
Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (A), Spring 2017

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 15

3. 15

4. 20

5. 10

70

Please note that there are system-call and thread-library “cheat sheets”
at the end of the exam.

Andrew ID:

After I leave this exam session, I will not discuss the contents of this 15-410/605 midterm with
anybody, whether or not in this class, whether or not present in this exam session with me, for 24
hours.

Signature: Date

Please note that there are system-call and thread-
library “cheat sheets” at the end of the exam.

If we cannot read your writing, we will be un-
able to assign a high score to your work.

Page 2

Andrew ID:

1. 10 points Short answer.

(a) 5 points When designing a body of code, at times one finds oneself thinking, “I wonder
if I can assume X?” According to the 15-410 design orthodoxy, immediately upon having
such a thought one is required to ask oneself two questions. Please state those questions.

Page 3

Andrew ID:

(b) 5 points List the logical components of an x86 32-bit protected-mode IDT entry (it is

not necessary to be detailed about the physical layout).

Page 4

Andrew ID:

2. 15 points Consider the following critical-section protocol:

boolean waiting[2] = { false, false };

int turn = 0;

1. do {

2. waiting[i] = true;

3. while (waiting[j]) {

4. waiting[i] = false;

5. while (turn == j)

6. continue;

7. waiting[i] = true;

8. }

9. ...begin critical section...

10. ...end critical section...

11. turn = j;

12. waiting[i] = false;

13. ...begin remainder section...

14. ...end remainder section...

15. } while (1);

This protocol is presented in “standard form,” i.e.,

1. When process 0 is running this code, i == 0 and j == 1; when process 1 is running this
code, i == 1 and j == 0, so i means “me” and j means “the other process.”

2. Lines 2–8 are can be thought of roughly as “acquiring a lock” and lines 11–12 can be
thought of roughly as “releasing the lock.”

(a) 15 points There is a problem with this protocol. That is, it does not ensure that all three
critical-section algorithm requirements are always met. Identify a requirement which is
not met and lay out a scenario which demonstrates your claim. Use the format presented
in class, i.e.,

P0 P1

waiting[0] = false;
turn = 0;

You may introduce temporary variables or other obvious notation as necessary to improve
the clarity of your answer. Be sure that the execution trace you provide us with is easy to
read and conclusively demonstrates the claim you are making. It is possible to answer this
question with a brief, clear trace, so you should do what is necessary to ensure that you
do.

Page 5

Andrew ID:

You may use this page for the critical-section protocol question.

Page 6

Andrew ID:

You may use this page as extra space for the critical-section protocol question if you wish.

Page 7

Andrew ID:

3. 15 points Pair matching.

In lecture we talked about two fundamental operations in concurrent programming: brief mutual
exclusion for atomic sequences (provided in P2 by mutexes) and long-term voluntary descheduling
(provided by condition variables). As you know, these can be combined to produce higher-level
objects such as semaphores or readers/writers locks.

In this question you will implement a synchronization object called a “pair matcher.” The idea
is that some parallel tasks must be worked on by pairs of threads, and the threads need some
(dynamic) way to pick a partner to work with. After a pair matcher is initialized, an even number
of threads will invoke the match operation. The match operation involves some amount of thread
synchronization, potentially including blocking, and then returns to each thread, in a reasonably
timely fashion, the thread identification number of the thread it has been matched with. A match
object does not know how many threads will invoke it, though it can depend on the number being
even. Once a program is sure that no more threads will invoke the match operation on a particular
object, the destroy operation can and should be invoked.

A small example program using a pair matcher is displayed on the next page.

The remainder of this page is intentionally blank.

Page 8

Andrew ID:

#define NTHREADS 410

int tids[NTHREADS];

pmatch_t matcher;

void *threadbody(void *ignored);

int main(int argc, char** argv)

{

thr_init(4096); // exam: no failures

pmatch_init(&matcher); // exam: no failures

for (int t = 0; t < NTHREADS; t++) {

tids[t] = thr_create(threadbody, (void *) t); // exam: no failures

}

for (int t = 0; t < NTHREADS; t++) {

thr_join(tids[t], NULL);

}

printf("Done\n");

pmatch_destroy(&matcher);

thr_exit(0);

}

void *threadbody(void *ignored)

{

int me = thr_getid();

int partner;

int done = 0, rounds = 0;

while (!done) {

int coolpartner;

partner = pmatch_match(&matcher);

printf("I am %d, my partner is %d\n", me, partner);

coolpartner = (me&1) == (partner&1);

if (coolpartner) {

printf("Whee! That was so much fun I might do it again.\n");

}

if ((++rounds == 10) || !coolpartner) {

done = 1;

}

}

return 0;

}

Page 9

Andrew ID:

Your task is to implement pair matchers with the following interface:

• int pmatch init(pmatch t *pmp) — initializes a pair matcher.

• int pmatch match(pmatch t *pmp) — “Reasonably promptly” returns the thread i.d. of
another thread invoking pmatch match() on the same pair-matcher object. Note that
pmatch match(), as specified for this exam, does not return error codes.

• void pmatch destroy(pmatch t *pmp) — Deactivates a pair-matcher object. It is illegal
for a program to invoke pmatch destroy() if any threads are operating on it.

Assumptions:

1. You may use regular Project 2 thread-library primitives: mutexes, condition variables,
semaphores, readers/writer locks, etc.

2. You may assume that callers of your routines will obey the rules. But you must be
careful that you obey the rules as well!

3. You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule()/make runnable(), or any atomic instructions (XCHG,
LL/SC).

4. You must comply with the published interfaces of synchronization primitives, i.e., you
cannot inspect or modify the internals of any thread-library data objects.

5. You may not use assembly code, inline or otherwise.

6. For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and
are expecting, a particular failure).

7. You may not rely on any data-structure libraries such as splay trees, red-black trees,
queues, stacks, or skip lists, lock-free or otherwise, that you do not implement as part of
your solution.

8. You may use non-synchronization-related thread-library routines in the “thr xxx() fam-
ily,” e.g., thr getid(). You may wish to refer to the “cheat sheets” at the end of the
exam. If you wish, you may assume that thr getid() is “very efficient” (for example, it
invokes no system calls). You may also assume that condition variables are strictly FIFO
if you wish.

It is strongly recommended that you rough out an implementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you write anything on the next page.
If we cannot understand the solution you provide, your grade will suffer!

Page 10

Andrew ID:

(a) 3 points Please declare your pmatch_t here. If you need one (or more) auxilary struc-

tures, you may declare it/them here as well.

typedef struct {

} pmatch_t;

Page 11

Andrew ID:

(b) 12 points Now please implement int pmatch init(), int pmatch match(), and
void pmatch destroy().

Page 12

Andrew ID:

. . . space for pair-matcher implementation . . .

Page 13

Andrew ID:

. . . space for pair-matcher implementation . . .

Page 14

Andrew ID:

4. 20 points Ride-sharing deadlock!

You have doubtless heard the hype about “ride sharing” services, and perhaps have even used one.
As you might have noticed, however, true ride sharing, in the sense of multiple riders who don’t
know each other sharing a car to a common destination, isn’t activated in all cities by the major
ride-sharing companies—not in Pittsburgh, for example. It turns out this is algorithmically trickier
than it looks, even in the restricted case we will now consider.

Imagine a large event, such as a concert, produces a large queue of riders. When the concert is
over, riders will start forming a queue and the ride-sharing company (“Ryed,” perhaps you’ve heard
of them?) will begin sending an infinite stream of cars to the concert venue, with the result that
riders and drivers will be streaming through the system for a while; eventually we presume Ryed
will stop sending cars, but that is not modeled in this question.

Each arriving driver invites the rider at the head of the queue into the car and then tries to fill the
rest of the seats in the car with other riders who are going to the same destination. For the purposes
of this problem we will assume that destinations are zip codes, and that there is a hash function
which, given all zipcodes in Pennsylvania, collapses them down to a compact range of integers,
from 0 to NUM ZIPCODES (such hashing functions do exist—the trick is called “perfect hashing”).
So once the driver acquires a destination, i.e., the destination of the rider at the head of the concert
queue, the driver looks in a separate, per-zipcode, queue of other riders who are going to the same
place. Once the car is full or the driver is tired of waiting, the car drives off and eventually drops
off the riders. The ride-sharing company will definitely send (or re-circulate) enough drivers to get
everybody home.

Below is code simulating the operation of the Ryed system.

The remainder of this page is intentionally blank.

Page 15

Andrew ID:

V01 #include <stdlib.h>

V02 #include <syscall.h>

V03 #include <thread.h>

V04 #include <mutex.h>

V05 #include <sem.h>

V06 #include <cond.h>

V07 #include <queue.h>

V08

V09 #define NUM_ZIPCODES 2185 // http://data.mongabay.com/igapo/zip_codes/PA.htm

V10 #define WAIT_TIME 10

V11 #define DRIVE_TIME 10

V12 #define CAB_SIZE 3

V13

V14 #define WAITING 0

V15 #define RIDING 1

V16 #define AT_HOME 2

V17

V18 typedef struct {

V19 int status;

V20 int dest_code; // hash of zipcode

V21 sem_t at_home;

V22 } rider_t;

V23

V24 #define NUM_RIDERS 100

V25 rider_t riders[NUM_RIDERS];

V26

V27 mutex_t concert_lock;

V28 queue_t concert_queue;

V29

V30 mutex_t zipcode_locks[NUM_ZIPCODES];

V31 queue_t zipcode_queues[NUM_ZIPCODES];

Page 16

Andrew ID:

R01 void *rider(void *arg) {

R02 rider_t *rider = (rider_t *)arg;

R03 int dest_code = perfect_ziphash(my_home_zipcode());

R04

R05 rider->status = WAITING;

R06 rider->dest_code = dest_code;

R07 sem_init(&rider->at_home, 0);

R08

R09 mutex_lock(&concert_lock);

R10 mutex_lock(&zipcode_locks[dest_code]);

R11

R12 enq(&concert_queue, rider);

R13 enq(&zipcode_queues[dest_code], rider);

R14

R15 mutex_unlock(&concert_lock);

R16 mutex_unlock(&zipcode_locks[dest_code]);

R17

R18 sem_wait(&rider->at_home);

R19

R20 return NULL; // we’re home!

R21 }

Page 17

Andrew ID:

D01 void *driver(void *arg) {

D02 queue_t cab_queue; // stores riders in my car now

D03 queue_init(&cab_queue);

D04

D05 mutex_lock(&concert_lock);

D06 if (queue_empty(&concert_queue)) {

D07 mutex_unlock(&concert_lock);

D08 return NULL; // everybody has left

D09 }

D10

D11 rider_t *rider = deq(&concert_queue);

D12 int dest_code = rider->dest_code;

D13

D14 // remove the rider from the corresponding zipcode queue

D15 mutex_lock(&zipcode_locks[dest_code]);

D16 remove(&zipcode_queues[dest_code], rider);

D17 mutex_unlock(&concert_lock);

D18

D19 rider->status = RIDING; enq(&cab_queue, rider); int num_riders = 1;

D20

D21 int waits = 0;

D22 while (num_riders < CAB_SIZE) {

D23 // wait for more riders to the same dest_code

D24 while (queue_empty(&zipcode_queues[dest_code])) {

D25 mutex_unlock(&zipcode_locks[dest_code]);

D26 if (++waits == WAIT_TIME)

D27 goto drive_home;

D28 sleep(1);

D29 mutex_lock(&zipcode_locks[dest_code]);

D30 }

D31

D32 rider = deq(&zipcode_queues[dest_code]);

D33

D34 // remove the rider from the concert queue as well

D35 mutex_lock(&concert_lock);

D36 remove(&concert_queue, rider);

D37 mutex_unlock(&concert_lock);

D38

D39 rider->status = RIDING; enq(&cab_queue, rider); num_riders++;

D40 }

D41 mutex_unlock(&zipcode_locks[dest_code]);

D42

D43 drive_home:

D44 sleep(DRIVE_TIME);

D45

D46 // drop them all off!

D47 while (num_riders-- > 0) {

D48 rider = deq(&cab_queue);

D49 rider->status = AT_HOME;

D50 sem_signal(&rider->at_home);

D51 }

D52 return NULL;

D53 }

Page 18

Andrew ID:

M01 int main() {

M02 int z,r,d;

M03 mutex_init(&concert_lock);

M04 queue_init(&concert_queue);

M05

M06 for (z = 0; z < NUM_ZIPCODES; z++) {

M07 mutex_init(&zipcode_locks[z]);

M08 queue_init(&zipcode_queues[z]);

M09 }

M10

M11 for (r = 0; r < NUM_RIDERS; r++) {

M12 thr_create(rider, (void *)&riders[r]);

M13 }

M14

M15 // infinite stream of Ryed drivers -- this is "road show" demo code

M16 while (1) {

M17 thr_create(driver, (void*)NULL);

M18 sleep(15);

M19 }

M20 return 0;

M21 }

Page 19

Andrew ID:

(a) 10 points Unfortunately, the code shown above can deadlock. Show clear, convincing
evidence of deadlock. Begin by describing the problem in one or two sentences; then
clearly specify a scenario. If possible (i.e., for full credit), describe a deadlock
involving only one type of thread (some number of riders or some number
of drivers), though you may instead describe a deadlock involving multiple
thread types if necessary.

If you cannot describe a particular exact deadlock, or are having trouble describing how it
would occur, you may receive partial credit by describing which deadlock ingredients are
and/or are not exhibited by the code above. It is to your advantage to use scrap paper or
the back of some page to experiment with draft traces, so that the answer you write below
is easy for us to read.

Page 20

Andrew ID:

You may use this page for your deadlock answer if you wish.

Page 21

Andrew ID:

(b) 10 points Explain in detail how to fix the deadlock you have identified. You should

begin by providing a theoretical / conceptual rationale for how your solution works. While
showing code is not strictly required if your solution description is very clear, we expect
that most students will rewrite one to three small blocks of code. Please note that there are
multiple ways to solve any given deadlock–some good, but some which are very undesirable.
Because we will assign points according to our beliefs about quality, writing down the first
solution you think of may not be the best strategy.

Page 22

Andrew ID:

You may use this page for your deadlock answer if you wish.

Page 23

Andrew ID:

5. 10 points Nuts and bolts

You have signed up to spend Spring Break working on a one-week interdisciplinary super-agile
rapid-prototyping entrepreneurship project mini class, 99-999. Your group is working on building
a new operating system, similar in some ways to Plan 9, for a new processor, similar in many ways
to the venerable x86-32 platform—but with extra features related to security.

Unfortunately, something is wrong with your group’s project. The hardware people suspect the
software, and the software people suspect the hardware. Both the hardware people and the software
people suspect the compiler people. Because you are the group’s most interdisciplinary and agile
person (plus entrepreneurial!), you jump right in to debugging. You shrink the problem down, over
and over, until you are left with one simple C function that isn’t working, as shown below.

unsigned int offset(unsigned int a, unsigned int b) {

return a + b;

}

Eventually you figure out that the new agile interdisciplinary secure processor contains a serious
hardware flaw: the 32-bit add instruction computes wrong answers! In particular, the processor
correctly adds the values it operates on, but as it fetches the two source operands, it mistakenly
thinks the low-order 16 bits of each input is all zeroes. Here is an example.

MOVL $0xCAFEF00D, %eax # %eax = 0xCAFEF00D

MOVL $0xDEADC0DE, %edx # %edx = 0xDEADC0DE

ADDL %edx, %eax # %eax = %eax + %edx = 0xA9AB0000, should be 0xA9ACB0EB!!!

The software people are stunned at such an outcome, but the hardware people muttered “inputs
pulled to zero for lower 16 bits” and “bugs like this happen all the time.” Unfortunately, due to your
entrepreneurial development cycle, you can’t stop the project while your agile virtual fabrication
facility, sailing above the planet on a solar-powered glider, produces a working processor chip. A
decision is made to work around the problem in software. Your agile proof-of-concept task for the
current sprint is to rewrite the offset() function so that it produces correct answers. You are
allowed to use the broken ADDL instruction, but presumably will need to add some other code to
correct for the problem. Note that testing reveals that the SUBL instruction is broken in exactly
the same way.

The remainder of this page is intentionally blank.

Page 24

Andrew ID:

(a) 10 points Please provide a working implementation of the arithmetic core of the offset()
function. You may present your solution in C or in x86-32 assembly code as you prefer
(but you may not mix C and assembly code). If you write assembly code, you can assume,
as above, that the source operands are in %eax and %edx, i.e., you don’t need to worry
about x86-32 stack discipline. If you write C code, you may assume that the “+” operator
relies on the broken ADDL instruction, but that other C operators work correctly.

Page 25

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t)(void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */

void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 26

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

void mutex_destroy(mutex_t *mp);

void mutex_lock(mutex_t *mp);

void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);

void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);

void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 27

Andrew ID:

Typing Rules Cheat-Sheet

τ ::= α | τ → τ | µα.τ | ∀α.τ
e ::= x | λx:τ.e | e e | fix(x:τ.e) | foldα.τ (e) | unfold(e) | Λα.e | e[τ]

Γ, α type ` α type
istyp-var

Γ ` τ1 type Γ ` τ2 type
Γ ` t1 → t2 type

istyp-arrow

Γ, α type ` τ type
Γ ` µα.τ type istyp-rec

Γ, α type ` τ type
Γ ` ∀α.τ type istyp-forall

Γ, x : τ ` x : τ
typ-var

Γ, x : τ1 ` e : τ2 Γ ` τ1 type
Γ ` λx:τ1.e : τ1 → τ2

typ-lam
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
typ-app

Γ, x : τ ` e : τ Γ ` τ type
Γ ` fix(x:τ.e) : τ

typ-fix

Γ ` e : [µα.τ/α]τ Γ, α type ` τ type
Γ ` foldα.τ (e) : µα.τ

typ-fold
Γ ` e : µα.τ

Γ ` unfold(e) : [µα.τ/α]τ
typ-unfold

Γ, α type ` e : τ

Γ ` Λα.e : ∀α.τ typ-tlam
Γ ` e : ∀α.τ Γ ` τ ′ type

Γ ` e[τ ′] : [τ ′/α]τ
typ-tapp

λx:τ.evalue
val-lam

foldα.τ (e)value
val-fold

Λα.τ value
val-tlam

e1 7→ e′1
e1 e2 7→ e′1 e2

steps-app1

e1 value e2 7→ e′2
e1 e2 7→ e1 e

′
2

steps-app2

e2 value

(λx:τ.e1) e2 7→ [e2/x]e1
steps-app-β

fix(x:τ.e) 7→ [fix(x:τ.e)/x]e
steps-fix

e 7→ e′

unfold(e) 7→ unfold(e′)
steps-unfold1 unfold(foldα.τ (e)) 7→ e

steps-unfold2

e 7→ e′

e[τ] 7→ e′[τ]
steps-tapp1

(Λα.e)[τ] 7→ [τ/α]e
steps-tapp1

Page 28

Andrew ID:

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 29

