
15-410, S'231

Exam #1
Mar. 12, 2023

Dave EckhardtDave Eckhardt

L20_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, S'232

Synchronization

Checkpoint scheduleCheckpoint schedule
 Friday during class time
 Meet in Wean 5207

 If your group number ends with

» 0-2 try to arrive 10:55-11:00 (5 minutes early)

» 3-5 arrive at 11:12:30

» 6-9 arrive at 11:30:27
 Preparation

 Your kernel should be in mygroup/p3ck2
 We are expecting everybody (even if not quite done)

» Unless you notify us by noon on Thursday

15-410, S'236

Synchronization

Checkpoint 2 - alertsCheckpoint 2 - alerts
 Reminder: context switch ≠ timer interrupt!

 Timer interrupt is a special case
 Looking ahead to the general case can help you later

 Please read the handout warnings about context switch
and mode switch and IRET very carefully

 Each warning is there because of a big mistake which was
very painful for previous students

15-410, S'238

Synchronization

Book report!Book report!
 This your approximately-mid-semester reminder about the

book report assignment

15-410, S'239

Synchronization

Asking for trouble?Asking for trouble?
 If you aren't using source control, that is probably a

mistake
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 GitHub sometimes goes down!

» S'13: on P4 hand-in day (really!)
 Roughly 50% of groups have blank REPOSITORY

directories...
 If your code isn't built and tested on Andrew Linux every

two or three days, you are asking for trouble
 Don't forget about CC=clang / CC=clangalyzer
 Using a variety of compilers is likely to expose issues

 Running your code on the crash box may be useful
 But if you aren't doing it fairly regularly, the first “release”

may take a long time

15-410, S'2311

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

15-410, S'2312

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, S'2315

A Note for Posterity

The S'23 mid-term exam occurred during COVID-19The S'23 mid-term exam occurred during COVID-19

But it was an “arguably roughly typical” examBut it was an “arguably roughly typical” exam

15-410, S'2317

A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~85 points,

~6 questions)

15-410, S'2319

Please Avoid Faint Pencil!

Some people wrote using pencilSome people wrote using pencil
 Some wrote with faint pencil!

 Luckily we did not use Gradescope this time
 But some graders expressed some concern

 Please do not write faintly with pencil on the final exam!
 In any class!

15-410, S'2320

“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.

...though it might instead indicate a complex...though it might instead indicate a complex
subtlety...subtlety...

 ...which we believe will benefit from personal counseling,
not just a brief note, to clear up.

““See Instructor”...See Instructor”...
 ...means it is probably a good idea to see an instructor...
 ...it does not imply disaster.

15-410, S'2321

“Low Exam-Score Syndrome”

What if my score is really low????What if my score is really low????
 It is frequently possible to do dramatically better on the

final exam
 Specific suggestions later

15-410, S'2322

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, S'2325

Q1 – Short Answer

Three partsThree parts
 “Three kinds of error”
 P2 examples of two kinds
 “Paradise Lost”

15-410, S'2326

Q1a/b – Three kinds of error

Purpose: demonstrate grasp of a robustness practicePurpose: demonstrate grasp of a robustness practice
 Hopefully P2 involved careful error handling
 Hopefully P3 will involve careful error handling
 “Robust code is structurally different than fragile code”
 P3 requires not just code but structurally non-fragile

code.

If you were lost on this question...If you were lost on this question...
 We had a lecture on this topic (February 3)
 Other “odd” lectures to possibly review

 Debugging, Questions
 #define, #include
 We expect you to know and apply all of this material

15-410, S'2327

Q1a/b – Three kinds of error

Official trichotomyOfficial trichotomy
 Resolvable – so resolve it
 Reportable – so report it
 “It's over”

 Involve the developer, because the program is broken
 Stop the program before propagating lies

Not really in the same spaceNot really in the same space
 “I shouldn't have written this code, so I need to re-design”
 That was generally accepted anyway

15-410, S'2328

Q1a/b – Three kinds of error

Not the core issue: Not the core issue: “common error vs. rare error”“common error vs. rare error”
 That doesn't help with, e.g., “page fault”

 Page faults aren't super-common
 Some page faults are resolvable
 Some page faults are fatal

15-410, S'2329

Q1a/b – Three kinds of error

Not the core issue: Not the core issue: “common error vs. rare error”“common error vs. rare error”
 That doesn't help with, e.g., “page fault”

 Page faults aren't super-common
 Some page faults are resolvable
 Some page faults are fatal

 The core issue is which {…} code is needed
 It is important to write different code for {…}

» xmalloc() is wrong (for robust code) exactly because it is
a way to write the same code for different cases

 It is important to be confident about which case is which

15-410, S'2330

Q1a/b – Three kinds of error

Not the core issue: Not the core issue: “common error vs. rare error”“common error vs. rare error”
 That doesn't help with, e.g., “page fault”

 Page faults aren't super-common
 Some page faults are resolvable
 Some page faults are fatal

 The core issue is which {…} code is needed
 It is important to write different code for {…}

» xmalloc() is wrong (for robust code) exactly because it is
a way to write the same code for different cases

 It is important to be confident about which case is which

ExtraneousExtraneous
 “Lock contention”
 Forgot to increment loop variable
 O(N**2) instead of O(log log N)

15-410, S'2331

Q1a/b – Three kinds of error

Alarming problems (practice)Alarming problems (practice)
 “return;” from a void function

 That is covering up a problem, not handling it
 yield loop

 Hoping somebody else can solve the problem won't work
well if nobody does

 “Hold & yield” is basically “hold & wait”...uh-oh...
 silent vanish

 This is not supportive of anybody fixing anything

15-410, S'2332

Q1a/b – Three kinds of error

Practice suggestionsPractice suggestions
 Try to have a centralized reporter

 Java, Rails, … produce stack traces

» Useful for many errors
 The Pathos reference kernel produces register dumps

» Useful for many errors
 Try to have a good invocation pattern

 assert(0) is not a very good invocation pattern

15-410, S'2333

Q1c – “Paradise Lost”

Purpose: Demonstrate understanding of aPurpose: Demonstrate understanding of a
concurrency anti-patternconcurrency anti-pattern

 Key points
 A condition was true; then revoked; expected to be true later
 It is possible to be unlucky and observe while revoked
 Can often be fixed by replacing “if” with “while”

OutcomesOutcomes
 Many solid answers
 Some alarming answers

 “Something involving 3 threads and dequeue()”
 “Paradise Lost == TOCTTOU == race condition”

» Arguably there is a subset relationship

» But causes and fixing are very different

• “Add locks” != “Change 'if' to 'while'”

15-410, S'2334

Q1 – Results

ScoresScores
 ~60% of the class scored 8/10 or above (good)
 ~25% of the class scored below 6/10 (… … ...)

15-410, S'2335

Q2 – Critical-Section Problem

What we were testingWhat we were testing
 Ability to find a bounded-waiting problem
 Ability to write a clear execution trace
 Ability to solve a bounded-waiting problem

Odd feature of the problemOdd feature of the problem
 This code was discussed in class!

Many scores were highMany scores were high
 Good!

15-410, S'2336

Q2 – Critical-Section Problem

Some disturbing features were observedSome disturbing features were observed
 Some traces were not easy to read

 It is to your benefit to be good about thinking
scenarios through, and notation matters

 Plus, you still have a final exam to take...
 A few people misinterpreted the code (that can happen)
 Roughly 10% of suggestions for fixing the problem made

it worse
 Spin-waiting
 Deadlock

If you had trouble with this question...If you had trouble with this question...
 ...please figure out why, and how to practice. This is

core material.

15-410, S'2337

Q3 – Library Deadlock

Parts of the problemParts of the problem
 Find the deadlock
 Suggest a fix

Results – findingResults – finding
 Most people correctly described a reachable deadlock
 Roughly 1/3 found a minimal-thread-count deadlock

 The problem structure strongly implies how many that is
 Some people used 1 extra thread (ok)
 Some people didn't attempt an explanation of how many

threads are necessary

Most-common mistakesMost-common mistakes
 Insufficient justification of a claimed deadlock state
 Impossible traces (too many copies of a book)

» Writing a clear trace is an important mental tool

15-410, S'2338

Q3 – Library Deadlock

Results – fixingResults – fixing
 Many solutions are plausible and received credit
 Terminology note: preemption is taking a resource from

somebody else

OverallOverall
 While analysis, thought, and tracing were required, this

was a mostly straightforward question

 75% of the class scored 80% or better

15-410, S'2339

Q4 – “Simulation Clock”

Question goalsQuestion goals
 Variant of typical “write a synchronization object” exam

question
 This one was “roughly typical” (maybe “medium-hard”)

 Requirements / solution structure were a little atypical
 Spec and test code were arguably better than typical

15-410, S'2340

Q4 – “Simulation Clock”

Question goalsQuestion goals
 Variant of typical “write a synchronization object” exam

question
 This one was “roughly typical” (maybe “medium-hard”)

Scores varied!Scores varied!
 Median score was 14/20 (70%)
 30% of class got 16/20 (80% score) or better
 60% of class got 14/20 (70% score) or better
 But ~33% of class got 10/20 (50% score) or worse

 Primary low-score causes

» Parts missing (tick() not waiting ever)

» Progress failure (wait before ack)

» “Double churn”, “Churn”

» Yield loop(!) / spinning(!!)

15-410, S'2341

Q4 – “Simulation Clock”

Alarming memory mishapsAlarming memory mishaps
 mutex_init() passed an uninitialized pointer
 init() refusing to work on random pieces of memory
 free() called on memory that didn't come from the heap

These alarming things should be fixed These alarming things should be fixed soonsoon!!

15-410, S'2342

Q4 – “Simulation Clock”

““Structurally not ok”Structurally not ok”
 #define MAX_THREADS 1000

 A thread cap is so rare that it must be explicitly authorized
 The problem provides a handy alternative

 Assuming thr_getid() returns values between 0 and 1000
 This can happen only in super-special-case situations
 So rare it must be explicitly authorized
 The problem has two workable alternatives (at least)

 malloc() on demand for linked-list nodes
 This is a “structurally wrong meme” - always strive to avoid!
 The problem provides a handy alternative
 Please review P2 handout material on “return values”
 Beware: P3 faces similar considerations!

15-410, S'2343

Q4 – “Simulation Clock”

Synchronization problemsSynchronization problems
 Waiting before acking is simple progress failure
 “Double churn”

 Each waiter is awakened many times, not once
 tick() thread is awakened many times, not once

 “Excessive tick() serialization”
 tick() must awaken N threads
 tick() must hear back from N threads
 But the N threads should be allowed to run in parallel!

 Holding a mutex for O(N)
 Mutexes are not the sole locking tool available

 Scanning a collection without holding any lock
 Returning a random value

 mutex_unlock(&m); return (ptr->field);

15-410, S'2344

Q4 – “Simulation Clock”

““Glitches”Glitches”
 lock() twice on the same mutex
 Forgot cond_wait() takes two parameters

 It is really hard to write correct code without this
 Forgot unlock()
 Forgot signal()
 Forgot destroy()
 Forgot free()

15-410, S'2345

Q4 – “Simulation Clock”

ApproachApproach
 Pseudo-code/outline strongly suggested

 block(), register(), ack(), collect(), awaken()
 Pseudo-code/outline all parts before coding any part
 Consider writing helper functions!

 “First I'll code up wait(), then I'll code up tick()” is much
less likely to result in correct code

15-410, S'2346

Q4 – “Simulation Clock”

General synchronization-calamity checklistGeneral synchronization-calamity checklist
 Deadlock
 Progress failures (e.g., losing threads)

 Unlocking not-held locks
 Mutual exclusion failures
 Spinning is not ok

 Yield loops are “arguably less wrong” than spinning
 Motto: “When a thread can't do anything useful for a

while, it should block; when a thread is unblocked, there
should be a high likelihood it can do something useful.”

 Special case: mutexes should not be held for genuinely
indefinite periods of time

15-410, S'2347

Q4 – “Simulation Clock”

Important general advice!Important general advice!
 It's a good idea to trace through your code and make sure

that at least the simplest cases work without races or
threads getting stuck

 Maybe figure out which operation/case is “the hard one”
and pseudo-code that one before coding the easy ones?

Other things to watch out forOther things to watch out for
 Memory leaks
 Memory allocation / pointer mistakes
 Forgetting to shut down underlying primitives
 Parallel arrays (use structs instead)

15-410, S'2348

Q5 – Nuts & Bolts: “wrapper()”

PurposesPurposes
 Verify “stack planning”
 Confirm x86-32 asm coding conventions

OutcomesOutcomes
 75% of class got 8/10 or better

15-410, S'2349

Q5 – Nuts & Bolts: “wrapper()”

ConcerningConcerning
 Not restoring %esp / %ebp
 Forgetting to call f()
 Forgetting that x86 stacks grow down

 Quick reference by a former student: stackgrowsdown.com

CommonCommon
 Off-by-one: storing into *stack_high
 Inverting order of parameter pushes
 Forgetting f() can trash caller-save registers

15-410, S'2350

Breakdown

90% = 58.590% = 58.5 9 students (57.0 and up) 9 students (57.0 and up)

80% = 52.080% = 52.0 7 students 7 students

70% = 45.570% = 45.5 17 students (45.0 and up)17 students (45.0 and up)

60% = 39.060% = 39.0 3 students (38.0 and up) 3 students (38.0 and up)

50% = 32.550% = 32.5 2 students (32.0 and up) 2 students (32.0 and up)

40% = 26.040% = 26.0 1 student 1 student

<40%<40% 0 students 0 students

Comparison/calibrationComparison/calibration
 These scores don't look blatantly problematic

15-410, F'2151

Implications

Score below 45?Score below 45?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam

15-410, F'2152

Implications

Score below 45?Score below 45?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works a lot better than “I'll try

harder”
 Strong suggestion:

» Identify causes, draft a plan, see instructor

15-410, F'2153

Implications

Score below 39?Score below 39?
 Something went noticeably wrong

 It's important to figure out what!
 Passing the final exam could be a challenge
 Passing the class may be at risk!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 We don't know the format of the final exam yet, but a strong
grasp of key concepts, especially concurrency, is important

15-410, F'2154

Implications

Score below 39?Score below 39?
 Something went noticeably wrong

 It's important to figure out what!
 Passing the final exam could be a challenge
 Passing the class may be at risk!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 We don't know the format of the final exam yet, but a strong
grasp of key concepts, especially concurrency, is important

 Try to identify causes, draft a plan, see instructor
 Good news: explicit, actionable plans usually work well

15-410, S'2355

Action plan

Please follow steps in order:Please follow steps in order:
1. Identify causes
2. Draft a plan
3. See instructor

15-410, S'2356

Action plan

Please follow steps in order:Please follow steps in order:
1. Identify causes
2. Draft a plan
3. See instructor

Please avoid:Please avoid:
 “I am worried about my exam, what should I do?”

 Each person should do something different!
 The “identify causes” and “draft a plan” steps are individual,

and depend on some things not known by us

15-410, S'2357

Action plan

Please follow steps in order:Please follow steps in order:
1. Identity causes
2. Draft a plan
3. See instructor

Please avoid:Please avoid:
 “I am worried about my exam, what should I do?”

 Each person should do something different!
 The “identify causes” and “draft a plan” steps are individual,

and depend on some things not known by us

General pleaGeneral plea
 Please check to see whether there is something we

strongly recommend that you have been skipping
because you never needed to do that thing before

 This class is different

