
Computer Science 15-410: Operating Systems
Mid-Term Exam (B), Spring 2008

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 20

3. 20

4. 15

5. 10

75

Andrew ID:

I have not received advance information on the content of this 15-410 mid-term exam by dis-
cussing it with anybody who took part in the main exam session or via any other avenue.

Signature: Date

Please note that there are system-call and thread-
library “cheat sheets” at the end of the exam.

If we cannot read your writing, we will be un-
able to assign a high score to your work.

Page 2

Andrew ID:

1. 10 points Short answer.

Give a one-paragraph explanation of each of the following terms as it applies to this course. Your
goal is to make it clear to your grader that you understand the concept and can apply it when
necessary.

(a) 5 points Progress

(b) 5 points User mode

Page 3

Andrew ID:

2. 20 points Trouble at the Warehouse

After completing 15-410, you and your partner have been hired by a small Pittsburgh fruit-juice
distributor to automate their warehouse. Here is how the warehouse operates.

1. Big long-haul container trucks arrive from your suppliers. Each container truck contains either
1,000 cases of Odwalla juice or 1,000 cases of Jamba Juice. Generally each container truck is
unloaded into the warehouse as soon as it arrives, though there are of course exceptions.

2. Your company operates a small fleet of delivery trucks. Each delivery truck arrives at the
warehouse seeking some number of cases of Odwalla and some number of cases of Jamba (the
total number of cases a delivery truck can hold is 50). Once it loads what it needs, it will
leave the warehouse and deliver them. Like container trucks, delivery trucks usually access
the warehouse right away, but sometimes must wait.

3. Container trucks park at one loading dock, and delivery trucks park at a different one, because
their heights are different.

4. Juice must be moved into and out of the warehouse by the warehouse’s one forklift (after you
complete the exam you may wish to view the YouTube video on the AirTrax “Sidewinder”).

5. To avoid a “denial-of-service attack” by one or the other juice manufacturer, the warehouse
manager has imposed a constraint on container deliveries: if unloading a container would
result in more than 80% of the warehouse being occupied by one manufacturer’s product, the
container must wait.

6. Because the warehouse is located in an industrial district with low land values, you may
assume the neighborhood provides enough parking for your fleet of delivery trucks and as
many container trucks as necessary.

Your partner was hired before you, and deployed the code depicted below. You may assume that
all objects are properly initialized before use as part of system start-up.

/* Container loading dock */

mutex_t cd_m; int cd_avail; cond_t cd_released;

/* Delivery loading dock */

mutex_t dd_m; int dd_avail; cond_t dd_released;

/* Forklift --

* locking simpler because both #contenders and hold

* time are well bounded */

mutex_t fl_m;

/* Inventory management */

#define JTYPES 2 // 0=Odwalla, 1=Jamba

#define CONTAINER 1000 // cases per truck

#define CAPACITY 9000 // total cases per warehouse

int avail[JTYPES];

Page 4

Andrew ID:

01 void

02 container_arrival(int type)

03 {

04 int ready;

05

06 mutex_lock(&cd_m);

07 ready = 0;

08 while (!ready) {

09 while (!cd_avail) {

10 cond_wait(&cd_released, &cd_m);

11 }

12 cd_avail = 0; // claim

13

14 // Must not overflow warehouse

15 int total = avail[0] + avail[1];

16 if ((total + CONTAINER > CAPACITY) ||

17 (avail[type] + CONTAINER > ((80*CAPACITY)/100))) {

18 // No room, let somebody else try.

19 cd_avail = 1;

20 cond_broadcast(&cd_released);

21 // Retry when space freed up by delivery team

22 cond_wait(&dd_released, &cd_m);

23 } else {

24 ready = 1;

25 }

26 }

27 mutex_unlock(&cd_m);

28

29 // Use forklift to unload

30 mutex_lock(&fl_m);

31 operate_forklift();

32 avail[type] += CONTAINER;

33 mutex_unlock(&fl_m);

34

35 // Drive away... announce container dock is free

36 mutex_lock(&cd_m);

37 cd_avail = 1;

38 cond_broadcast(&cd_released);

39 mutex_unlock(&cd_m);

40 }

Page 5

Andrew ID:

01 void

02 delivery_arrival(int demand[JTYPES])

03 {

04 int ready, t;

05

06 mutex_lock(&dd_m);

07 ready = 0;

08 while (!ready) {

09 while (!dd_avail) {

10 cond_wait(&dd_released, &dd_m);

11 }

12 dd_avail = 0; // claim

13

14 // Ensure required inventory

15 for (t = 0; t < JTYPES; ++t) {

16 if (avail[t] < demand[t]) {

17 // Insufficient stock for us. Let other delivery trucks try.

18 dd_avail = 1;

19 cond_broadcast(&dd_released);

20 // Retry when container arrives.

21 cond_wait(&cd_released, &dd_m);

22 break;

23 } else {

24 ready = 1;

25 }

26 }

27 }

28 mutex_unlock(&dd_m);

29

30 // Use forklift to load

31 mutex_lock(&fl_m);

32 operate_forklift();

33 for (t = 0; t < JTYPES; ++t)

34 avail[t] -= demand[t];

35 mutex_unlock(&fl_m);

36

35 // Drive away... announce delivery dock is free

38 mutex_lock(&dd_m);

39 dd_avail = 1;

40 cond_broadcast(&dd_released);

41 mutex_unlock(&dd_m);

42 }

Page 6

Andrew ID:

(a) 10 points Something is very wrong with the way this code synchronizes the operation
of the warehouse. Clearly explain what is wrong. You should probably provide an exe-
cution trace, in the format presented in class, showing the problem in action. Obvious
abbreviations are ok. For example:

container(0) deliver({10,15})

unlock(cd m);

unlock(dd m);

If you cannot find a synchronization correctness problem, you may obtain partial credit by
describing one “interesting” synchronization correctness problem the code does not have
and briefly arguing why your claim is true. Avoid answers of the form “Such-and-such
looks wrong, but I’m not sure why,” as these demonstrate understanding of the material
poorly at best.

Page 7

Andrew ID:

(b) 10 points Provide corrected code for one of the truck-arrival functions. If possible, try
to maintain or reduce, rather than increase, the complexity of the system.

Page 8

Andrew ID:

You may use this page as extra space for your warehouse solution if you wish.

Page 9

Andrew ID:

You may use this page as extra space for your warehouse solution if you wish.

Page 10

Andrew ID:

3. 20 points Dual-priority locking.

Different application architectures require different locking approaches. For example, later in the
semester we will discuss how real-time scheduling increases the complexity of locking. This question
is about a dramatically simpler situation. The application in question has threads of two differ-
ent priorities, and some objects must be locked according to a priority-aware protocol. The key
requirement is this: when one of these objects is unlocked, it must be acquired by a high-priority
thread if any are waiting; otherwise it must be acquired by a low-priority thread if any are waiting.

Each time a thread acquires or releases one of these objects it will indicate whether it is a high-
priority thread or a low-priority thread. Threads will not lie and will not change priorities.

You will provide us with both a structure definition for your dual-priority lock and the code for
three functions.

• void dlock init(dlock p dp)

• void dlock acquire(dlock p dp, int isHigh)

• void dlock release(dlock p dp, int isHigh)

You need not provide us with code for dlock destroy(). You are encouraged to use the Project 2
thread-library primitives. If necessary you may use other synchronization primitives, but you should
strive to avoid this, as it may reduce your grade. You must comply with the published interfaces
of synchronization primitives, i.e., you cannot inspect or modify the internals of any thread-library
data objects. You may not use assembly code, inline or otherwise. For the purposes of the exam you
should assume an error-free environment (memory allocation will always succeed; thread-library
primitives will not detect internal inconsistencies or otherwise “fail,” etc.).

Note that you are not required to make the impossible guarantee that no high-priority thread ever
waits for a low-priority thread. Furthermore, do not worry if your solution is very slightly imperfect
in a way which is not avoidable in certain situations. In other words, the key requirement may be
rephrased as follows: when an object is released, if any high-priority threads are waiting, at most
one low-priority thread may obtain the object before a high-priority thread does, but the number
of low-priority acquisitions in this situation should almost always be zero instead of one.

The remainder of this page is intentionally blank.

Page 11

Andrew ID:

(a) 5 points Please declare your struct dlock here. Also write a function
void dlock init(dlock p dp) to initialize a dual-priority lock.

typedef struct dlock {

} *dlock_p;

void dlock_init(dlock_p dp)

{

}

Page 12

Andrew ID:

(b) 15 points Now please write dlock acquire() and dlock release().

Page 13

Andrew ID:

You may use this page as extra space for your dual-priority lock solution if you wish.

Page 14

Andrew ID:

You may use this page as extra space for your dual-priority lock solution if you wish.

Page 15

Andrew ID:

4. 15 points “Dead rock”

This semester, 410 students have formed four rock bands. Each band has a (small) set of songs
they have practiced; each song requires an eclectic set of instruments.

Naturally the students are familiar with Professor Dannenberg’s prominence in the field of computer
music and figure that instead of buying instruments they can borrow them from him. Roger’s
collection contains these instruments.

Accordion Bagpipe Cowbell Drum
4 3 2 5

The bands, their songs, and the instruments needed to play each song are listed in the table below.
Note that each instrument, each band name, and each song title can be represented unambiguously
by a 1-letter or 1-digit abbreviation.

Accordion Bagpipe Cowbell Drum

Band 1: One Thread Yielding
Entry of the Threads 1 0 1 1
Free Memory 0 0 1 3

Band 2: Two Cores
Groove Gettid 2 0 0 2
Hit The Break Jack 1 1 0 1

Band 3: Three Spare Bits
Justify My Yield 0 1 1 1
Kill Dash Nine 3 0 2 2
Lock Free Your Heart 1 3 0 2

Band 4: Forth
Mutex Romance 1 1 0 1
Never Going to Halt 2 2 0 4

There was a “battle of the bands” (popularity competition) last weekend, with these four bands
and no others.

Because Roger was delayed by bad weather, the 410 students broke into his lab and each band
borrowed the instruments necessary to play its first song (E, G, J, and M, respectively). Roger
knows that each band is stubborn and will demand to go on stage and be allowed to play all of their
songs in some order before being willing to yield the stage or return any instruments to Roger’s
collection.

Roger is worried that the naive resource allocations made by the students plus their stubborn policy
may have placed the system at risk of deadlock.

Page 16

Andrew ID:

(a) 5 points Is there a safe sequence? If so, list a sequence of bands in order. If not, explain
why there is not.

Page 17

Andrew ID:

At Roger’s urging, the 410 students decide to adopt an improved instrument-management protocol.
After finishing each song and deciding on the next, they calculate how many instruments of each
type they have which they will not need for the next song, and how many they will need which
they do not have. For example, Band A switching from song E to song F would need to release one
accordion and acquire two drums.

After calculating the change in resource requirements, they proceed as follows:

1. Release unneeded Accordions

2. Release unneeded Bagpipes

3. Release unneeded Cowbells

4. Release unneeded Drums

5. Acquire additional Accordions

6. Acquire additional Bagpipes

7. Acquire additional Cowbells

8. Acquire additional Drums

Please note that each of the above steps is atomic, meaning “Acquire 2 drums” happens all at once
(at a time when two or more drums are available).

Initially each band is playing no song, and may decide to “play no song” (i.e., take a break) at any
time. As far as the management protocol is concerned, playing no song is equivalent to playing a
song requiring no instruments.

(b) 5 points Consider bands 2, 3, and 4, and their songs as listed in the table above. Assume
there are three stages, so the bands can play simultaneously. Can this algorithm deadlock?

If so, list a sequence of songs leading to deadlock in the tabular format indicated below
and draw a process/resource graph showing the deadlock.

Band Song Operation Instrument Count

1 F Acquire Cowbell 1

If not, list the four deadlock requirements and briefly indicate for each one whether the
proposed management protocol has, or lacks, that ingredient.

Page 18

Andrew ID:

You may use this page as extra space for your deadlock solution if you wish.

Page 19

Andrew ID:

(c) 5 points Now consider this variant on the protocol of Part B: after every song, each

group takes a break (thus releasing all instruments) and then acquires instruments for their
next song as described in the Part B protocol. Given all four bands, can this algorithm
deadlock? Justify your answer.

Page 20

Andrew ID:

5. 10 points Nuts & Bolts. Consider the trivial Project 1 “game” kernel below.

void ignoreticks(unsigned int numTicks) { return; }

typedef struct player {

char *name;

int role;

int x, y;

int score;

} player_t, *player_p;

player_t protagonist;

void output(player_p p)

{

MAGIC_BREAK; // Assume: does not affect stack

printf("%s @ (%d,%d): %d\n", p->name, p->x, p->y, p->score);

}

void test(char *s)

{

player_t initial;

initial.name = s;

initial.role = 0;

initial.x = initial.y = 0;

initial.score = 0;

output(&initial);

protagonist = initial;

}

int kernel_main()

{

lmm_remove_free(&malloc_lmm, (void*)USER_MEM_START, -8 - USER_MEM_START);

lmm_remove_free(&malloc_lmm, (void*)0, 0x100000);

handler_install(ignoreticks);

pic_init(BASE_IRQ_MASTER_BASE, BASE_IRQ_SLAVE_BASE);

test("Hiro");

while (1)

continue;

return 0;

}

Page 21

Andrew ID:

Draw a picture of the stack as it will look when the MAGIC BREAK statement causes Simics (if present)
to drop into the debugger. Label each memory location you are filling with its address (you may
“draw” memory in bytes or words as you see fit). You may choose any “plausible” addresses you
wish, as long as they make sense. Assume a 32-bit machine with any plausible byte order. You
need not show the complete frame of the invoker of kernel main() or any part of any earlier stack
frame.

Page 22

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int cas2i_runflag(int tid, int *oldp, int ev1, int nv1, int ev2, int nv2);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int ls(int size, char *buf);

/* "Special" */

void misbehave(int mode);

Page 23

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

int mutex_destroy(mutex_t *mp);

int mutex_lock(mutex_t *mp);

int mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

int cond_destroy(cond_t *cv);

int cond_wait(cond_t *cv, mutex_t *mp);

int cond_signal(cond_t *cv);

int cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

int sem_wait(sem_t *sem);

int sem_signal(sem_t *sem);

int sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

int rwlock_lock(rwlock_t *rwlock, int type);

int rwlock_unlock(rwlock_t *rwlock);

int rwlock_destroy(rwlock_t *rwlock);

Page 24

