
15-410, F'161

Exam #1
Oct. 24, 2016

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L22_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, F'162

Synchronization

Checkpoint 2 – Wednesday, in Wean 5207 clusterCheckpoint 2 – Wednesday, in Wean 5207 cluster
 Arrival-time hash function will be different

Checkpoint 2 - alertsCheckpoint 2 - alerts
 Reminder: context switch ≠ timer interrupt!

 Timer interrupt is a special case
 Looking ahead to the general case can help you later

 Please read the handout warnings about context switch
and mode switch and IRET very carefully

 Each warning is there because of a big mistake which was
very painful for previous students

15-410, F'163

Synchronization

Asking for trouble?Asking for trouble?
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 Roughly 2/3 of groups have blank REPOSITORY directories...

 If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

 If you aren't using source control, that is probably a
mistake

 GitHub sometimes goes down!
 S'13: on P4 hand-in day (really!)

15-410, F'164

Synchronization

Google “Summer of Code”Google “Summer of Code”
 http://code.google.com/soc/
 Hack on an open-source project

 And get paid
 And quite possibly get recruited

 Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”CMU SCS “Coding in the Summer”

15-410, F'165

Synchronization

Book report!Book report!
 Try not to forget about it until the last minute!

15-410, F'166

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

15-410, F'167

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, F'168

A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~100 points, ~7

questions)

15-410, F'169

“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.

15-410, F'1610

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, F'1611

Q1a – Pebbles “tasks” vs. “threads”

Purpose: Show a clear understanding of thePurpose: Show a clear understanding of the
distinctions between tasks and threadsdistinctions between tasks and threads

 Task is a container for resources like separate virtual
address space, IPC endpoints, and threads.

 IPC endpoints: vanish() and wait()
 Thread is a schedulable register set

 Shares the task address space with other threads
 Cannot access the address space of another task
 Usually operates on its own stack

OutcomesOutcomes
 Generally reasonable answers
 Don't confuse Pebbles tasks with Linux processes

 Linux “process”/“thread” distinctions are “odd”

15-410, F'1612

Q1b – “thread safety”

Purpose: Show a clear understanding of what makesPurpose: Show a clear understanding of what makes
a function thread-safea function thread-safe

 A thread-safe function can be called by multiple threads
and still produce correct results

 Properties
 Protect all accesses to shared variables (e.g., mutex)
 Doesn't maintain state in static local variables (e.g.,

gethostent(), strtok())

OutcomesOutcomes
 Thread-safety != re-entrant (thread-safe functions can

have and share internal state)
 Be careful about conflating “thread-safe” with “ideal

mutex”
 A function could be thread-safe but not provide “bounded

waiting”
 Only 1 student discussed static variables

15-410, F'1613

Q2 – Faulty Condition Variables

What we were testingWhat we were testing
 Depth of understanding of cvar atomic-block problem
 Or: ability to find a race condition split between two small-

ish functions

Good newsGood news
 Many people figured out that a thread gets stuck because

something happens too early

Bad newsBad news
 Some people had alarming ideas about semaphores

 “Buffering” the availability of old events/deposits is a
key semaphore job!

 People will expect you to know how semaphores work
 Some traces were longer than necessary (not necessary

to show execution of entire program if you carefully
specify that your trace starts with some later state)

15-410, F'1614

Q2 – Faulty Condition Variables

FIxFIx
 A clear understanding of the problem suggests a very

simple fix

15-410, F'1615

Q3 – Deadlock

Parts of the problemParts of the problem
 Find the deadlock
 Suggest a fix

Results – findingResults – finding
 Most people correctly described a reachable deadlock
 Roughly 1/3 found a minimal-thread-count deadlock

 The problem structure strongly implies how many that is
 Some people used 1 extra thread (ok)
 Some people didn't attempt an explanation of how many

threads are necessary

Most-common mistakesMost-common mistakes
 Insufficient justification of a claimed deadlock state
 Impossible traces (too many copies of a book)

» Writing a clear trace is an important mental tool

15-410, F'1616

Q3 – Deadlock

Results – fixingResults – fixing
 Many solutions are plausible and received credit
 Terminology note: preemption is taking a resource from

somebody else

OverallOverall
 While analysis, thought, and tracing were required, this

was a mostly straightforward question

15-410, F'1617

Q4 – “Condition Locks”

Question goalQuestion goal
 Slight modification of typical “write a synchronization

object” exam question

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 See course staff about any general conceptual problems
revealed by this specific exam question

15-410, F'1618

Q4 – “Condition Locks”

Alarming thingsAlarming things
 Spinning is not ok
 Yield loops are “arguably less wrong” than spinning

 Motto: “When a thread can't do anything useful for a while, it
should block; when a thread is unblocked, there should be a
high likelihood it can do something useful.”

 cond_wait() really must accept a locked mutex
 cond_wait() 97.3% must be invoked inside an if()

 “Unconditional condition wait” is roughly as bad as it
sounds

15-410, F'1619

Q4 – “Condition Locks”

Most-common issuesMost-common issues
 If you cond_signal() one random thread, and that thread

can't proceed, what (doesn't) happen next?
 If N threads cond_broadcast() a pool of N threads, that's

N2 thread activations but probably only N successes
 If there is no feasible way to figure out which thread(s)

should be awakened, that may be the only option
 In this problem it is possible to “figure out” – that approach

got more credit
 If threads will be “stuck for a while”, try to use something

other than a mutex (why?)

15-410, F'1620

Q5a – Nuts & Bolts: “capture %eip”

Purpose: Think about using familiar asm instructionsPurpose: Think about using familiar asm instructions
in unfamiliar ways.in unfamiliar ways.

 Can be solved with one or two lines of code
 Two approaches

 Use a (very) common instruction that manipuates %eip
 Use linker's ability to assign absolute addresses to symbols

OutcomesOutcomes
 Reasonable distribution of scores
 Not legal to use %eip as an instruction argument (x86-32)
 Partial credit given for some kind of valid %eip

manipulation

15-410, F'1621

Q5b – Nuts & Bolts: variable locations

Purpose: Review your understanding of a basic idea.Purpose: Review your understanding of a basic idea.
 2 in BSS
 1 in data
 3 in stack (2 in a special place)

OutcomesOutcomes
 This should be an easy/fast question

 For the rest of the semester you will spend a lot of time
debugging stacks

 But there were very few perfect scores

15-410, F'1622

Breakdown

90% = 63.090% = 63.0 8 students (69/70 is top) 8 students (69/70 is top)

80% = 56.080% = 56.0 9 students 9 students

70% = 49.070% = 49.0 10 students10 students

60% = 42.060% = 42.0 4 students 4 students

50% = 35.050% = 35.0 3 students 3 students

<50%<50% 4 students 4 students

ComparisonComparison
 Median grade was 75%, so this probably wasn't a “killer

exam”

15-410, F'1623

Implications

Score below 49?Score below 49?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works a lot better than “I'll try

harder”
 Strong suggestion: draft plan, see instructor

15-410, F'1624

Implications

Score below 40?Score below 40?
 Something went dangerously wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on all three “middle” questions

» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

 Passing the final exam may be a serious challenge
 Passing the class may not be possible!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 See instructor

15-410, F'1625

Implications

““Special anti-course-passing syndrome”:Special anti-course-passing syndrome”:
 Only “mercy points” received on several questions
 Extreme case: no question was convincingly answered

 It is not possible to pass the class if both exams show no
evidence that the core topics were mastered!

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

