page 15

Andrew ID:

...space for deadlock implementation...

Page 16

Andrew ID:

4. |20 points| “Select variables”

The select() system call allows a Unix process to wait on a set of file descriptors (typically
network sockets) until at least one of them becomes “ready for 1/O”, meaning that a read() or
write() system call would return promptly instead of blocking. In a naive server architecture the
programmer must dedicate an entire thread to each network connection to serve requests for just
that connection. The select () system call enables a programmer to set up one thread, or perhaps
a pool of threads, to repeatedly receive, and then process, the next request regardless of which
connection it’s from.

In this problem you will work on a new kind of condition variable, called a “select variable” or
“svar”, which exhibits behavior similar to that of select (). In particular, each select variable will
be initialized to contain “wait channels”; a thread waiting on a select variable will provide a list of
channels to wait on, and will stop waiting when any of those channels is signaled.

This object will be initialized with an integer, N, which specifies how many channels it shall have
available to wait on. Its behavior is generally identical to a condition variable, except that the
waiter may specify any subset of the N channels to wait on. When any one of those channels
is signaled the next waiter for that channel must be awakened. As is the case with a condition
variable, waiting threads should be blocked when appropriate and unblocked when appropriate.

You will provide us with both a structure definition for a “select variable” and the code for the
following four functions:
e void svar_init(svar_t* sv, int n) - Initializes a select variable with n channels.

e int svar_wait(svar_t* sv, int* idxs, int nidxs) - Waits on a subset of the n chan-
nels and returns the index of whichever one was signaled. This subset is specified in the
array idxs of length nidxs.

e void svar_signal(svar_t* sv, int chn) - Signals a waiter on channel chn or does
nothing if there are no such waiters.

e void svar_destroy(svar_t* sv) - Destroys a select variable.

The remainder of this page is intentionally blank.

Page 17

Andrew ID:

As a usage example consider the following trace:

// Thread O

int tO_chans[] = {0, 1};

int tO_n = sizeof (tO_chans) / sizeof (tO_chans[0]);
int index;

svar_init (&sv, 3);

index = svar_wait(&sv, tO_chans, tO_n);

// Thread 1

int t1_chans[] = {1, 2};

int tl1_n = sizeof (tl1_chans) / sizeof (ti1_chans[0]);
int index;

index = svar_wait(&sv, tl_chans, tl_n);

// Thread 2

int t2_chans[] = {0, 2};

int t2_n = sizeof (t2_chans) / sizeof (t2_chans[0]);
int index;

index = svar_wait(&sv, t2_chans, t2_n);

// Thread 3, after some time
svar_signal(&sv, 1); // awaken TO with index == 1

svar_signal(&sv, 1); // awaken T1 with index == 0
svar_signal(&sv, 1); // awaken nobody

The remainder of this page is intentionally blank.

Page 18

Andrew ID:

Assumptions:

1. You may use regular Project 2 thread-library primitives: mutexes, condition variables,
semaphores, etc.

2. You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule() /make runnable (), or any atomic instructions (XCHG,
LL/SC).

3. If you wish, you may assume that the standard Project 2 thread-library primitives (mutex,
condition variable, ...) are “as FIFO as possible.”

4. For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and
are expecting, a particular failure).

5. You may use non-synchronization-related thread-library routines in the “thr_xxx() fam-
ily,” e.g., thr_getid ().

6. You may use the queue library described below.

7. You may assume callers are well-behaved (e.g., specify channel numbers and indices that
are non-negative and strictly less than N).

You may further assume the existence of a basic queue data structure. This queue is not thread
safe, but because this is an exam you may assume that calls to it never fail.

e void g-init(queue_t* q) - Initializes the queue.

e void g-enqueue(queue_t* g, void* data) - Inserts data into the queue.

e void* g_dequeue(queue_t* q) - Removes the next item in the queue, returning the value
of the removed item. Returns NULL if the queue is empty.

e int g.remove(queue_t* g, void* data) - Removes the first instance of data from the
queue. Returns 0 on success and —1 if the provided value is not in the queue.

e void* g head(queue t*x q) - Returns the next item to be dequeued, without removing
it.
e void* g_tail(queue_t* q) - Returns the latest item enqueued, without removing it.

e void q.destroy(queue_t* q) - Destroys the queue, freeing any resources allocated by
the queue.

It is strongly recommended that you rough out an implementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you write anything on the next page.
If we cannot understand the solution you provide on the next page, your grade will suffer!

The remainder of this page is intentionally blank.

Page 19

Andrew ID:

Please declare your struct svar here. If you need one (or more) auxilary structures, you may
declare it /them here as well. Then please implement svar_init (), svar_wait (), svar_signal(),
and svar_destroy().

typedef struct svar {

} svar_t;

Page 20

Andrew ID:

...space for select-variable implementation...

Page 21

Andrew ID:

...space for select-variable implementation...

Page 22

Andrew ID:

You may use this page as extra space for your select-variable mutex solution if you wish.

Page 23

Andrew ID:

5. Process model.

Imagine that you and your partner are working away on your Project 2 thread library and that
you are watching your partner single-step through some user-space code with Simics. Imagine
further that the user-space code is about to execute a PUSHL instruction when you are momentarily
distracted by an incoming tweet, InstaSnap, etc.

When you look back at the screen, you see that once again the instruction Simics is about to
single-step through is a PUSHL, but you notice that the instruction’s address looks a little odd, and
your partner tells you that “for some reason” you are now in kernel mode.

Because you like puzzles more than you like scrolling backward, you decide to brainstorm to come
up with reasons why execution entered the kernel.

Please list three plausible reasons or paths by which execution might have transferred into the
kernel. Explain each in sufficient detail to convince your grader that you understand the key
concepts well. You are allowed to specify that particular instructions or conditions occurred
between the two PUSHL instructions if you wish. Some points will be assigned for “plausible
novelty,” meaning that we are looking for reasons/paths that are as conceptually different from
each other as possible, while not unduly sacrificing plausibility.

Page 24

Andrew ID:

You may use this page as extra space for your process model solution if you wish.

Page 25

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);
void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */
int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticksQ);

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t) (void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */
int new_pages(void * addr, int len);
int remove_pages(void * addr);

/* Console I/0 */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);
int get_cursor_pos(int *row, int *col);

/* Miscellaneous */
void halt();
int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */
void misbehave (int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 26

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);
void mutex_destroy(mutex_t *mp);
void mutex_lock(mutex_t *mp);
void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);
void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func) (void *), void *arg);
int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);
void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);
void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 27

Andrew ID:

Typing Rules Cheat-Sheet

T u= al|T7—7]|per|Var

e == x| AmT.e|ee]|fix(z:T.e) | foldy.r(e) | unfold(e) | Aa.e | e][T]

I'trmtype TI'F mtype
I'Ht — tatype

istyp-var istyp-arrow

I', atype F atype

. I', atype - Ttype .
Istyp-rec T Va.r type istyp-forall

I', atype F Ttype
'+ pa.mtype

I'Fep:mm—1m I'kes

INx:mbFe:m™ I'kFmrmtype
typ-lam

typ-var
P I'FAximpe:m — 7 I'Feiesy:m

x:rkha:7

Ne:7ke:r Fl—Ttypet

-fi
'+ fix(z:re) o 7 ypix
I'Fe:[uar/ajr T, atype I 7type 'te:par
typ-fold typ-unfold
'+ folde.r(€) : pa.T ypo T F unfold(e) : [pa.r/a]r 0 0
I, atypeke: T I'ke:Var T'F 71 type
- typ-ta
I'F Aa.e: Va.r typ-tlam TFe[r]: [7/ar yp-tapp
Ner.cvalue val-lam folde,, (¢) value val-fold Ao value val-tlam
e — 6/1 ei; value ey — 6’2
———— steps-app,; y steps-app,
€1€2 = €163 e1 ey — €16,
eo value steps-app-3

(Ax:T.€1)ex — [ea/x]e;

fix(x:1.e) > [fix(z:7.€)/x]e steps-fix

e — €

unfold(e) ~ unfold(e’)

steps-unfold, steps-unfold,

unfold(foldy.~(e)) — e

e — €
/

elr] — €[r

] steps-tapp; steps-tapp;

(Aace)[r] — [T/ale

Page 28

. T
L typ-app

Andrew ID:

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 29

