
Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (A), Spring 2014

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 15

3. 20

4. 15

5. 10

70

Please note that there are system-call and thread-library “cheat sheets”
at the end of the exam.

Andrew ID:

1. 10 points Short answer.

Define or explain the terms listed below. We are expecting each part of this question to be answered
by three to six sentences. Your goal is to make it clear to your grader that you understand the
concept as it applies to this course and can apply it when necessary. It is typically helpful for you
to include an example or two of the concept you are discussing.

(a) 5 points Deadlock prevention.

(b) 5 points User mode.

Page 2

Andrew ID:

2. 15 points Deadlock.

It’s spring... which means that before long it’ll be summer and you’ll be working at WhatSnappy-
Chatter, a new social-messaging company which is being bought by a large social-media company
for $14 quintillion. But there is a problem... before the sale can go through, they need a hotshot
CMU student to debug a problem that is blocking the development team.

The company’s “app” has some strange architectural features. For example, the app has a small
fixed number of threads, and thr getid() has been hacked so it always returns a value between 0
and NUM THREADS-1. You will be working on an internal messaging system which enables these
threads to send and receive small messages with each other (for the purposes of this exam, we will
assume that the value contained in each message is an int—boring, but simple). For some reason
which isn’t clear to you (maybe a patent??), a core feature of the messaging system is that send
calls block until the data has been received by the receiver thread, but it is very important for
receive operations to return very quickly whether or not anything is waiting.

Here are some details about the implementation:

• You may assume that there are only NUM THREADS threads using this system and their
thread id’s range between 0 and NUM THREADS-1.

• send message(msg, to) should be used to send data (in this case an int) to another
thread, and should block until the recieving thread calls recv message().

• Each thread is given an “inbox” and an “outbox” in two global arrays; each thread’s inbox
and outbox are located by using the owning thread’s id as an index.

• If thread i wishes to send a message to thread j, it will first put the data into its outbox,
and then put its thread id in thread j’s inbox.

• For thread j to receive this message, it will check its own inbox, see i’s thread id, and then
find the data in thread i’s outbox. At this point the message has been passed successfully.

• In order to avoid deadlock, a thread is not allowed to send a message to itself.

• In order to avoid deadlock, send message() will return an error if thread i tries to send
a message to thread j while it already has a pending message from thread j (i.e. thread j
is already waiting for thread i to pick up a message it sent).

When reading the code below, you should assume all library and system calls return normally, and
the mailboxes init() call is successful.

The remainder of this page is intentionally blank.

Page 3

Andrew ID:

#define NUM_THREADS 10

typedef struct {

sem_t sender_lock;

mutex_t data_lock;

int from;

} inbox;

typedef struct {

sem_t send_complete;

int msg;

} outbox;

inbox inboxes[NUM_THREADS];

outbox outboxes[NUM_THREADS];

int mailboxes_init()

{

int i;

for (i = 0; i < NUM_THREADS; i++)

{

// assume initialization functions cannot fail

sem_init(&inboxes[i].sender_lock, 1);

mutex_init(&inboxes[i].data_lock);

inboxes[i].from = -1;

sem_init(&outboxes[i].send_complete, 0);

outboxes[i].msg = 0;

}

return 0;

}

Page 4

Andrew ID:

int recv_message(int *msg)

{

int my_tid = thr_getid();

mutex_lock(&inboxes[my_tid].data_lock);

int sender = inboxes[my_tid].from;

mutex_unlock(&inboxes[my_tid].data_lock);

if (sender != -1)

{

inboxes[my_tid].from = -1;

*msg = outboxes[sender].msg;

sem_signal(&outboxes[sender].send_complete);

return sender;

}

return -1;

}

int send_message(int msg, int to)

{

int my_tid = thr_getid();

// DL: a thread is not allowed to send messages to itself

if (to == my_tid)

{

return -1;

}

outboxes[my_tid].msg = msg;

sem_wait(&inboxes[to].sender_lock);

mutex_lock(&inboxes[to].data_lock);

inboxes[to].from = my_tid;

mutex_unlock(&inboxes[to].data_lock);

// DL: fail to send message if recipient is already waiting on us to read

mutex_lock(&inboxes[my_tid].data_lock);

if (inboxes[my_tid].from == to)

{

inboxes[to].from = -1;

mutex_unlock(&inboxes[my_tid].data_lock);

sem_signal(&inboxes[to].sender_lock);

return -1;

}

mutex_unlock(&inboxes[my_tid].data_lock);

sem_wait(&outboxes[my_tid].send_complete);

sem_signal(&inboxes[to].sender_lock);

return 0;

}

Page 5

Andrew ID:

You have been called in because of a disagreement in the development team. In particular, the
author of the messaging library claims that, no matter how it is used by its client threads, it won’t
“internally deadlock”: either the send and receive operations will complete in a reasonable way, or
at least one thread invoking send message() will receive a return code of -1.

Unfortunately, the code shown above can deadlock. Show clear, convincing evidence of dead-
lock. Your evidence should include a “tabular execution trace,” a well-annotated process/resource
graph, or both. Missing, unclear, or unconvincing traces will result in only partial credit. Note
that send message() returning an error code does not count as deadlock.

Page 6

Andrew ID:

You may use this page as extra space for the deadlock question if you wish.

Page 7

Andrew ID:

3. 20 points “Channel locking”

In your Project 2 thread library, you implemented various standard synchronization primitives such
as mutexes, condition variables, semaphores, reader/writer locks. These primitives can be used to
implement higher-level constructs such as inter-thread mailboxes, as discussed in an earlier question.
However, a different view is recently gaining in popularity: in this view, a concurrency-management
system should provide a rich set of thread-safe message-transfer operations, and threads should
synchronize only by sending messages, not by using crude “mutexes” and “condition variables.”
Thinking similar to this is part of the rationale of two recent programming languages, Go and Rust.

In this question you will be asked to build a “backwards compatibility layer” which implements
mutexes and condition variables in terms of an existing channel library.

• int chan init(chan t *chan, int capacity) — initializes the channel

• void chan send(chan t *chan, void *data) — sends the value data on channel chan

• void* chan recv(chan t *chan) — consumes one message sent by chan send

• void chan destroy(chan t *chan) — destroys the channel

Notice that chan init() takes a capacity as an argument. This capacity argument corresponds to
the size of an internal buffer (measured in messages, not bytes) that the channel manages. If this
capacity is zero, then the channel is initialized as a fully synchronous channel. This means that
whether a thread is doing chan send() or chan recv(), that thread will block until there is a thread
performing the opposite operation on the same channel. For example, if T0 calls chan send() on
a channel initialized with capacity 0, then T0 will block until T1 calls chan recv() on the same
channel; then both threads will return.

On the other hand, if the capacity is non-zero, then the channel is initialized as “mostly” asyn-
chronous. As long as the internal buffer is not full, chan send() will simply copy the value into the
buffer and return, most likely before a thread has even begun to receive the value. If chan send()

encounters a full buffer it will block. Some noteworthy points about channels:

• chan send() will always block if capacity is set to 0 and a corresponding chan recv() isn’t
already blocked waiting for it

• If capacity is non-zero, then a return from chan send() does not imply a corresponding
chan recv() has occured yet

• chan recv() will block unless/until either a buffered value or a corresponding chan send()

operation is available, regardless of the capacity set in chan init()

• You may assume that channels are strictly FIFO if you wish.

• Each message sent is received by at most one receiver.

Your mission has two parts. You will first implement mutexes while using just channels as your
synchronization primitives. Then you will implement condition variables using just channels and/or
mutexes. You may not use other atomic or thread-synchronization operations, such as, but not
limited to: reader/writer locks, deschedule()/make runnable(), or any atomic instructions (XCHG,
LL/SC). You may not rely on any data-structure libraries such as splay trees, red-black trees, queues,
stacks, or skip lists, lock-free or otherwise, that you do not implement as part of your solution.
For the purposes of the exam, you may assume that library routines and system calls
don’t “fail” (unless you indicate in your comments that you have arranged, and are expecting, a
particular failure).

Page 8

Andrew ID:

It is strongly recommended that you rough out an implementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you write anything on these pages.
If we cannot understand the solution you provide here, your grade will suffer!

(a) 5 points Please declare your struct mutex t here. If you need an auxilary structure,
you may fill that in as well

typedef struct mutex {

} mutex_t;

typedef struct m_aux {

} m_aux_t;

Page 9

Andrew ID:

(b) 5 points Now please write mutex init(), mutex destroy(), mutex lock() and mutex unlock()

Page 10

Andrew ID:

...space for mutex implementation...

Page 11

Andrew ID:

(c) 5 points Please declare your struct cond t here. If you need an auxilary structure, you
may fill that in as well. Regardless of what you have written for the mutex implementation,
we will grade your condition-variable solution under the assumption that your mutex
implementation is correct.

typedef struct cond {

} cond_t;

typedef struct aux {

} aux_t;

Page 12

Andrew ID:

(d) 5 points Now please write cond init(), cond destroy(), cond signal(), cond wait()

and cond broadcast()

Page 13

Andrew ID:

...space for condition variable implementation...

Page 14

Andrew ID:

4. 15 points Peterson’s Algorithm

In this question you will examine some critical-section protocol code and imagine how it might be
executed on a somewhat strange processor. First, the code. In the assembly-language listing, the
two-digit hex numbers in brackets show the address of the first byte of each instruction; we will use
these addresses to refer to specific instructions.

volatile int want[2] = { 0, 0 };

volatile int turn = 0;

void peterson_enter(int i)

{

int j = 1 - i;

want[i] = 1;

turn = j;

while (want[j] && (turn == j))

continue;

return; // critical section acquired!

}

void peterson_leave(int i)

{

want[i] = 0;

}

.bss

.align 4

want:

.zero 8

turn:

.zero 4

.text

.globl peterson_enter

peterson_enter:

[00] pushl %ebp

[01] movl %esp, %ebp

[03] pushl %ecx

[04] pushl %edx

[05] movl 8(%ebp), %ecx

[08] movl $1, %edx

[0d] subl %ecx, %edx

[0f] movl $1, want(,%ecx,4)

[1a] movl %edx, turn

.L1:

[20] movl want(,%edx,4), %eax

[27] testl %eax, %eax

[29] je .L2

[2b] movl turn, %eax

[30] cmpl %edx, %eax

[32] je .L1

.L2:

[34] popl %edx

[35] popl %ecx

[36] popl %ebp

[37] ret

.globl peterson_leave

peterson_leave:

[38] pushl %ebp

[39] movl %esp, %ebp

[3b] movl 8(%ebp), %eax

[3e] movl $0,want(,%eax,4)

[49] popl %ebp

[4a] ret

Page 15

Andrew ID:

For the purposes of this question, you may assume the code above works on single-processor x86-32
machines. Part of the reason it does work is a feature of most modern CPU architectures, namely
“precise interrupts.” If the code presented above is interrupted by a clock tick, the hardware will
include, in the trap frame pushed on the appropriate stack, a value of %EIP. This value represents
a guarantee from the hardware that all instructions prior to %EIP have completed execution and
that the instruction pointed at by %EIP, as well as all instructions subsequent to that instruction
have not executed. The idea is that, at some later point, the saved value of %EIP will be restored
into the actual program counter, which will cause the interrupted code stream to resume where it
left off. In a sense, the interrupt “happened between” two instructions, and the %EIP value stored
on the stack is the address of the instruction after the interrupt happened.

While the interrupt model described above is convenient for programmers, it is based on a very
old-fashioned model of processor architecture, in which the processor first fetches an instruction;
then figures out what needs to be done; then does it; then updates the program counter to point
to the subsequent instruction; and finally checks to see whether an interrupt is pending.

However, as you are probably aware, modern processors execute multiple instructions in parallel
(typically at least two, but often four or more). As a result, when an interrupt is detected some
instructions have been fetched but not yet begun execution; some instructions have been fetched
and are executing; and of course some instructions have been fetched and executed to completion.
When different instructions take different amounts of time to complete, it can happen that an
instruction later in program order has finished even though an instruction earlier in program order
hasn’t yet. For example, [05] movl 8(%ebp), %ecx might take a while since it needs to get
something from RAM, but it appears before [08] movl $1, %edx which is trivial to execute, so it
is possible that the second MOVL might complete before the first.

Modern processors which support “precise interrupts” (including the x86!) contain elaborate logic
that can delay the launch of some instructions and revert the effects of others, so that when an
interrupt is detected it is possible to cleanly split the instruction stream into a leading sequence
of instructions that are 100% complete, plus %EIP pointing at the beginning of a sequence of
instructions that appear not to have executed at all.

However, some machines in the 1990’s were manufactured with a different interrupt model, called
“imprecise interrupts.” When an imprecise-interrupts processor begins an interrupt handler, the
hardware has stored, instead of a single %EIP value describing all completed and not-started instruc-
tions, a list of instructions and the completion status of each! On such a machine the equivalent
of IRET loads this list back into the processor; the processor will execute the not-yet-executed
instructions on the list, skip the already-executed instructions, and then resume regular operation.

In this problem we will assume that the processor can execute up to four instructions in parallel;
when an interrupt or exception occurs, the processor will thus save four %EIP values along with a
true/false flag indicating which instructions have completed. Here is a simple case.

Instruction Done?

[04] Yes

[05] No

[08] Yes

[0d] No

For the purposes of this exam we will assume that the four instructions reported on are sequential
in program order.

Page 16

Andrew ID:

When the state table above is used to resume the interrupted thread, the processor will skip the
PUSHL instruction that was previously completed, will perform the MOVL instruction which was not
formerly completed, will skip the MOVL instruction that was completed, and will perform the SUBL

instruction that was not formerly completed. From the point of view of that thread, all instructions
appear to happen in order. True, there was a period of time during which one of the instructions
was done “too soon,” but in some sense this is “ok” because the thread wasn’t running during that
time, and any time it is running its instructions are completed in order as far as it can tell.

Note that we are assuming the processor properly delays instructions in order to avoid conditions
that ECE people call “data hazards” and “control hazards.” For example, when the instruction
[08] movl $1, %edx is followed by [0d] subl %ecx, %edx, obviously the processor must delay
the launch of the SUBL instruction until the result of the MOVL is available, because the MOVL places
a value in %EDX which must present before the SUBL can operate on it in %EDX. However, when the
instruction [0f] movl $1, want(,%ecx,4) is followed by the instruction [1a] movl %edx, turn

it is not necessary to delay the second instruction because the instructions are using different
registers and different memory locations, so neither one depends on the result of the other. Hazards
are complicated, but luckily for this question your intuition about which instructions fundamentally
cannot be run in parallel should be sufficient.

There is a problem with the Peterson’s solution code shown above when it is run on a single-
processor machine with imprecise interrupts. In this environment, the code does not ensure that
all three critical-section algorithm requirements are always met. Identify a requirement which is
not met and lay out a scenario which demonstrates your claim. In your solution, you should assume
two threads sharing a single processor interrupted only by timer ticks—but you may declare an
interrupt whenever you want, regardless of whether nor not a fixed interval has occurred since the
last interrupt.

It is strongly recommended that you rough out a trace on the scrap paper provided at the end of the
exam, or on the back of some other page, before you write anything on the next page. If we cannot
understand the solution you provide on the next page, your grade will suffer!

Note that this question has two parts.

Note that this question has two parts.

Note that this question has two parts.

The remainder of this page is intentionally blank.

Page 17

Andrew ID:

(a) 10 points In a sentence or two, identify the critical-section property you will demonstrate
the violation of, and briefly summarize how imprecise interrupts will cause that property
to fail. Then show a two-thread trace which backs up your claim. Your trace does not
need to show every instruction; you may use an address range to indicate when a sequence
of instructions is executed in order. For example, [38-4a] would indicate that a thread
executed all of peterson leave() without being interrupted. When you do declare an
interrupt, be sure you specify four %EIP values and a corresponding completion-status
value for each. Here is an example.

Thread 0 Thread 1

00-01

intr: 03:y 04:n 05:n 08:n

00-04

... ...

Page 18

Andrew ID:

You may use this page as extra space for the “imprecise Peterson’s” trace if you wish.

Page 19

Andrew ID:

(b) 5 points Suggest a way to fix the problem you identified in your trace. You may invent
a new kind of instruction if you wish.

Page 20

Andrew ID:

5. 10 points Process model.

In this question we will discuss whether various Pebbles system calls are expected to block threads
or are expected to generally complete without blocking. In order to clarify the issue, you should
probably imagine that a Pebbles-compliant kernel is running on multiple processors (this actually
happened during Spring 2012 and might happen again). Also note that “block” is not the same
concept as “might require a lock”—as you will soon experience directly, many system calls require
some locking.

(a) 2 points Explain briefly what it means for a system call to block a thread, or for a thread
to be blocked in a system call.

For each Pebbles system call listed below (in alphabetical order), briefly argue that the system call
either should generally not block threads (for some stated reason(s)) or is expected to block threads
(in some specified scenario(s)).

(b) 2 points deschedule()

Page 21

Andrew ID:

(c) 2 points gettid()

(d) 2 points make runnable()

(e) 2 points swexn()

Page 22

Andrew ID:

You may use this page as extra space for the blocking question if you wish.

Page 23

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t)(void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */

void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 24

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

void mutex_destroy(mutex_t *mp);

void mutex_lock(mutex_t *mp);

void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);

void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);

void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 25

Andrew ID:

Typing Rules Cheat-Sheet

τ ::= α | τ → τ | µα.τ | ∀α.τ
e ::= x | λx:τ.e | e e | fix(x:τ.e) | foldα.τ (e) | unfold(e) | Λα.e | e[τ]

Γ, α type ` α type
istyp-var

Γ ` τ1 type Γ ` τ2 type
Γ ` t1 → t2 type

istyp-arrow

Γ, α type ` τ type
Γ ` µα.τ type istyp-rec

Γ, α type ` τ type
Γ ` ∀α.τ type istyp-forall

Γ, x : τ ` x : τ
typ-var

Γ, x : τ1 ` e : τ2 Γ ` τ1 type
Γ ` λx:τ1.e : τ1 → τ2

typ-lam
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
typ-app

Γ, x : τ ` e : τ Γ ` τ type
Γ ` fix(x:τ.e) : τ

typ-fix

Γ ` e : [µα.τ/α]τ Γ, α type ` τ type
Γ ` foldα.τ (e) : µα.τ

typ-fold
Γ ` e : µα.τ

Γ ` unfold(e) : [µα.τ/α]τ
typ-unfold

Γ, α type ` e : τ

Γ ` Λα.e : ∀α.τ typ-tlam
Γ ` e : ∀α.τ Γ ` τ ′ type

Γ ` e[τ ′] : [τ ′/α]τ
typ-tapp

λx:τ.evalue
val-lam

foldα.τ (e)value
val-fold

Λα.τ value
val-tlam

e1 7→ e′1
e1 e2 7→ e′1 e2

steps-app1

e1 value e2 7→ e′2
e1 e2 7→ e1 e

′
2

steps-app2

e2 value

(λx:τ.e1) e2 7→ [e2/x]e1
steps-app-β

fix(x:τ.e) 7→ [fix(x:τ.e)/x]e
steps-fix

e 7→ e′

unfold(e) 7→ unfold(e′)
steps-unfold1 unfold(foldα.τ (e)) 7→ e

steps-unfold2

e 7→ e′

e[τ] 7→ e′[τ]
steps-tapp1

(Λα.e)[τ] 7→ [τ/α]e
steps-tapp1

Page 26

Andrew ID:

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 27

