
15-410, S'181

Exam #1
Mar. 5, 2018

Dave EckhardtDave Eckhardt

Brian RailingBrian Railing

L21_Exam

15-410
“My other car is a cdr” -- Unknown



15-410, S'182

Synchronization

Checkpoint scheduleCheckpoint schedule
 Wednesday during class time
 Meet in Wean 5207

 If your group number ends with

» 0-2 try to arrive 5 minutes early

» 3-5 arrive at 10:42:30

» 6-9 arrive at 10:59:27
 Preparation

 Your kernel should be in mygroup/p3ck1
 It should load one program, enter user space, gettid()

» Ideally lprintf() the result of gettid()
 We will ask you to load & run a test program we will name
 Explain which parts are “real”, which are “demo quality”



15-410, S'183

Synchronization

Book report!Book report!
 Hey, “Mid-Semester Break” is just around the corner! 



15-410, S'184

Synchronization

Asking for trouble?Asking for trouble?
 If you aren't using source control, that is probably a

mistake
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 GitHub sometimes goes down!

» S'13: on P4 hand-in day (really!)
 Roughly 1/2 of groups have blank REPOSITORY directories...

 If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble



15-410, S'185

Synchronization

Google “Summer of Code”Google “Summer of Code”
 http://code.google.com/soc/ 
 Hack on an open-source project

 And get paid
 And quite possibly get recruited

 Projects with CMU connections: Plan 9, OpenAFS (see
me)

CMU SCS “Coding in the Summer”?CMU SCS “Coding in the Summer”?



15-410, S'186

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune



15-410, S'187

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian



15-410, S'188

A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~100 points,

~7 questions)



15-410, S'189

“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.



15-410, S'1810

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5



15-410, S'1811

Q1a – Recursion

Purpose: demonstrate suspicion of a dangerousPurpose: demonstrate suspicion of a dangerous
practicepractice

 Baseline definition: self-calling (maybe via another
function: mutual recursion)

 Key ideas: consumes stack space, stack space is tight in
most kernel run-time environments 

OutcomesOutcomes
 Many reasonable answers
 Good scores were not rare



15-410, S'1812

Q1b – “Paradise Lost”

Purpose: Demonstrate understanding of aPurpose: Demonstrate understanding of a
concurrency anti-patternconcurrency anti-pattern

 Key points
 A condition was true; then revoked; expected to be true later
 It is possible to be unlucky and observe while revoked
 Can often be fixed by replacing “if” with “while”

OutcomesOutcomes
 Many solid answers
 Some alarming answers

 “Something involving 3 threads and dequeue()”
 “Paradise Lost == TOCTTOU == race condition”

» Arguably there is a subset relationship

» But causes and fixing are very different

• “Add locks” != “Change 'if' to 'while'”



15-410, S'1813

Q2 – Pair-matcher race

What we were testingWhat we were testing
 Find a race condition
 Write a convincing trace

Good newsGood news
 2/3 of the class got 8/10 or better (it was an easy race)

Other newsOther news
 1/3 of the class got 9/10 or 10/10... not a lot

Common issuesCommon issues
 Omitting part of the trace, e.g., unlock
 Not making state changes clear
 Not stating the problem in words before writing the trace



15-410, S'1814

Q3 – “Reducing deadlock”

Question goalsQuestion goals
 Diagnose a deadlock situation, based on deadlock

principles
 Design (state) a solution

Good news / bad newsGood news / bad news
 A/B: 20%
 A/B/C: 42%

ObservationsObservations
 The deadlock was not easy to find
 Finding it without applying principles was probably

infeasible



15-410, S'1815

Q3 – “Reducing deadlock”

ApproachApproach
 “Just trying out traces” isn't likely to work

 Too many threads are required
 Threads have too many options



15-410, S'1816

Q3 – “Reducing deadlock”

ApproachApproach
 “Just trying out traces” isn't likely to work

 Too many threads are required
 Threads have too many options

 Part (a) – “list deadlock elements” – is an opportunity
 There are multiple hold&wait sites in the code (~5)
 A detailed list enables careful evaluation of which sites

can be involved in a cycle
 Some things look suspicious but can be proven to be

safe



15-410, S'1817

Q3 – “Reducing deadlock”

ApproachApproach
 “Just trying out traces” isn't likely to work

 Too many threads are required
 Threads have too many options

 Part (a) – “list deadlock elements” – is an opportunity
 There are multiple hold&wait sites in the code (~5)
 A detailed list enables careful evaluation of which sites

can be involved in a cycle
 Some things look suspicious but can be proven to be

safe
 Once you know how/where threads can deadlock, getting

the necessary setup is a much simpler problem
 Partial credit was assigned for “setup” problems



15-410, S'1818

Q3 – “Reducing deadlock”

NotesNotes
 One frequent mistake asserted a 3-thread deadlock that

requires the reservation system to be broken..
 But we don't think it is
 This was a partial-credit case too

 The 0'th operand is special, so handling it in a trace
requires care

AlarmingAlarming
 Some answers relied on misunderstanding of how

semaphores work (“early” signals are stored)
 This is an important thing to clear up!

 Some answers asserted patterns of acquire() and release()
that ignored how the code in operator() calls them



15-410, S'1819

Q4 – Abortable condition variables

Question goalQuestion goal
 Slight modification of typical “write a synchronization

object” exam question
 This was toward the easier end of questions in this class

Alarming core issueAlarming core issue
 When you signal a thread because you want it to run, it

will run right away (before any other thread)
 Note that Q2 was about this being false!

Less alarming but commonLess alarming but common
 Excessive use of the “world mutex” passed into the acv

results in excessive serialization



15-410, S'1820

Q4 – Abortable condition variables

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy 

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 See course staff about any general conceptual problems
revealed by this specific exam question



15-410, S'1821

Q4 – Abortable condition variables

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy 

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 See course staff about any general conceptual problems
revealed by this specific exam question

Alarming thingsAlarming things
 Spinning is not ok 
 Yield loops are “arguably less wrong” than spinning

 Motto: “When a thread can't do anything useful for a while, it
should block; when a thread is unblocked, there should be a
high likelihood it can do something useful.”

 Special case: mutexes should not be held for genuinely
indefinite periods of time



15-410, S'1822

Q4 – Abortable condition variables

Important general advice!Important general advice!
 It's a good idea to trace through your code and make sure

that at least the simplest cases work without races or
threads getting stuck

Other things to watch out forOther things to watch out for
 Memory leaks
 Memory allocation / pointer mistakes
 Forgetting to shut down underlying primitives
 Parallel arrays (use structs instead)



15-410, S'1823

Q4 – Abortable condition variables

OutcomeOutcome
 ~35% of the class “did ok” (scored 70% or better)
 There were a lot of 8/20 (== 40%), some below that”



15-410, S'1831

Q5 – Nuts & Bolts: exec() vs. registers

Question goalsQuestion goals
 Test understanding of process model

 fork(), exec(), how values get into registers

Expectations – Part AExpectations – Part A
 Descriptions of how the non-specified registers get

initialized naturally by the new program
 Straightforward: %eax, %ebx, etc.
 Important case: %ebp

» Need not be initialized by exec(); handled by prologue

Expectations – Part BExpectations – Part B
 Description of how a program could launch with access to

information it should not know



15-410, S'1832

Q5 – Nuts & Bolts: exec() vs. registers

Alarming claims – Part AAlarming claims – Part A
 “exec() is a function” - discussion based on caller-save

and callee-save registers
 But exec() is very much not a function
 And the question's focus was on getting the right values into

registers before the first actual C function is called
 “The new program doesn't need any values from the old

program”
 But part of exec()'s job is providing values from the old

program to the new program

Alarming claims – Part BAlarming claims – Part B
 If %ebp is not initialized, the program/kernel might crash



15-410, S'1833

Breakdown

90% = 63.090% = 63.0  0 students 0 students

80% = 56.080% = 56.0  1 student  1 student  (58/70 is top) (58/70 is top)

70% = 49.070% = 49.0 11 students11 students

60% = 42.060% = 42.0 11 students11 students

50% = 35.050% = 35.0  7 students 7 students

<50%<50%  3 students 3 students

ComparisonComparison
 Top score was low, so this wasn't an easy exam
 Median grade was 67%, so this wasn't an easy exam



15-410, S'1834

Implications

Some “curving” seems likelySome “curving” seems likely
 Details TBD

Score below 47?Score below 47?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works a lot better than “I'll try

harder”
 Strong suggestion: draft plan, see instructor



15-410, S'1835

Implications

Score below 40?Score below 40?
 Something went dangerously wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on all three “middle” questions

» Those questions are the “core material”

» Strong scores on Q1+Q5 don't make up for serious
trouble with core material

 Passing the final exam may be a serious challenge
 Passing the class may not be possible! 

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 See instructor



15-410, S'1836

Implications

““Special anti-course-passing syndrome”:Special anti-course-passing syndrome”:
 Only “mercy points” received on several questions
 Extreme case: no question was convincingly answered

 It is not possible to pass the class if both exams show no
evidence that the core topics were mastered!



15-410, S'1837

Implications

Special note for S'18Special note for S'18
 If you didn't get 13/20 on either Q3 or Q4 we should

probably talk


