Computer Science 15-410: Operating Systems
Mid-Term Exam (B), Spring 2011

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...7”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew

Username

Full

Name

Question | Max Points Grader
1. 10
2. 20
3. 20
4. 10
5. 15

75

Please note that there are system-call and thread-library “cheat sheets”
at the end of the exam.

Andrew ID:

I have not received advance information on the content of this 15-410 mid-term exam by dis-
cussing it with anybody who took part in the main exam session or via any other avenue.

Signature: Date

Please note that there are system-call and thread-
library “cheat sheets” at the end of the exam.

If we cannot read your writing, we will be un-
able to assign a high score to your work.

Page 2

Andrew ID:

1. | 10 points| Short answer.

Give a one-paragraph definition/explanation of each of the following terms as it applies to this
course. Your goal is to make it clear to your grader that you understand the concept and can apply
it when necessary.

(a) stack frame

(b) thread-safe

Page 3

Andrew ID:

2. “Socket locks”

You have been asked to write a simplified version of a specialized locking object which might be
used in a web browser. As you may know, it is somewhat expensive to establish a connection to
a web server, so many browsers “cache” connections so that once a request for some web object
(HTML page or image) is complete a later request can re-use an existing connection without the
overhead of establishing a new one. (For the purposes of this exam, we will assume that our browser
never opens more than one connection at a time to any single server—maybe it’s running on an
embedded device and needs to conserve resources).

This locking object is special for two reasons. First, once a thread acquires a lock on a socket, it will
perform a potentially long sequence of socket I/O requests, each one of which may require many
milliseconds, before releasing the lock (and thus the socket). Your design should be appropriate
for this usage pattern. Second, it is a sad fact of life that networks fail and browsers become
disconnected from servers. When this happens, it would be silly for many threads in turn to
“acquire” a broken connection socket and fruitlessly issue system calls against it. Therefore, when
a browser thread determines that a server connection has failed, it invokes a special operation,
called “broken(),” on the socket lock, before unlocking it. This allows the socket-lock code to
inform all relevant threads to give up and invoke higher-level policy code to figure out what to do
next. For exam purposes we will assume that slock init (), slock _broken(), slock unlock(),
and slock_destroy() cannot fail, but slock_lock() is explicitly allowed (i.e., expected) to return
-1 to indicate that the underlying socket has not been locked because it was declared to be broken.

It is strongly recommended that you rough out an implementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you start to write your solution
on the next page. If we cannot understand the solution you provide, your grade will suffer!

The remainder of this page is intentionally blank.

Page 4

Andrew ID:

Please declare a struct slock and implement slock_init (), slock_lock(), slock_broken(), and
slock unlock() (you do not need to implement slock destroy()). You may use standard thread-
library synchronization, such as mutexes, condition variables, semaphores, and/or reader/writer
locks. You may use deschedule () /make runnable() if you must—it’s not recommended, but may
not use atomic instructions (XCHG, LL/SC, etc.). For the purposes of the exam you should assume
an error-free environment (invocations of slock functions are always legal; memory allocation will
always succeed; thread-library primitives will not detect internal inconsistencies or otherwise “fail,”
etc.). If you wish, you may assume that the mutexes provided by the underlying thread library
provide bounded waiting; you may also assume, if you wish, that the underlying condition variables
are “as FIFO as possible.” You may wish to refer to the “cheat sheets” at the end of the exam.

typedef struct slock {

} slock_t;

Page 5

Andrew ID:

...space for slock implementation...

Page 6

Andrew ID:

You may use this page as extra space for your slock solution if you wish.

Page 7

Andrew ID:

3. |20 points | Consider the following proposed implementation of reader/writer locks.

typedef struct rwlock {

int read_count; /* #readers holding lock (or waiting on a writer) x*/
mutex_t read_count_lock; /* protects read_count */
int mode; /* mode that lock is in: RWLOCK_READ or RWLOCK_WRITE */
mutex_t write_lock; /* taken by writer XOR first reader; protects mode */

} rwlock_t;

void rwlock_init(rwlock_t *rwlock) {
mutex_init(&rwlock->read_count_lock); mutex_init(&rwlock->write_lock);
rwlock->read_count = 0; rwlock->mode = RWLOCK_READ;

int rwlock_lock(rwlock_t *rwlock, int mode) {
switch (mode) {
case RWLOCK_READ:
mutex_lock(&rwlock->read_count_lock) ;
if (rwlock->read_count == 0) { /* Are we the first reader? x/
mutex_lock(&rwlock->write_lock) ;
rwlock->mode = RWLOCK_READ;
}
rwlock->read_count++;
mutex_unlock(&rwlock->read_count_lock) ;
return O;
case RWLOCK_WRITE:
mutex_lock(&rwlock->write_lock);
rwlock->mode = RWLOCK_WRITE;
return O;

int rwlock_unlock(rwlock_t *rwlock) { /* write_lock is always held on entry */
switch (rwlock->mode) {
case RWLOCK_READ:
mutex_lock(&rwlock->read_count_lock) ;
rwlock->read_count—-;
if (rwlock->read_count == 0) { /* Were we the last reader? x/
mutex_unlock (&rwlock->write_lock);

}
mutex_unlock (&rwlock->read_count_lock) ;
return O;

case RWLOCK_WRITE:
mutex_unlock (&rwlock->write_lock);
return O;

Page 8

Andrew ID:

When answering the questions below, you may assume:

1. Mutexes ensure bounded waiting; cvars are “as FIFO as possible.”
2. Due to “exam mode,” nothing fails.

3. The code above invokes mutexes only in legal ways (i.e., does not violate any contract in the
mutex spec).

(a) Does this rwlock implementation starve readers, writers, both, or neither? Ex-
plain your answer.

Page 9

Andrew ID:

As you know, one approach to the deadlock problem is to impose a total ordering on resources such
as locks. When analyzing unknown code, it can be useful to compute a “lock dependency graph”
in which a directed edge is drawn from node A to node B if resource B is acquired by a thread at
a time when that thread already owns resource A (we say that the acquisition of B “depends on”
the acquisition of A having previously happened). If the lock dependency graph of a body of code
is a directed acyclic graph (DAG), this constitutes a partial ordering on the resources, which can
easily be “flattened” to form some total ordering. However, if a lock dependency graph contains a
cycle, there cannot be a total ordering of locks. Note that a lock dependency graph reflects static
properties of the code, and is different from the process/resource graph notation used in class,
which shows the state of a system at some point in time.

(b) Draw the lock dependency graph for the code shown above. You must “com-
ment” each edge by detailing the condition or situation in which the dependency occurs.

Page 10

Andrew ID:

(c) Can the implementation shown above deadlock? If so, provide an execution
sequence using the tabular form shown below. If a deadlock is not possible, provide a clear
and concise argument that it cannot happen; your reasoning should be convincing enough
to be included with the code as documentation.

Trace format:

Thread 0 Thread 1
rwlock(WRITE)
rwlock(READ)
return;
return;

You may introduce temporary variables or other obvious notation as necessary to improve
the clarity of your answer. Be sure that any execution trace or argument you provide us
with is easy to read and conclusively demonstrates the claim you are making.

Page 11

Andrew ID:

You may use this page as extra space for the reader/writer locks question if you wish.

Page 12

Andrew ID:

4. Process model.

Consider the following Pebbles system calls (listed in alphabetical order):

deschedule()
get_ticks()
make_runnable ()
sleep()

yield()

A I

Assign each system call on the list above to one of three categories: “likely to block the invoking
thread,” “may or may not block the invoking thread,” or “unlikely to block the invoking thread.”
Briefly (one to four sentences) justify your assignment of each system call to the category you
selected. Note that “block the invoking thread” means “changes the thread from ‘running’ to
‘blocked.”” Tt is up to you to decide whether one (or more!) of the three categories is empty.

Page 13

Andrew ID:

You may use this page as extra space for the blocking question if you wish.

Page 14

Andrew ID:

5. | 15 points | Nuts & Bolts.

In Project 2, we asked you to implement condition variables in such a way that they don’t “fail”
if malloc() fails. In this question, we’ll explore an alternative way of obtaining memory for short
periods of time, namely the alloca() “function”. Below is an official definition from a man page.

ALLOCA(3) BSD Library Functions Manual ALLOCA(3)
NAME

alloca -- memory allocator
LIBRARY

Standard C Library (libc, -1lc)

SYNOPSIS
#include <alloca.h>
or
#include <stdlib.h>

void *
alloca(size_t size);

DESCRIPTION
The alloca() function allocates size bytes of space in the stack frame
of the caller. This temporary space is automatically freed on return.

RETURN VALUES
The alloca() function returns a pointer to the beginning of the
allocated space. If the allocation failed, a NULL pointer is returned.

SEE ALSO
brk(2), calloc(3), getpagesize(3), malloc(3), realloc(3)

HISTORY
The alloca() function appeared in Version 32V AT&T UNIX.

BUGS
The alloca() function is machine and compiler dependent; its use is

discouraged.

BSD June 4, 1993 BSD

Page 15

Andrew ID:

In short, alloca() provides a C-language interface to allocating a variable amount of memory on
the stack. In some senses, it is much like C99’s variable array allocation support—these two code
sequences accomplish the same thing:

void funi(void)

{
int n = rand() % 15410;
int fooln];
foo[0] = 15412;
printf ("%d\n", foo[0]); /* fool[l is not disturbed by functions funl() calls */
return; /* foo[] is automatically deallocated when funl() returns */
}
void fun2(void)
{
int n = rand() % 15410;
int *foo = alloca(n * sizeof (int));
fool[0] = 15412;
printf ("%d\n", fool[0]); /* foo[]l is not disturbed by functions fun2() calls */
return; /* foo[l is automatically deallocated when fun2() returns */
}

It turns out that compiling code that uses alloca() is not straightforward. To make this clear,
we will ask you to hand-compile into assembly language a short C function that would be a good
candidate for using alloca().

The following function receives a “length/value”-coded message from a network connection and
appends the message onto the end of a log. Because each message can have a different size, the
function first reads the length from the network connection, then allocates a buffer, then uses that
buffer to receive and store the message. Note that for exam purposes critically-important input
validation and error checking have been omitted.

void fetchlog(int socket) {
int len;
unsigned char *value;

read(socket, &len, sizeof (len));

value = alloca(len); /* value[] is allocated on stack */
read(socket, value, len);

logstore(value, len);

return; /* value[] is automatically deallocated */

It is probably beneficial for you to read all parts of the question before answering any part.

Page 16

Andrew ID:

It is probably beneficial for you to read all parts of the question before answering any part.

(a) To start off with, please write the assembly code that a compiler might generate
for this function.

Page 17

Andrew ID:

Although alloca() is in section 3 (“library functions”) of the man pages, it’s not a symbol in libc:
joshua@nyus:~$ nm /usr/lib/libc.a 2> /dev/null | grep ’alloca$’
joshua@nyus:~$

(b) The reason why the C library contains no symbol for alloca() is that it cannot

be implemented as a function callable via the standard calling convention. Explain why
it can’t (we are expecting two to three sentences).

Page 18

Andrew ID:

The alloca() specification shown above is copied from Mac OS X. The corresponding Linux man
page contains the following statement in the BUGS section: “On many systems alloca() cannot be
used inside the list of arguments of a function call.” What this means is that

read(fd, alloca(32), 32)

won’t work right.

(c) Explain briefly (again, two or three sentences should be plenty; you may show
assembly code if you wish) why that kind of invocation won’t work or what might go
wrong if code like that were compiled by a naive compiler.

Page 19

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);
void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */
int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticksQ);

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t) (void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */
int new_pages(void * addr, int len);
int remove_pages(void * addr);

/* Console I/0 */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);
int get_cursor_pos(int *row, int *col);

/* Miscellaneous */
void halt();
int 1ls(int size, char *xbuf);

/* "Special" */
void misbehave (int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 20

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);
int mutex_destroy(mutex_t *mp);
int mutex_lock(mutex_t *mp);
int mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

int cond_destroy(cond_t *cv);

int cond_wait(cond_t *cv, mutex_t *mp);
int cond_signal(cond_t *cv);

int cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func) (void *), void *arg);
int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);
int sem_wait(sem_t *sem);

int sem_signal(sem_t *sem);

int sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

int rwlock_lock(rwlock_t *rwlock, int type);
int rwlock_unlock(rwlock_t *rwlock);

int rwlock_destroy(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 21

Andrew ID:

Useful-Equation Cheat-Sheet

cos?f +sin?f =1
sin(a +) = sina cos B =+ cos asin 3
cos(a £) = cosacos 3 F sin asin 3
sin 20 = 2sin § cos 6
cos 20 = cos® 0 — sin’ 6

e = cos(x) + isin()

eix + e—i:c
CoS\T¥) = ———
(0) =
. eia: o e—iac
sSi(r) =
€9 5

/lnxd:c:aclnx—a:—i—C’

o 1

Vrze Pdr = -\/7

0 2

o0 2 2 1 v
/ zie W dx:f,/—3whena>0
0 4 a

o0
F(z):/ t* et at
0

L 0 A
zhalﬂ(r, t) = HV(r,t)

0

: -
zhﬁll/(r, t) = —%V U(r, t)+ V(r)¥(r, t)

OE
V x B = puod +M050§

Page 22

Andrew ID:

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 23

