Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (A), Spring 2019

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...7”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew

Username

Full

Name

Question | Max Points Grader
1. 10
2. 15
3. 15
4. 20
5. 10

70

Please note that there are system-call and thread-library “cheat sheets” at the end of the
exam.

If we cannot read your writing, we will be unable to assign a high score to your work.

Andrew ID:

1. | 10 points| Short answer.

(a) Explain the “three kinds of error.” For each, provide a name and/or brief
description and describe in a general high-level sense what should be done in response to

that kind of error. Explain why that is the thing that should be done about that kind of
error. We are expecting approximately two sentences for each kind.

Page 2

Andrew ID:

(b) Register dump.

Below is a register dump produced by the “Pathos” P2 reference kernel when it decided to kill a
user-space thread. Your job is to carefully consider the register dump and:

2

1. Determine which “wrong register value(s)” caused the thread to run an instruction which

resulted in a fatal exception.

2. Briefly state the most plausible way you think that register could have taken on that value
(i.e., try to describe a bug which could have this effect).

3. Then write a small piece of code which would plausibly cause the thread to die in the fashion
indicated by the register dump. This code does not need to implement exactly the set of steps
that you identified as “most plausible” above, or result in the same register values; you should
aim to achieve “basically the same effect.” Most answers will probably be in assembly language,
but C is acceptable as well. Your code should assume execution begins in main (), which has
been passed the typical two parameters in the typical fashion.

Please be sure that your description of the fatality and the code, taken together, clearly support
your diagnosis.

Registers:

eax: 0x00000001, ebx: 0x00000000, ecx: 0x00000000,

edx: 0x00000000, edi: 0x00000000, esi: 0x00000000,

ebp: Oxffffefec, esp: Oxffffefec, eip: 0x0010003c,

ss: 0x002b, cs: 0x0023, ds: 0x002b,

es: 0x002b, fs: 0x002b, gs: 0x002b,

eflags: 0x00010282

Page 3

Andrew ID:

You may use this page for the register-dump question.

Page 4

2. |15 points | Consider the following critical-section protocol:

© 00 N O O WN -

e e e
g W N = O

boolean waiting[2] = { false, false };
int turn = O;

do {
waiting[i] = true;
while (waiting[j]) {
waiting[i] = false;
while (turn == j)
continue;
waiting[i] = true;
b
...begin critical section...
...end critical section...
turn = j;
waiting[i] = false;
...begin remainder sectionm...
...end remainder section...
} while (1);

This protocol is presented in “standard form,” i.e.,

1.

There is a problem with this protocol. That is, it does not ensure that all three critical-section
algorithm requirements are always met. Identify a requirement which is not met and lay out a

When thread 0 is running this code, i == 0 and j =
code, i ==1 and j == 0, so ¢ means “me” and j means “the other thread.”

Andrew ID:

= 1; when thread 1 is running this

. Lines 2-8 are can be thought of roughly as “acquiring a lock” and lines 11-12 can be
thought of roughly as “releasing the lock.”

scenario which demonstrates your claim. Use the format presented in class, i.e.,

You may introduce temporary variables or other obvious notation as necessary to improve the
clarity of your answer. Be sure that the execution trace you provide us with is easy to read and
conclusively demonstrates the claim you are making. It is possible to answer this question with

TO T1

a brief, clear trace, so you should do what is necessary to ensure that you do.

Page 5

Andrew ID:

Use this page for the critical-section protocol question.

Page 6

Andrew ID:

You may use this page as extra space for the critical-section protocol question if you wish.

Page 7

Andrew ID:

3. “Mockchain” deadlock

After hearing a constant stream of arguments about how blockchain is the greatest technical innova-
tion since the invention of the Internet, the 15-410 course staff has decided to build something sim-
ilar, called Mockchain™ —perhaps because it isn’t exactly the same as more-popular blockchains,
or perhaps for some other reason. Here’s how it works.

e The Mockchain™ Consensus Network contains two types of participants: “miners” and
“clients.” Miners are responsible for reaching a consensus about which transactions are to
be recorded on the mockchain. Clients generate the transactions and send them off to miners
to be appended to the chain.

e When a miner receives a new transaction from a client, it packages it into a block and sends
the block to other miners to be “validated.” In a real blockchain, a block would likely contain
many transactions, but in the interest of simplicity, Mockchain blocks contain just a single
transaction. A block is considered “validated” once a majority of miners on the network have
approved the block. This means that the main responsibilities of the miner are twofold:

— Reacting to new transactions that clients have sent to the miner. Each transaction will
be packed into a block and proposed to all other miners on the network for validation.

— Validating the blocks that other miners on the network have proposed. For the sake of
this problem, you won’t need to worry much about how blocks are actually validated.
Assume that a seems_legit () function handles the validation step appropriately.

e When a client sends a transaction request to a miner, it blocks until the request has been
processed. At this point, the transaction has either been accepted or rejected. In other
blockchain systems, a client may choose to retry a transaction if it was rejected, but in this
problem all that happens is that the success/failure outcome is printed.

To investigate how successful this mockchain protocol could be, the 410 staff has written some
simulation code to model the interactions between clients and miners.

Some important notes about the simulation code:

e Since this is an exam setting, assume that functions such as thr_init(), thr_create(),
malloc(), mutex_init (), enq(), etc., never fail.

e Assume that any code which is not shown is entirely correct. In particular, this means that
your explanation of any bugs you may find should not rely on unspecified or assumed behavior
of functions for which we did not explicitly provide the implementation.

e The function clients use to generate their transactions is called some_random_transaction().
You don’t need to know what most of it does. However, you must assume that it initializes
the semaphore of the returned transaction with a count of 0.

e You’ll find that the main() function is not very interesting. It simply initializes some miners,
then launches threads to serve as miners and clients.

Sometimes, the simulation seems to “get stuck”. Help the 15-410 staff debug the Mockchain
simulator by examining the code provided on the subsequent pages.

Page 8

Andrew ID:

#define NUM_CLIENTS 10
#define NUM_MINERS 4
#define REQUIRED_VOTES ((NUM_MINERS / 2) + 1) // majority consensus

typedef struct {

void *data;

bool accepted;

sem_t finished; // initialized to O by some_random_transaction()
} transaction_t;

typedef struct {
queue_t incoming_transactions;
queue_t pending_validation;
cond_t cv;
mutex_t mutex;

} miner_t;

typedef struct A
void *data;
unsigned int approval_count;
unsigned int reply_count;
mutex_t mutex;
miner_t *owner;

} block_t;

/* array of all miners on the network */
miner_t miners[NUM_MINERS];

void ginit(queue_t *q);

void enq(queue_t *q, void *block);

int isempty(queue_t *q);

void *deq(queue_t *q); // don’t call if isempty()

/* called by miner to check if a block should be accepted */
extern bool seems_legit(block_t #*b);

/* called by client to generate a new transaction;
* assume transaction semaphore is initialized with a count of O

*/

extern transaction_t *some_random_transaction(void);

Page 9

Andrew ID:

/* create a new block */

block_t *block_new(miner_t *owner, void *data) {
block_t *block = calloc(l, sizeof(block_t));
block->data = data;
block->owner = owner;
mutex_init (&block->mutex) ;
return block;

/* respond to a request to validate a proposed block */
void validate_block(block_t *block) {
mutex_lock(&block->mutex) ;
block->reply_count++;
if (seems_legit(block))
block->approval_count++;
mutex_unlock(&block->mutex) ;
cond_signal (&(block->owner->cv));

/*
* propose a new block to be appended to Mockchain;
* blocks until other miners accept/reject proposal
*/
bool propose_block(miner_t *me, block_t *block) {
/* broadcast proposal to all the miners */
for (int i = 0; i < NUM_MINERS; i++) {
/* don’t send a request to ourself */
if (&miners[i] == me) continue;
mutex_lock(&miners[i] .mutex) ;
enq(&miners[i] .pending_validation, block);
cond_signal (&miners[i].cv);
mutex_unlock(&miners[i] .mutex) ;
}
/* approve our own block and wait for others to respond */
mutex_lock(&block->mutex) ;
block->approval_count++;
block->reply_count++;
while (block->reply_count < NUM_MINERS &&
block->approval_count < REQUIRED_VOTES) {
cond_wait (&me->cv, &block->mutex);
X
bool accepted = block->approval_count >= REQUIRED_VOTES;
mutex_unlock (&block->mutex) ;
return accepted;

Page 10

Andrew ID:

void *run_miner(void *arg) {
miner_t *me = (miner_t *) arg;
mutex_lock (&me->mutex) ;

while (1) {
/* wait for some work to do */
while(isempty (&me->pending_validation) &&
isempty (&me->incoming_transactions)) {

cond_wait (&me->cv, &me->mutex);

}

/* validate any blocks others may have proposed */

while (!isempty(&me->pending_validation)) {
block_t #*new_block = deq(&me->pending_validation);
validate_block(new_block);

}

/* accept new transactions from clients */

while (!isempty(&me->incoming_transactions)) {
transaction_t *t = deq(&me->incoming_transactions) ;
mutex_unlock (&me->mutex) ;
block_t *block = block_new(me, t->data);
t->accepted = propose_block(me, block);
sem_signal (&t->finished) ;
mutex_lock(&me->mutex) ;

}
return NULL;

void *run_client(void *arg) {
while (1) {
sleep(genrand() % 1000);
transaction_t *t = some_random_transaction();
miner_t *m = &miners[genrand() % NUM_MINERS];
mutex_lock (&m—->mutex) ;
enq(&m->incoming_transactions, t);
mutex_unlock (&m->mutex) ;
cond_signal (&m->cv) ;
sem_wait (&t->finished);
if (t->accepted)
printf ("Transaction accepted :)\n");
else
printf ("Transaction failed :(\n");
}
return NULL;

Page 11

Andrew ID:

void miner_init(miner_t *m)

{
qinit(&m->incoming_transactions) ;
ginit (&m->pending_validation) ;
cond_init (&m->cv) ;
mutex_init (&m->mutex) ;

}

int main(int argc, char *argv[]) {

/* exam: assume nothing fails */
thr_init (PAGE_SIZE);
sgenrand(get_ticks());

for (int i = 0; i < NUM_MINERS; i++)
miner_init (&miners[i]);

for (int i = 1; i < NUM_MINERS; i++)
thr_create(run_miner, (void#*) &miners[i]);

for (int i = 0; i < NUM_CLIENTS; i++)
thr_create(run_client, NULL);

run_miner ((void*) &miners([0]);
return O;

Page 12

Andrew ID:

(a) Unfortunately, the code shown above can deadlock. Show clear, convincing
evidence of a deadlock. Begin by describing the problem in one or two sentences; then
specify a scenario, and finally show a tabular execution trace. Missing, unclear, or uncon-
vincing traces will result in only partial credit. Your trace need not cover the operation
of main(). You can use obvious notation, e.g., “m0” can be “miner thread 0,” and it is
ok to simply mention a function running to completion in the obvious way without going
through every internal step, e.g., “b_new(&m[0],...)” can be a legitimate trace step for
a thread.

Page 13

Andrew ID:

You may use this page as extra space for the Mockchain question if you wish.

Page 14

Andrew ID:

You may use this page as extra space for the Mockchain question if you wish.

Page 15

Andrew ID:

(b) Explain in detail how the 15-410 course staff could modify Mockchain to avoid
deadlocks. Be sure to explain (in a theoretical / conceptual sense) why your solution
works. Solutions judged as higher-quality by your grader will receive more points. This
means that it is probably better to genuinely fix some problem than to replace a sensible
assumption/parameter with an unrealistic assumption/parameter, though we will consider
any solution you clearly describe. We are not expecting you to show code, though you may
if you wish.

Page 16

Andrew ID:

You may use this page as extra space for the Mockchain question if you wish.

Page 17

Andrew ID:

4. “Double-condition” Variables.

In lecture we talked about two fundamental operations in concurrent programming: brief mutual
exclusion for atomic sequences (provided in P2 by mutexes) and long-term voluntary descheduling
(provided by condition variables). As you know, these can be combined to produce higher-level
objects such as semaphores or readers/writers locks.

In this question, you will design a new sync primitive called a double-condition variable (“dcond”).
This new sync primitive is conceptually similar to having two separate condition variables and
enabling users to wait on both of them. Specifically, when a thread calls dcond wait () on a partic-
ular dcond_t, it should not be awakened until two corresponding dcond_signal () calls have been
made: one to each of the logical underlying condition variables. The interface you are responsible
for implementing is as follows:

e int dcond_init(dcond_t *dc) - initializes a double-condition variable. It is illegal for an
application to use the double-condition variable before it has been initialized or to initialize a
double-condition variable when it is already initialized and in use. dcond_init shall returns 0
on success or a negative error code on failure. Because this is an exam, you may assume that
allocating and initializing the necessary state will succeed (thus, this declaration shows the
function returning a value so that the declaration matches what a non-exam implementation
would declare).

e void dcond wait(dcond t *dc, mutex_t *mp) - The double-condition variable shall wait
until both underlying logical condition variables have been signaled (dcond_signal). The
mutex mp should be released when waiting and reacquired upon returning. Note that the
signals may arrive in either order!

e void dcond_signal(dcond_t *dc, int which) - signal the single underlying condition vari-
able specified by s. Note the #define values for which shown below.

e void dcond broadcast(dcond_t *dc, int which) - broadcast to the single underlying con-
dition variable specified by s. You are not responsible for implementing this.

e void dcond.destroy(dcond_t *dc) - destroy a double-condition variable. You are not re-
sponsible for implementing this.

Note the following definition for the which parameter:

#define CVAR_O O
#define CVAR_1 1

The following trace should illustrate the expected behavior of a double-condition variable.

The remainder of this page is intentionally blank.

Page 18

Andrew ID:

=3
=)
D

Thread 1 Thread 2 Comments

dcond_wait(dc, mp)

dcond_signal(dc, CVAR.O) || Signal the first logical cvar

dcond_signal(dc, CVAR._0) || Does not wake Thread 1!

dcond_signal(dc, CVAR_1)

Thread 1 is awakened

dcond wait(dc, mp)

dcond_signal(dc, CVAR_1)

dcond_signal(dc, CVAR.0O)

OO0 || U = W N+~

Thread 2 is awakened

Assumptions:

1.

You may use regular Project 2 thread-library primitives: mutexes, condition variables,
semaphores, readers/writer locks, etc.

. You may assume that callers of your routines will obey the rules. But you must be

careful that you obey the rules as well!

You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule() /make_runnable(), or any atomic instructions (XCHG,
LL/SC).

You must comply with the published interfaces of synchronization primitives, i.e., you
cannot inspect or modify the internals of any thread-library data objects.

. You may not use assembly code, inline or otherwise.

For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and
are expecting, a particular failure).

You may not rely on any data-structure libraries such as splay trees, red-black trees,
queues, stacks, or skip lists, lock-free or otherwise, that you do not implement as part of
your solution.

You may use non-synchronization-related thread-library routines in the “thr_xxx() fam-
ily,” e.g., thr_getid(). You may wish to refer to the “cheat sheets” at the end of the
exam. If you wish, you may assume that thr_getid() is “very efficient” (for example, it
invokes no system calls). You may also assume that condition variables are strictly FIFO
if you wish.

It 1s strongly recommended that you rough out an tmplementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you write anything on the next page.
If we cannot understand the solution you provide, your grade will suffer!

Page 19

Andrew ID:

(a) Please declare your dcond_t here. If you need one (or more) auxilary structures,
you may declare it/them here as well.

typedef struct {

} dcond_t;

Page 20

Andrew ID:

(b) | 15 points | Now please implement int dcond-init(), void dcond wait () and void dcond_signal().

Page 21

Andrew ID:

...space for your double-condition variable implementation ...

Page 22

Andrew ID:

...space for your double-condition variable implementation ...

Page 23

Andrew ID:

...space for your double-condition variable implementation ...

Page 24

Andrew ID:

5. Scheduler states

If we examine the scheduler’s data structures on a machine and observe two threads, one that is
runnable and one that is blocked, typically the runnable thread entered the kernel via an interrupt
and the blocked thread entered the kernel via a trap—but that might not necessarily be true!

(a) Describe a plausible scenario in which a thread that is currently runnable en-
tered the kernel via an interrupt—or argue that this is not a plausible situation.

(b) Describe a plausible scenario in which a thread that is currently runnable en-
tered the kernel via a trap—or argue that this is not a plausible situation.

Page 25

Andrew ID:

(c) Describe a plausible scenario in which a thread that is currently blocked entered
the kernel via a trap—or argue that this is not a plausible situation.

(d) Describe a plausible scenario in which a thread that is currently blocked entered
the kernel via an interrupt—or argue that this is not a plausible situation.

Page 26

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);
void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */
int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticksQ);

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t) (void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */
int new_pages(void * addr, int len);
int remove_pages(void * addr);

/* Console I/0 */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);
int get_cursor_pos(int *row, int *col);

/* Miscellaneous */
void halt();
int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */
void misbehave (int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 27

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);
void mutex_destroy(mutex_t *mp);
void mutex_lock(mutex_t *mp);
void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);
void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func) (void *), void *arg);
int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);
void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);
void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 28

Andrew ID:

Ureg Cheat-Sheet

#define SWEXN_CAUSE_DIVIDE 0x00 /* Very clever, Intel */
#define SWEXN_CAUSE_DEBUG 0x01

#define SWEXN_CAUSE_BREAKPOINT 0x03

#define SWEXN_CAUSE_OVERFLOW 0x04

#define SWEXN_CAUSE_BOUNDCHECK 0x05

#define SWEXN_CAUSE_OPCODE 0x06 /* SIGILL */

#define SWEXN_CAUSE_NOFPU 0x07 /#* FPU missing/disabled/busy */
#define SWEXN_CAUSE_SEGFAULT 0x0B /* segment not present */

#define SWEXN_CAUSE_STACKFAULT 0xO0C /* ouch */

#define SWEXN_CAUSE_PROTFAULT 0x0D /#* aka GPF */

#define SWEXN_CAUSE_PAGEFAULT O0xOE /#* cr2 is valid! */

#define SWEXN_CAUSE_FPUFAULT 0x10 /* old x87 FPU is angry */
#define SWEXN_CAUSE_ALIGNFAULT Ox11

#define SWEXN_CAUSE_SIMDFAULT 0x13 /* SSE/SSE2 FPU is angry */

#ifndef ASSEMBLER

typedef struct ureg_t {
unsigned int cause;
unsigned int cr2; /* Or else zero. */

unsigned int ds;
unsigned int es;
unsigned int fs;
unsigned int gs;

unsigned int edi;
unsigned int esi;
unsigned int ebp;
unsigned int zero; /* Dummy %esp, set to zero */
unsigned int ebx;
unsigned int edx;
unsigned int ecx;
unsigned int eax;

unsigned int error_code;
unsigned int eip;
unsigned int cs;
unsigned int eflags;
unsigned int esp;
unsigned int ss;

} ureg_t;

#endif /* ASSEMBLER */

Page 29

Andrew ID:

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 30

