
Building Minority Language Corpora by Learning to Generate Web
Search Queries

Carnegie Mellon University, Center for Automated Learning and Discovery, Technical Report

CMU-CALD-01-100

Rayid Ghani Rayid.Ghani@cs.cmu.edu

Center for Automated Learning & Discovery, Carnegie Mellon University, Pittsburgh, PA, USA

Rosie Jones Rosie.Jones@cs.cmu.edu

Language Technologies Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
USA

Dunja Mladenic Dunja.Mladenic@{ijs.si,cs.cmu.edu}

J. Stefan Institute, Ljubljana, Slovenia and Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

The Web is an obvious source of valuable information but the process of collecting, organizing and
utilizing these resources is difficult. We describe CorpusBuilder, an approach for automatically
generating Web-search queries for collecting documents matching a minority concept. We use
the concept of text documents belonging to a minority natural language on the Web. Individual
documents are automatically labeled as relevant or non-relevant using a language filter and the
feedback is used to learn what query-lengths and inclusion/exclusion term-selection methods are
helpful for finding previously unseen documents in the target language. Our system learns to
select good query terms using a variety of term scoring methods. We find that using odds-ratio
scores calculated over the documents acquired so far was one of the most consistently accurate
query-generation methods. We also parameterize the query length using a Gamma distribution
and present empirical results with learning methods that vary the time horizon used when learning
from the results of past queries. We find that our systems performs well whether we initialize it
with a whole document, or with a handful of words elicited from a user. Experiments applying the
same approach to multiple languages are also presented showing that our approach generalizes
well across several languages regardless of the initial conditions.

1. Introduction

Electronic text corpora are used for modeling language in many language technology applications, includ-
ing speech recognition (Jelinek, 1999), optical character recognition, handwriting recognition, machine
translation (Brown et al., 1993), and spelling correction (Golding & Roth, 1999). They are also useful for
linguistic and sociolinguistic studies, as they are readily searchable and statistics can easily be computed.

Current methods for creating text corpora for specific languages require a lot of manual human effort and are
very time-consuming. The Linguistic Data Consortium (LDC) has corpora for twenty languages (Liberman
& Cieri, 1998) while Web search engines currently perform language identification on about a dozen of the
languages they index, allowing language-specific searches in those languages. Documents in many other

languages are also indexed, though no explicit labeling of the language they are written in is available.

The WWW has been gaining popularity as a resource for multilingual content. Resnik (Resnik, 1999)
explored the Web as a source for parallel text and automatically constructed a parallel corpus of English
and French. In this paper, We describe techniques which only require the user to give a handful of
keywords or documents for automatically collecting language specific resources from the Web and present a
system which automatically generates Web search queries to construct corpora for minority languages. Our
proposed approach requires no human intervention once the system is provided with the initial documents
and is a very cheap and fast way to collect corpora for minority languages from the Web.

In general, to quickly find documents in a specific language, we need to be able to construct queries that
both find a wide range of documents in the target language, and that filter out a large proportion of more
and less closely related languages. Our hypothesis is that by selecting appropriate inclusion and exclusion
terms from documents already collected, and using the results of classification by a high-precision language
filter, we can construct very high-precision queries automatically. This approach should work well without
specialized knowledge of which languages are related.

In this paper we focus on a language-filter as a high-precision classifier, and how query-generation can
bring in a much higher proportion of documents in the target language than random crawling, or use of
a search engine’s “Related Documents” option. We explore different term-selection methods and lengths
for generating queries and use on-line learning to modify the queries based on feedback by the language
filter. We show that starting from a single document in the target concept, our methods can learn to
generate queries that can acquire a reasonable number of documents in Slovenian from the Web and that
our approach also generalizes to other languages that are also minority languages on the Web.

2. Related Work

While search-engines are an invaluable means of accessing the Web for users, automated systems for
learning from the Web have primarily been installed in crawlers, or spiders. A new generation of algorithms
is seeking to augment the set of search capabilities by combining other kinds of topic or target-directed
searches.

Glover and colleagues (Glover et al., 2001) use machine learning to automatically augment user queries for
specific documents with terms designed to find document genres, such as home-pages and calls for papers.
Rennie and McCallum (Rennie & McCallum, 1999) use reinforcement learning to help a crawler discover
the right kinds of hyper-links to follow to find postscript research papers. Diligenti et al. (Diligenti et al.,
2000) make use of hyper-link structure to learn naive Bayes models of documents a few back-links away
from target documents to aid a crawler. WebSail (Chen et al., 2000) uses reinforcement learning based on
relevance feedback from the user. Our approach differs from WebSail in that we derive our learning signal
automatically from a language filter, and do not require any user input. Boley et al. (Boley et al., 1999)
proposed using the most-frequent words for query generation for their WebACE system, generating these
from clusters, seeking to maximize term-frequency and document frequency of the terms selected. They
used stemmed versions of words as query terms. They showed by example that automatically generated
queries with a combination of conjunctive and disjunctive terms can be used to find more related documents.
They used queries that used a combination of conjunctive and disjunctive terms. However, they did not
evaluate a system employing automatic query-generation.

Ghani and Jones (Ghani & Jones, 2000) described an algorithm for building a language-specific corpus
from the World-Wide Web. However, their experiments were limited to a small closed corpus of less than
20,000 documents, vastly limiting the generalization power of their results to the Web. They also did not
investigate the use of learning. They showed that single word queries were sufficient for finding documents
in Tagalog, and that selecting the query-words according to their probabilities in the current documents

Web

Feature statistics

Initial Docs

build
Query

Filter

Relevant

Non-Relevant

Learning

Figure 1. System Architecture

performed the best. It is important to note that their experiments were run on a small corpus1 of Tagalog
documents and other distractor documents collected from the web and stored on disk. We compared their
best-performing methods against other query generation methods and lengths, on the tasks of finding both
Tagalog and Slovenian documents on the Web and found that applying single-word term-frequency and
probabilistic term-frequency queries to the Web for Slovenian results in relatively low precision and using our
odds-ratio query generation method described in section 3.3 outperforms the probabilistic term-frequency
approach with single include and exclude-word queries. Furthermore, using more words in the query (3 for
inclusion and 3 for exclusion) performs better than the single word queries previously used.

3. CorpusBuilder System Description

In this section we describe the CorpusBuilder architecture, the query-generation methods and the target
concept filter, which is a language-filter for different natural languages. We use the feedback from the
language filter as a training signal for learning the ideal query length and query term-selection method.

3.1 General Algorithm

CorpusBuilder iteratively generates queries, in order to build a collection of documents belonging to the
target concept. The target concept is defined by one or more initial documents provided by the user,
and the target concept filter (a classifier with which we decide if a particular document belongs to the
target concept). The initial input is two small sets of documents, relevant and non-relevant. Given these
documents, a term selection method is used to select words from the relevant and non-relevant documents
to be used as inclusion and exclusion terms for the query respectively. This query is sent to the search
engine and the highest ranking document is retrieved, passed through the language filter and added to
the set of relevant or non-relevant documents according to the classification by the filter. The process is
then iterated, updating at each step the set of documents that the words are selected from. The overall
architecture is shown in Figure 1. When querying the search engine, if we issue a new query, the first hit is
used but the remaining hits are stored to a file for efficiency so that in the future use we avoid consulting
the search engine for the same query. If we have searched using the same query before, we take the next
unseen hit from our file caching the previous response of the search engine on that query. If all hits have
been seen, no hit is returned.

The general algorithm is as follows:

1. Initialization (see Section 3.2 for description)
• RelDocumentList = a single document belonging to the target concept
• RelWordFrequencies = word frequencies(RelDocumentList)

1the corpus consisted of 500 Tagalog documents and 15000 documents mostly in English and Brazilian Portuguese

• NonRelDocumentList = one or more documents not belonging to the target concept
• NonRelWordFrequencies = word frequencies(NonRelDocumentList)

2. Generate Query using terms from relevant and non-relevant documents (Section 3.3)
• select k inclusion terms using generate words(RelWordFrequencies)
• select k exclusion terms using generate words(NonRelWordFrequencies)
• search the Web using a query q of the form “+incTerm1..+incTermk−excTerm1..−excTermk”

3. Retrieve a Document
• if q is a new query, issue to web search engine, and take first hit URL
• if we have searched using q before, take next unseen hit. If all hits have been seen, no hit is

returned
• if no hit, return to step 2 else fetch document d corresponding to URL from the web

4. Filter: run filter on d and assign d to RelDocumentList or NonRelDocumentList

5. Update RelWordFrequencies, NonRelWordFrequencies based on relevant and non-relevant documents

6. Return to step 2

We retrieve a single document in step 3 to allow the algorithm maximum opportunities to improve per-
formance using the language filter at every step. Interesting future work would involve investigating how
the number of documents retrieved before updating models could be optimized, possibly by examining the
number of positive documents returned so far by the current query.

3.2 Initialization

We only describe the initialization for the relevant class, which is used for selecting inclusion terms for the
query. The operation for the non-relevant class and exclusion terms is performed identically.

A small number of documents in the target class are supplied as initial documents for the positive class.
We generally used a single initial document, and also experimented with using only 10 keywords in place
of a whole document. Term frequencies for all initial documents in the relevant language and irrelevant
languages are calculated separately. These then supply the information required by the query generation
methods: term frequency probabilities from relevant documents only, and where necessary, odds-ratio and
RTFIDF scores, which use statistics from both relevant and irrelevant documents. The details of the way
the query generation methods use these statistics is described in section 3.3.

3.3 Query Generation Methods

Given a collection of documents classified into relevant and non-relevant, the task of a query generation
method can be described as follows: examine current relevant and non-relevant documents to generate a
query which is likely to find documents that are similar (but not the same) to the relevant documents
(i.e. also relevant) and not similar to the non-relevant documents. This is analogous to sampling without
replacement. The Web contains different documents in a variety of natural languages. We use query gener-
ation and a search engine to sample from this document collection. Ghani and Jones (2000) experimented
with sampling with and without replacement and found that both strategies performed similarly for their
dataset.

We construct queries using only conjunction and negation of terms (literals). A query is defined to consist
of a set of terms required to appear in the documents retrieved (inclusion terms), and a set of terms
forbidden from appearing in the documents retrieved (exclusion terms). Consequently, each query can be
described by four parameters: the number of inclusion terms, the number of exclusion terms, the inclusion

term selection method, and the exclusion term selection method. This contrasts with full Boolean queries,
which give greater expressive power by also employing disjunction, and negation with a greater variety of
scope. We chose to use only conjunction to simplify the experiments.

For experiments that do not involve learning we set the number of inclusion terms equal to the number
of exclusion terms, and used a fixed term selection method throughout the entire experiment. The term
selection method selects k inclusion and k exclusion terms using the words that occur in relevant and
non-relevant documents, using different methods to select terms. Since our task does not have a fixed goal
in terms of a single best query, we need query generation methods that adapt to the current situation
where we have already acquired a set of documents from the target concept and do not want to explore
the same space again.

The query generation methods we use are as follows: uniform, term-frequency, probabilistic term-frequency,
rtfidf, odds-ratio, and probabilistic odds-ratio. Each is described below for inclusion terms with k being the
number of terms to be generated. The operation for exclusion terms is analogous, swapping relevant and
non-relevant documents where appropriate.

• uniform (UN) selects k terms from the relevant documents, with equal probability of each term being selected.

• term-frequency (TF) selects the k most frequent terms from the relevant documents.

• probabilistic term-frequency (PTF) selects k words from the relevant documents according to their unsmoothed maximum-
likelihood probabilities, that is, with probability proportional to their frequency. More frequent words are more likely to
be selected.

• rtfidf (RTFIDF) selects the the top k words ranked according to their rtfidf scores. The rtf score of a term is the total
frequency of that term calculated over all relevant documents as classified by the language filter. The idf score of a term is
calculated over the entire collection of documents retrieved, and is given by log(total number of documents

number of documents containing the term
).

rtfidf for a term is the product of rtf and idf.

• odds-ratio (OR) selects the k terms with highest odds-ratio scores. The odds-ratio score for a word w is defined as

log2(
P (w|relevant doc) ∗ (1− P (w|nonrelevant doc))
P (w|nonrelevant doc) ∗ (1− P (w|relevant doc)))

• probabilistic odds-ratio (POR) selecting words with probability proportional to their odds-ratio scores.

The simplest measure used as a baseline is random selection of terms, i.e. a uniform probability distribu-
tion is imposed over all words in the vocabulary (UN). Scoring terms according to their frequency (TF)
has been used as a simple measure known to give good results for feature scoring in document catego-
rization (Mladenic & Grobelnik, 1999), (Yang & Pedersen, 1997). Using a multinomial distribution over
frequency of terms (PTF - probabilistic-term-frequency) has been shown to perform better than simple
frequency on a similar problem (Ghani & Jones, 2000). Haines and Croft (1993) show that rtfidf is a good
scoring mechanism for information retrieval. Mladenic and Grobelnik (1999) have shown that scoring using
odds-ratio (OR) achieves very good results on document categorization when dealing with a minority con-
cept, which is exactly our problem scenario since Slovenian is a minority language on the Web. Motivated
by the superior performance of probabilistic term-frequency over term-frequency, we derived a variant of
odds-ratio, which is selecting terms according to a multinomial distribution over odds-ratio scores of terms
(POR - probabilistic-odds-ratio).

The query generated at each step may be a novel query, or one we have already issued, either because the
method is probabilistically selecting terms or because the addition of new documents did not change word
distributions in a way which influences the term selection.

3.4 Recovery from Empty Query Results

In the case of a deterministic term-selection method, such as term-frequency, rtfidf and odds-ratio, query
terms selected can change only when the underlying document statistics change through the addition of a

new document. When a query adds no new documents, we need a method of altering the query in order
for it to recover. We took the approach of successively incrementing a counter i, first through inclusion
terms, then through the exclusion terms, taking the i through i+ kth highest scoring terms till a query is
found which returns a URL.

3.5 Language Filter

After each query is generated, it is passed to a search engine, and the next matching document is retrieved.
We pass each document retrieved by a query through a language filter based on van Noord’s TextCat
implementation (van Noord, 1997) of Cavnar and Trenkle’s character n-gram based algorithm (Cavnar &
Trenkle, 1994). Cavnar and Trenkle show accuracy of over 90% on a variety of languages and document
lengths. We considered a document to belong to the target language if that language was top-ranked
by the language filter. To test the performance of the filter on Slovenian Web-pages, we asked a native
speaker to evaluate 100 randomly selected web-pages from a list of several thousand classified as Slovenian
by the language filter. 99 of these were in Slovenian, giving a precision of nearly 100%. An analogous
evaluation for web pages judged to be negative shows that 90-95% of the pages classified as non-Slovenian
were actually non-Slovenian. All our results are reported in terms of this automatic language classification.
No additional manual evaluation was carried out.

4. Choosing Query Parameters

In Section 3.3, we described the term-selection methods for generating queries. We conducted exhaustive
experiments comparing the performance of all the term-selection methods while varying the length of the
queries to gain insight into their relative performance. The minority concept we use for our experiments is
that of Slovenian on the Web. These experiments used three different initial documents and we found that
the variance in the results was small. The evaluation measures we used were (a) percentage of documents
retrieved in the target class (PosDocs) and (b) the number of documents in the target class per unique
web query (PosQueries). We compared the term selection methods according to these two performance
measures for each length independently.

For each document-based experiment, our system had access to one positive document in the target lan-
guage. For experiments with Slovenian we supplied four negative example documents, one each in English,
Czech, Croatian and Serbian. In all experiments, the language model for the language filter was also
supplied.

4.1 Fixed Query Parameters

A summary of results for query-generation methods is given in Table 1, while detailed graphs of query-
length, query method, documents retrieved and queries issued are shown in Figure 2. Odds-ratio (OR) is
consistently the best with respect to both evaluation measures. Observing the number of queries issued,
odds-ratio (OR) finds the greatest number of target documents. In terms of the number of documents
examined, odds-ratio is again the best (length 1 — 3) except when all methods have about the same
performance (length ≥ 4). For the two probabilistic methods PTF and PO the terms were probabilistically
selected according to their score assigned by term-frequency and odds-ratio respectively. We also tested a
variant (PORH) selecting only among the top 50% of the terms (ranked according to their scores) and as
can be seen from the results in Figure 2, we found almost no difference between selecting probabilistically
among all or just among the top half of the terms. Note the differences in scale on the graphs in Figure 2.
Longer queries are much more likely to return no documents at all, and so can be costly. Odds-ratio
performed best for all query-lengths except 5, where term-frequency found many documents with few
queries, contrasting with query-length 1, where it found the least.

The comparison of different term selection methods given in Tabe 1 gives values after retrieving 3000
documents and values for 1000 issued queries, unless the result is marked by ∗, where the values are given

Len Methods ordered by their performance

wrt PosDocs measure after retrieving 3000 docs wrt PosQueries measure after issuing 1000 queries

1 68.8%(OR)>46%(PO)>39%(UN)>19.1%(PTF)> 8.9%(TF) 1.6(OR)>0.43(PO)>0.36(UN)>0.25(PTF)>0.09(TF)

3 82.3%(OR)>65.8%(UN)∗>64.1%(PTF)>33.2%(TF)>9.4%(PO)∗ 1.77(OR)>0.38(PTF)>0.18(TF)>0.094(PO)>0.035(UN)

5 92.4%(UN)∗>92.3%(PO)∗>81.5%(OR) >77.4%(PTF)>77.0%(TF) 1.2(OR)>0.53(TF)>0.14(PTF)>0.01(PO)>0.01(UN)

10 100%(PO)∗>88.7%(PTF) >79.2%(OR)>50%(UN)∗>7.0%(TF) 0.02(OR)>0.01(PTF)>0(TF)>0(PO)>0.001(UN)

Table 1. Comparison of different term selection methods for query length varied from 1 to 10.

at much lower number of documents. For instance, for PO and UN on length 5, less than 100 documents
and for length 10 less than 5 documents. This shows that the two methods are mostly issuing queries
which do not return any document (especially for longer queries) but the few successfully queries usually
return the target class documents.

A closer look at the results given in Table 2 and Figure 2 shows, for example, the following. For length 1
and issuing 1000 queries, odds-ratio gets over 1650 target language documents, while term-frequency gets
only about 90 of them. All the other methods are placed between the two getting about 250 (PTF) to
430 (PO) target language documents. After retrieving around 2000 documents using length 1, odds-ratio
achieved precision of 0.69, while probabilistic odds-ratio achieved 0.46, uniform about 0.39, probabilistic
term-frequency about 0.19 and term-frequency about 0.09 (see Table 1).

For length 3, after issuing 1000 queries, odds-ratio gets over 1750 target language documents, while uniform
gets only 35 of them. All the other methods are placed between the two getting 94 (PO), 182 (TF)
and 388 (PTF) target language documents. After retrieving around 3000 documents using length 3, the
highest precision was achieved by odds-ratio 0.82 and probabilistic term-frequency 0.64. For length 5, after
issuing 1000 queries, odds-ratio gets over 1100 target language documents, while probabilistic odds-ratio
and uniform get only about 10 of them each. term-frequency with 530 documents and probabilistic term-
frequency with 143 are between them. After 15 000 queries, term-frequency got about 4000 target language
documents, probabilistic term-frequency 1699, odds-ratio 1465 while probabilistic odds-ratio and uniform
had only 33 and 15 respectively. After retrieving around 3000 documents using length 5, the highest
precision was achieved by odds-ratio 0.82, probabilistic term-frequency 0.77 and term-frequency 0.77. With
higher lengths all the methods perform worse. Setting length to 7 resulted after 1000 queries with odds-
ratio having about 1300 documents in the target language while all the other methods had much lower
performance, probabilistic term-frequency with 10, probabilistic odds-ratio 4 and term-frequency and uniform
0. After retrieving around 1000 documents using length 7, the highest precision was achieved by odds-ratio
0.84, probabilistic term-frequency 0.78 while term-frequency had precision 0.82 on about 300 documents.
Probabilistic odds-ratio had the maximum precision of 1.00 but retrieving only 20 documents (all of them
in the target language) and using for that 56 855 (!) queries. For length 10 after issuing 1000 queries, no
documents in the target language was found by term-frequency and probabilistic odds-ratio, one document
was found by uniform, 10 by probabilistic term-frequency and 16 by odds-ratio. After retrieving around
150 documents using length 10, probabilistic term-frequency achieved precision 0.89 while term-frequency
achieved only 0.07. odds-ratio achieved precision of 0.79 after retrieving 755 documents. Uniform achieved
precision 0.5 retrieving only 2 documents ad using 6000 queries, while probabilistic odds-ratio achieved 1.0
retrieving only 4 documents and using 49177 queries.

We found that each method performs best at a small range of query lengths. For term-frequency, the
best performance is achieved with length 4 (when 4 terms are included and 4 terms are excluded). For
probabilistic term-frequency and odds-ratio length 3 gives the best results, while for probabilistic odds-ratio
using more than 1 include and 1 exclude term gives a very small number of the target language documents
while using a very large number of queries. Figures 3 and 4 show comparison of different lengths for the
term-frequency, probabilistic term-frequency, odds-ratio, probabilistic odds-ratio, rtfidf and uniform term
selection methods.

(a)

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000 6000

T
ar

ge
t D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Query Length 1

OR1
PTF1
UN1
TF1

RTFIDF1
PORH1

(b)

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
ar

ge
t D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Query Length 1

OR1
PTF1
UN1
TF1

RTFIDF1
PORH1

0

500

1000

1500

2000

2500

0 20000 40000 60000 80000 100000 120000

T
ar

ge
t D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Query Length 3

OR3
PTF3
UN3
TF3

RTFIDF3
PORH3

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000

T
ar

ge
t D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Query Length 3

OR3
PTF3
UN3
TF3

RTFIDF3
PORH3

0

1000

2000

3000

4000

5000

6000

7000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Query Length 5

OR5
PTF5
UN5
TF5

RTFIDF5
POR5

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Query Length 5

OR5
PTF5
UN5
TF5

RTFIDF5
POR5

0

100

200

300

400

500

600

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

T
ar

ge
t D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Query Length 10

OR10
PTF10
UN10
TF10

RTFIDF10
PORH10

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800

T
ar

ge
t D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Query Length 10

OR10
PTF10
UN10
TF10

RTFIDF10
PORH10

Figure 2. Comparison of different term selection methods for different query lengths measured against (a) the number of
queries and (b) the number of total documents examined. (a) Odds-ratio consistently finds more documents given the same
number of queries, except for length 5, where term-frequency finds high yield queries. Note the differences in scales on the
graphs; longer queries (eg., length 10) are much more likely to return no documents at all, and so can be costly. b)Odds-ratio
is consistently the most precise in finding Slovenian documents. Precision increases with the number of query terms, though
many query-methods are able to find very few total target-language documents when using long queries.

Len Performance measure Method
no. target documents after TF PTF OR PO UN

1 1000 queries 88 249 1652+ 427 364
2500 queries 118 529 — 640+ 786+
5000 queries 501 — — — —
1000 retrieved doc 93 261 636 461 382
3000 retrieved doc 266 573 1652+ (2402) 640+ (1391) 786+ (2013)
4000 retrieved doc 502 — — — —

3 1000 queries 182 388 1768+ 94 35
2500 queries 1377 426+ — 110 51
5000 queries 2094+ — — 125 64
15 000 queries — — — 176 100
25 000 queries — — — — 132
100 000 queries — — — — 246+
1000 retrieved doc 178 646 835 94 246+ (374)
3000 retrieved doc 996 1629+ (2540) 1768+ (2149) — —
5000 retrieved doc 1860 — — 125 —

5 1000 queries 530 143 1167 11 10
2500 queries 1586 349 1221 17 11
5000 queries 2524 673 1282 21 12
15 000 queries 4066 1699 1465 33 15
25 000 queries 5916 — 1572 46 22
100 000 queries — — 1889 73+ 30
1000 retrieved doc 721 799 844 73+ (79) 36+ (39)
3000 retrieved doc 2310 1881+ (2431) 1913+ (2348) — —
5000 retrieved doc 3915 — — — —
7000 retrieved doc 5551 — — — —

7 1000 queries 0 10 1384 4 2
2500 queries 0 55 1523+ 6 3
5000 queries 0 167 — 7 3
15 000 queries 5 289+ — 10 5
25 000 queries 356 — — 11 5
100 000 queries 363 — — 20+ 9
1000 retrieved doc 417+ (536) 289+ (352) 831 20+ (20) 10+ (10)
3000 retrieved doc — — 1523 (1823) — —
5000 retrieved doc — — — — —

10 1000 queries 0 10 16 0 1+
2500 queries 0 25 243 1 —
5000 queries 0 45 362 2 —
15 000 queries 0 102 436 3 —
25 000 queries 0 — 557 3 –
100 000 queries 6 — — 4+ –
1000 retrieved doc 11+ (157) 102+ (115) 598+ (755) 4+ (4) 1+ (2)
3000 retrieved doc — — — — —
5000 retrieved doc — — — — —

Table 2. Performance of different term selection methods for each query length varied from 1 to 10. Sign “+” next to the
number indicates that there were more target documents, but the experiments stopped before reaching the indicated number
of retrieved documents or queries.

(a)

0

1000

2000

3000

4000

5000

6000

0 5000 10000 15000 20000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

TF1
TF3
TF5
TF7

TF10

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd
Total Documents Retrieved

TF1
TF3
TF5
TF7

TF10

(b)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5000 10000 15000 20000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

PTF1
PTF3
PTF5
PTF7

PTF10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

PTF1
PTF3
PTF5
PTF7

PTF10

(c)

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000 10000 15000 20000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

OR1
OR3
OR5
OR7

OR10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

OR1
OR3
OR5
OR7

OR10

Figure 3. Comparison of performance for the same term selection methods using different lengths. (a) For term-frequency,
the best performance is achieved with length 4 (when 4 terms are included and 4 terms are excluded). (b) For probabilistic
term-frequency and (c) odds-ratio length 3 gives the best results.

(a)

0

100

200

300

400

500

600

700

0 5000 10000 15000 20000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

POR1
POR3
POR5
POR7

POR10

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd
Total Documents Retrieved

POR1
POR3
POR5
POR7

POR10

(b)

0

100

200

300

400

500

600

700

0 5000 10000 15000 20000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

RTFIDF1
RTFIDF3
RTFIDF5

RTFIDF10

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600 1800

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

RTFIDF1
RTFIDF3
RTFIDF5

RTFIDF10

(c)

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

UN1
UN3
UN5
UN7

UN10

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

UN1
UN3
UN5
UN7

UN10

Figure 4. Comparison of performance for the same term selection methods using different lengths. (a) For probabilistic odds-
ratio, (b) rtfidf and (c) uniform using more than 1 include and 1 exclude term gives a very small number of the target language
documents while using a very high number of queries.

5. Learning query parameters

As described in section 4.1, different methods excel with different query lengths. For term-frequency, for
example, the best performance is achieved with length 4 (when 4 terms are included and 4 terms are ex-
cluded). While the previous experiments permit us to see how different methods and query lengths perform
in isolation, it is still possible that the best overall querying strategy would use one method and length
initially, then change the ideal method and length as more and more documents in the target language
are retrieved. As corpus construction proceeds, our system may explore different parts of Web/feature
space and perform better using different querying mechanisms. This observation motivates a family of
algorithms that have access to the same term-selection methods as before and learn the ideal method and
length at different points in time. We describe these learning algorithms in the next section and also report
experimental results.

5.1 Learning Overview

Since our queries can be described by four parameters: Inclusion Term-Selection Method, Exclusion Term-
Selection Method, Inclusion Length, and Exclusion Length. Our learning methods should learn the ideal
parameters for a given target concept and adapt to changing environments. Since we believe that the
target concept is shifting (we always want previously unseen documents) and a query method that works
well in the beginning in one part of the feature space may not work well later during the process (when
the documents it finds have been exhausted), we incorporate some randomness in our learning methods.
Instead of learning the four parameters for a query directly, we focus on learning the success rate for
each term-selection method (term-frequency, probabilistic term-frequency, odds-ratio, and probabilistic odds-
ratio) and length (0—10) and then by imposing a multinomial distribution over all methods and lengths
(their probabilities being proportional to their success rates), we can probabilistically (according to the
multinomial distribution) select the parameter values. We do not use the uniform term-selection method
in our learning experiments since it performed poorly during experiments not involving learning (described
in Table ??).

Our general goal is to find a good querying mechanism in the shortest time possible. In this way, there
is a trade-off between exploration and exploitation. A method which quickly finds a reasonable querying
mechanism can then exploit that mechanism. However, an algorithm which spends more time searching for
a very strong querying mechanism may do better over the long term. Depending on whether our goal is to
acquire as many documents as possible, a fixed number, or documents with sufficient vocabulary coverage,
the ideal measurement statistic can vary.

5.2 Learning Methods

We performed experiments varying the time horizon used in learning: from all available history, to a time-
decaying view of the past, to a learner firmly rooted in the present. Since our target concept at every step
is previously unseen documents in the minority class, the set of target positive documents is reduced at
every step. Thus more recent queries may be more relevant and useful in generating the next query. At
the same time, the aggregated knowledge from past queries may prove invaluable for learning about the
task as a whole.

Here we describe the implementation of each method for on-line learning (Blum, 1996) of query-generation
methods. In the unparameterized-length setting the same algorithm is used for learning query lengths.

5.2.1 Memory-Less Learning (ML)

This was designed to permit a successful querying method to continue as long as it was finding positive
documents. The algorithm is as follows:

• Initialize: set uniform distribution over methods m in D(m)

• while(1)

1. Select a query-generation method mi according to D(m)

2. Generate a query with mi; fetch a document d

3. Update scores (repeat the previous method if successful, if not switch to some other method)

– if d is in the target language
D(mi) = 1, ∀mj, j 6= i,D(mj) = 0

– else { d is not in the target language or no new documents were found
D(mi) = 0, ∀mj , j 6= i,D(mj) = 1

|M |−1
}

4. Normalize scores to give probability distribution over methods, store in D(m)

Note that in step 3, the most recent method has probability 1 of being selected on success, otherwise it has
a zero probability of being selected, with a uniform probability distribution over the remaining methods.

5.2.2 Long-Term Memory Learning (LT)

This method estimates each method’s future probability of success based equally on all past performance.
We used two kinds of updating rules: additive update (LTA) outlined below and multiplicative (LTM),
Winnow-like update using β = 0.5. In Winnow-like updating, for the successful query-generation method
m (either length or term-selection method) we use Score(m) *= 1

β , and for an unsuccessful length or
scoring method we use Score(m) *= β.

• Initialize:

– assign each query-generation method m a positive score of 1, corresponding to a prior of one target language
document fetched; store scores in Pos(m).

– assign each query-generation method m a negative score of 1, corresponding to one non-target language document
fetched; store scores in Neg(m).

– Score(m) = Pos(m)
Pos(m)+Neg(m)

– Normalize scores to give probability distribution of methods, store in D(m)

• while(1)

– Select a query-generation method mi according to D(m)

– Generate a query with mi; fetch a document d

– Update scores

∗ if d is in the target language
Pos(mi) += 1

∗ else d is not in the target language or no new documents were found
Neg(mi) += 1

– Recalculate Score(mi) = Pos(mi)
Pos(mi)+Neg(mi)

– Normalize scores to give probability distribution over methods, store in D(m)

5.2.3 Fading Memory Learning (FM)

This algorithm bases some of the current performance on the past, but gradually reduces the impact of
learning experiences further in the past. The algorithm is as follows:

• Initialize: assign each query-generation method m a score of 1, corresponding to a prior of one target language document
fetched; store scores in S(m). Normalize scores to give uniform probability distribution D(m) over methods.

• while(1)

– Select a query-generation method mi according to D(m)

– Generate a query with mi;fetch a document d

– Update:

∗ decay scores: ∀m, D(m) *= α
∗ update scores:

1. if d is in the target language
S(mi) += 1

2. else { d is not in the target language or no new documents were found }
∀m 6= mi : S(m) += 1

(|M |−1)

∗ renormalize: normalize scores in S(m) and store as probability distribution in D(m)

For all experiments we set α = 0.9. Note that in step 2, we increase the scores of uninvolved methods in
the event of failure.

5.3 Results

5.3.1 Fixed-length Queries

In this experiment, to reduce the number of parameters to be learned, we fixed the query length for both
inclusion and exclusion terms. This is symbolized in graph titles by “IF” (assume methods are Independent
and take Fixed length). We ran experiments for each length separately. We found that the best performance
in terms of the number of target-language documents found was achieved by lengths 3 and higher, but in
terms of the number of queries used, lengths 1 to 3 were the best, closely followed by length 5, while higher
lengths used many more queries for the same number of the target-language documents. From this we can
conclude that the best performance is achieved when using length 3—5 (see Figure 5). Shorter queries are
more successful in getting documents but less accurate than the longer queries.

(a)

0

500

1000

1500

2000

2500

0 5000 10000 15000 20000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

FMIF1
FMIF3
FMIF5
FMIF7

FMIF10

(b)

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500 4000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

FMIF1
FMIF3
FMIF5
FMIF7

FMIF10

Figure 5. Fading Memory (FM) with fixed Query Length (IF) for query-lengths 1, 3, 5, 7 and 10 on Slovenian. The query-
selection method is probabilistically learned from a decaying record of past successes and failures. (a) With shorter queries,
we make less overall queries, as most return one or more documents. (b) With longer queries, we may make more hits on the
search engine, but will find target-language documents a high proportion of the time, when we find any at all.

5.3.2 Preferred Parameter Values

Our hypothesis here is that the learning methods will prefer the better-performing parameter values (length
and term selection method) from the earlier experiments (see Table ??). In order to test this, we recorded
probabilities of different parameter values at each iteration for different learning methods. The results in
Table 5.3.2 show that odds-ratio (OR) was preferred by all the learning methods for selecting include-terms
and that the number of include terms was typically lower than the number of exclude terms (1—7 vs. 4—
10). For selecting exclude terms, probabilistic odds-ratio was preferred in most cases, and Memory-Less
approach didn’t make difference in performance of the available term-selection methods. More precisely,
LTA preferred odds-ratio to select 2 to 5 include terms and probabilistic odds-ratio to select 6 to 10 exclude
terms. FM preferred odds-ratio to select 1 to 4 include terms and odds-ratio to select any number of exclude
terms. ML preferred odds-ratio to select 1 to 7 include terms and any of the term-selection methods to
select 6 to 8 exclude terms.

Figure 6 shows how the probabilities of different parameter values change as learning progresses on example
of the Long-Term Memory method LTA. It can be seen that very early in the process of learning, the most

Learning Parameter values ordered by their performance inside different learning methods
method include terms exclude terms include method exclude method

LTA 2 ≤ Len ≤ 5 6 ≤ Len ≤ 10 OR > PTF > TF > PO PO > OR > PTF > TF
LTM 1 ≤ Len ≤ 5 4 ≤ Len ≤ 10 OR > PTF > TF = PO PO > OR > PTF = TF
FM Len ≤ 4 all equal OR > PTF = TF > PO PO = OR > PTF = TF
ML 1 ≤ Len ≤ 7 6 ≤ Len ≤ 8 OR > PTF = TF > PO all equal

Table 3. Comparison of parameter values preferred by different learning methods. All learning methods focussed on odds-ratio
as a inclusion term selection method, showing that they are able to find the best-performing method.

successful length for the include part of the query is around 3 and that odds-ratio is the most successful
for choosing the inclusion terms. For the other learning methods there is no such clear convergence either
in the length nor in the query method.

5.3.3 Comparison of Learning Methods

We compared different learning methods: Memory-Less ML, Long-Term Memory LTA, LTM and Fading-
Memory FM described in Section 5.2. For methods involving rewards based on success (LTA and FM) we
also tried a variant penalizing more for returning no document than for returning a negative document
(negative documents give us some information to update our language model, while no document means
wasted query). However, we didn’t observe substantial differences in their performance.

Our next hypothesis is that different learning methods will differ in their performance, since they use
different time horizons in the on-line learning process. The performance is measured the same way as
in experiments with fixed query parameters described in Section 4, as the number of the target concept
documents depending on the number of retrieved documents and on the number of queries issued, as a
way of capturing accuracy and efficiency.

When comparing different learning methods, Long-Term Memory and Fading Memory learning perform
better than Memory-Less (Figure 7). Long-Term Memory learning dominates both Fading Memory and
Memory-Less in terms of the number of documents retrieved, as well as queries issued. The difference is
more evident when retrieving 1000—2000 documents and issuing 1000—4000 queries. However, all the
learning methods underperform the best performing combination of parameters (odds-ratio using length
3—5), that we found by manually searching the parameter space exhaustively.

6. Generalizations

In order to examine how our experiments generalize to other conditions, we examined the effects of varying
the initialization conditions to a variety of documents, and to a handful of keywords. We also varied the
target language from Slovenian to Croatian, Czech and Tagalog.

6.1 Generalizations of initial conditions

6.1.1 Using Different Initial Documents

Since all the query generation methods described in this paper derive the query terms from documents
already found, it is important to consider the effect of varying the initial document used. We used three
different initial positive documents in Slovenian. The properties of these initial documents are shown in
Table 4.

The results of running fixed query parameters experiments using odds-ratio with length 3 under different
initial conditions are given in Part a) of Figure 8. The other methods and lengths show similar behavior.
It can be seen that the method performs comparably for all initial conditions, getting about the same
proportion of target documents. At the time the results diverged, over 1000 positive documents had been

(a)

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500 2000 2500 3000 3500 4000

Pr
ob

ab
ili

ty
 o

f
B

ei
ng

 C
ho

se
n

Number of Iterations

length0
length1
length2
length3
length4
length5
length6
length7
length8
length9

length10

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000 3500 4000

Pr
ob

ab
ili

ty
 o

f
B

ei
ng

 C
ho

se
n

Number of Iterations

TF
PTF
OR

POR

(c)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 500 1000 1500 2000 2500 3000 3500 4000

Pr
ob

ab
ili

ty
 o

f
B

ei
ng

 C
ho

se
n

Number of Iterations

length0
length1
length2
length3
length4
length5
length6
length7
length8
length9

length10

(d)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 500 1000 1500 2000 2500 3000 3500 4000

Pr
ob

ab
ili

ty
 o

f
B

ei
ng

 C
ho

se
n

Number of Iterations

TF
PTF
OR

POR

Figure 6. Probabilities of the four parameters when using Long-Term Memory with Multiplicative update rules for learning
length and method. These probabilities reflect the relative performance of different lengths and methods we observed in
experiments where no learning was involved. (a) For include length, 3 and 4 dominate. , namely after 2000 updates the
highest probability have lengths 3 and 4, followed by 2, 5 and 6. Using 0 or more than 7 include terms was not successful. (b)
For include method odds-ratio has the highest probability. then probabilistic term-frequency, term-frequency and probabilistic
odds-ratio. (c) Exclude length 0 followed by other lengths lower than 7 dominate after 2000 updates. (d) For exclude method
odds-ratio has the highest probability followed by probabilistic odds-ratio.

found. It is interesting to note that “Formal” and “News” initial documents needed less queries to retrieve
the first 200 documents, while the “Informal” initial document retrieved over 1000 target documents only
after issuing about 700 queries. Experiments comparing learning starting with different initial documents
and starting with the user-provided keywords show that all sets of words led to similar results. Part b) of
Figure 8 shows the results for Long-Term Memory approach, the other approaches exhibit similar behavior.

6.1.2 Initializing with User-supplied Keywords

It may not always be easy to find entire documents in a language to supply to our system. As an alternative
to starting with a positive document in the target language, we asked three native speakers of Slovenian
to supply us with words. We asked three questions of each native speaker, to elicit initial words of varying
types. We asked for ten common words, to obtain words a Slovenian may be first likely to think of. We

Type Topic Length Vocabulary Size
1 Formal Horticulture 568 354
2 News Politics 716 446
3 Informal Personal Web-Page 90 74

Table 4. Description of the 3 different initial documents used in experiments

(a)

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000 8000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

MLII
LTMII

FMII
LTAII

(b)

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500 4000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

MLII
LTMII

FMII
LTAII

Figure 7. Comparison of learning methods on Slovenian language assuming independance between the methods, as well as
between the lengths (hence II in the name of the methods on the graph). (a) In terms of queries Long-Term Memory using
Winnow-like update LTMII performs the best. (b) In terms of retrieved documents, after 700—1000 documents LTMII is again
the best.

then asked for ten uniquely Slovenian words. Croatian and Czech, for example, share many strings and
words in common with Slovenian. A native speaker of Slovenian may know words which are shared with
other languages. They may, however, not know that some are shared with other languages. Finally we
asked for ten words useful for finding texts in Slovenian on the web.

The words we obtained from native Slovenian speakers shown in Table 5 were used as mock initial docu-
ments, and 10 English stop-words as the initial negative document. Figure 9 shows experimental results
using fixed query parameters set to odds-ratio with length 3 and learning query parameters using Long-
Term Memory with multiplicative update rule. All sets of words led to similar results, moreover the results
are similar to the results of starting with initial documents shown Figure 8.

6.2 Other Languages

Systematic experiments with Slovenian by themselves do not provide any evidence that our techniques
can be generalized to other languages. To test the hypothesis that our approach will indeed perform well
on many languages, we repeat some of the experiments for Tagalog, Croatian and Czech, which can all
be considered minority languages on the Web. Moreover, Slovenian, Croatian and Czech are all Slavic
languages and share many words.

As shown in Table 6 and Figure 10, odds-ratio found more target documents than both term-frequency
and probabilistic term-frequency for the same number of total documents examined, for all of Slovenian,
Croatian, Czech and Tagalog. This suggests that the superiority of this query-generation mechanism
generalizes across languages. Table 7 and Figure 10, however, show that the number of queries is dependent
on the target language and method. This may reflect the number of web-pages which are confusable between
Slovenian, Czech and Croatian when queries are made with frequent-words, whereas Tagalog’s frequent
words are more unique on the Web.

6.3 Learning Parameters for Other Languages

In order to test the generalization power of our learning methods for different target-languages, we per-
formed experiments on two other natural languages, Croatian and Tagalog, also representatives of minority
languages on the Web. The results confirm that after 700-1000 documents and about 1000 queries issued,
the methods start to differ on all three languages. The best performance is achieved by the Long-Term
Memory methods. On Tagalog, as in Slovenian, the Winnow-like update rule gives the best performance
while on Croatian, its performance is the worst and the additive update rule is the best performing. In
Figure 11 we show the number of documents retrieved for experiments using Croatian and Tagalog.

(a)

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Different initial conditions using OR with length 3

formal, 1 neg.
formal, 4 neg.
news, 4 neg.

informal, 4 neg.

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Different initial conditions using OR with length 3

formal, 1 neg.
formal, 4 neg.
news, 4 neg.

informal, 4 neg.

(b)

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Different initial conditions using LTMII

formal, 1 neg.
formal, 4 neg.
news, 4 neg.

informal, 4 neg.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Different initial conditions using LTMII

formal, 1 neg.
formal, 4 neg.
news, 4 neg.

informal, 4 neg.

Figure 8. Comparison of four differnt initialization conditions for collecting documents in Slovenian. In three cases, the same
four documents, one each of Czech, Croatian, English, and Serbian, were used as initial negative documents. A single different
initial positive document was used in each case: formal text, informal text or news text. In the fourth experiment (formal,
1 neg.), the formal Slovenian document was used as the initial positive document, and a single English document was used
as the initial negative document. (a) Under all four initial conditions odds-ratio with length 3 performs with similar results in
the number of documents retrieved. Differences emerge long after the initial document is dwarfed by the presence of over 1000
other documents. However, initial conditions influence the number of queries needed for the same amount of target documents.
(b) When learning query parameters, the Long-Term Memory approach using a multiplicative update rule performs similarly
in the number of documents retrieved for all conditions. Differences emerge long after the initial document is dwarfed by
the presence of over 600 other documents. In the number of queries issued, the “informal” initial document outperforms the
others by retrieving almost 3000 target documents after 900 queries. Using only English as negative initial document results
in higher number of queries needed for the same number of target documents.

Speaker 1
common da, pa, in, je, bi, si, bo, a, se, ki
unique jaz, hisa, ogenj, dez, gozd, hlod, zlikrofi, struklji, okno, cevelj, najin, vajin, njun
useful splet, stran, podjetje, vsebina, vsak, ker, miza, hisa, kazalo, povezava
Speaker 2
common janez, delo, hribi, omara, promet, sonce, papir, stena, ker, hrana
unique hrepenenje, karkoli, strani, enajst, zoprno, trkanje, uporabljati, splet, kozolec, navodilo
useful izmenjava, zoprno, karkoli, cvetje, velikanski, zmeda, gostilne, prehajanje, obsijal, gozdar
Speaker 3
common miza, govoriti, danes, sola, racun, pivo, kosilo, zoga, avto, smucke
unique skatla, potica, brisaca, vrtec, menjalnica, lesnik, morje, zamuda, pepelnik, bolezen
useful kakor, bil, je, ker, lahko, brez, s, z, ne, tudi

Table 5. Words supplied by native Slovenian speakers for Use in Automatic Query Construction. Speaker 1 provided function
words as common, while Speaker 2 and Speaker 3 provided common nouns and names such as Slovenian for “John” (janez),
“work” (delo), “table” (miza), and “school” (sola). For unique words, all speakers provided the names of traditional Slovenian
foods and artifacts. Additionally Speaker 2 also provided uniquely Slovenian words that are not likely to appear in other
languages. For useful words, Speaker 1 provided internet and computer-related terms, such as Slovenian for “Web” (splet),
“page” (stran), “content” (vsebina) and “directory” (kazalo), while Speaker 2 provided words useful for finding different
topics on the Web, such as Slovenian for “exchange” (izmenjava), “flowers” (cvetje), and “restaurants” (gostilne). Speaker
3 provided function words as useful. All sets of words led to similar results, moreover the results are similar to the results
of starting with an initial document instead. Regardless of the starting conditions, CorpusBuilder generated queries which
brought in Slovenian documents 80% of the time, when OR-3 was used as the query-generation method. Note that we
substituted non-ASCII characters in Slovenian (č, š, ž) with ASCII characters (c, s, z), which are commonly also used also in
Web documents.

Method Number of Target Docs at Total 1000 Docs Retrieved
Slovenian Croatian Czech Tagalog

TF-3 178 39 385 440
PTF-3 646 410 451 359
OR-3 835 677 743 664

Table 6. Odds-ratio found more target documents than both term-frequency and probabilistic term-frequency for the same
number of total documents examined, for all of Slovenian, Croatian, Czech and Tagalog.

Method Language Docs Typical Query
TF-3 Slovenian 182 +in +v +za -html -a -re

PTF-3 Slovenian 342 +v +bolj +podrocju -carapama -den -jest
OR-3 Slovenian 1409 +torej +bomo +nisem -attila -laszlo -kerdes
TF-3 Croatian 61 +i +u +za -de -o -a

PTF-3 Croatian 231 +su +u +osobito -vozil -iso -pripad
OR-3 Croatian 93 +allah +takodjer +uzviseni

-ief -mgtf -summary
TF-3 Czech 286 +na +v +pro -re -the -a

PTF-3 Czech 198 +v +na +s -zakroky -za -ga
OR-3 Czech 680 +vldy +mt +tden -found -davky -dite
TF-3 Tagalog 793 +sa +ng +ang -the -to -a

PTF-3 Tagalog 262 +unang +ang +dati -obey -optik -beef
OR-3 Tagalog 236 +niya +walang +siya -i -za -server

Table 7. Number of target documents found at 1000 queries. odds-ratio found more documents than both term-frequency and
probabilistic term-frequency for the same number of queries, for Slovenian and Czech. Typical queries shown are those that
most commonly found positive documents in our experiments. For PTF-3 every query was unique; a randomly selected one is
shown.

(a)

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Different initial conditions using OR with length 3

common words3
unique words3
useful words3

common words1
unique words1
useful words1

common words2
unique words2
useful words2

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Different initial conditions using OR with length 3

common words3
unique words3
useful words3

common words1
unique words1
useful words1

common words2
unique words2
useful words2

(b)

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500 4000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Different initial conditions using LTMII

common words3
unique words3
useful words3

common words1
unique words1
useful words1

common words2
unique words2
useful words2

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Different initial conditions using LTMII

common words3
unique words3
useful words3

common words1
unique words1
useful words1

common words2
unique words2
useful words2

Figure 9. Using 10 keywords supplied by a native Slovenian speaker as initial positive information, and 10 English stop-words
as initial negative information performs similarly regardless the set of keywords used, measured in the number of documents
retrieved. There are some differences between the keyword lists in the number of issued queries for retrieving the first several
hundred documents. (a) When using fixed query parameters, odds-ratio of length 3, the first list of common words outperforms
the other keyword lists by requiring less queries for the first 200 documents. (b) When learning query parameters, all the
keyword lists perform similarly. The second list of useful words outperforms the other keyword lists by requiring less queries
for the first 600 documents.

(a)

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Query Length 3

OR3
PTF3

TF3

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Query Length 3

OR3
PTF3

TF3

(b)

0

100

200

300

400

500

600

700

800

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

C
ro

at
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Query Length 3

OR3
PTF3

TF3

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
ro

at
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Query Length 3

OR3
PTF3

TF3

(c)

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500 4000

C
ze

ch
 D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Query Length 3

OR3
PTF3

TF3

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500

C
ze

ch
 D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Query Length 3

OR3
PTF3

TF3

(d)

0

100

200

300

400

500

600

700

800

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

T
ag

al
og

 D
oc

um
en

ts
 F

ou
nd

Total Queries Issued

Query Length 3

OR3
PTF3

TF3

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400 1600 1800

T
ag

al
og

 D
oc

um
en

ts
 F

ou
nd

Total Documents Retrieved

Query Length 3

OR3
PTF3

TF3

Figure 10. Comparison of different methods with length 3 over four different languages. For all four languages, odds-ratio
performs the best in the number of the target documents after the same number of examined documents. For instance, after
examining 1000 documents, (a) for Slovenian about 900 documents are in Slovenian and for the other three languages (b),
(c), (d) about 700 documents are in the target language. There is a difference between the tested languages in the number of
queries issued. (a) For Slovenian and (b) Czech odds-ratio outperforms the other methods by needing much less queries for
the same number of target documents, while (b) for Croatian and (d) for Tagalog odds-ratio is outperformed by the other two
methods. Note that in general for Croatian and Tagalog require many more queries to find documents than do Slovenian and
Czech, as these languages are much more rare on the web.

(a)

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
ro

at
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

MLII
LTMII

FMII
LTAII

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500

C
ro

at
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

MLII
LTMII
FMII

LTAII

(b)

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000

T
ag

al
og

 D
oc

um
en

ts
 F

ou
nd

Total Queries Issued

MLII
LTMII
FMII

LTAII

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

T
ag

al
og

 D
oc

um
en

ts
 F

ou
nd

Total Documents Retrieved

MLII
LTMII
FMII

LTAII

Figure 11. Comparison of learning methods on (a) Croatian and (b) Tagalog. For both languages, Long-Term Memory methods
either using aditive (LTAII) or multiplicative (LTMII) update rule, perform the best.

7. Discussion

Our approach performs well at collecting documents in a minority language starting from a few words
or documents but it does require a language filter for that minority language. There are filters available
for quite a few language but this is potentially a limitation of our approach. In earlier work (Ghani &
Jones, 2000), we experimented with constructing a filter on-the-fly, starting from the initial document and
bootstrapping, and our experiments with Tagalog yielded encouraging results. We plan to experiment with
this idea further and use different methods of building language filters with small amounts of labeled data.

Currently, we evaluate the corpus collected through our approach by sampling the corpus and verifying the
decisions made by the language filter. Although it gives us information about the precision of our classifier
and thus the corpus, it does not give any indication of the level of coverage obtained by our system. Since
the number of total web pages in the minority languages we have worked on so far is not available, we can
use approximation techniques for evaluation such as using the intersection of Web pages found by using
each of the three documents as seeds for our experiments. We can also measure the rate at which we find
new Slovenian documents as our experiments progress and a decreasing rate would give us a bound on
the number of documents we can find using our methods. Callan et al. (?) and Ghani and Jones (Ghani
& Jones, 2000) use various measures like percent vocabulary coverage and ctf to evaluate the coverage of
their language models. Although our task is not to construct a language model for Slovenian and we do
not have the “true” model to compare against, we can still use these measures and calculate of rate at
which we add new vocabulary words and the distribution of the words we have in our vocabulary. Since
we are sampling in the space of Slovenian words, convergence of the sampled distribution would indicate
a reasonable coverage.

We utilize the resources of a search engine and focus on the task of generating queries that are highly
accurate and cover different parts of the language space we are dealing with. There are several other ways
that we could collect corpora from the Web and we discuss the merits and drawbacks of some of the other
approaches below.

Using a dictionary of the minority language and manually selecting function words to query and then
iterating a few times to eliminate function words that are shared with other languages is one approach
that would work well but would require a lot of domain knowledge in the form of knowledge about function
words for the particular language. Our approach learns from examples in that it only requires a handful
of documents and requires very little domain knowledge.

We could also use a spider that crawls all pages under the domain names of the countries where that
language is spoken. For example, in the case of Slovenian, we could spider all web pages in the .si domain.
This would not result in good coverage or precision since not all the pages under the .si domain are in
Slovenian and there are Web pages outside the .si domain that are in Slovenian. In our experiments, we
found approximately 31,000 Web pages under the .si domain, 24% of them being classified as being not in
Slovenian by our classifier. Similarly, out of the 30,000 Slovenian documents we found, 22% of them were
not under the .si domain.

Another way of collecting a Slovenian corpus would be to crawl all the pages starting from the Regional
→ Countries → Slovenia category in Yahoo (or the category of the country where the language is used) .
This again would not be accurate because Yahoo does not have an exhaustive list of Slovenian Web sites
in general and of Web pages in Slovenian in particular.

One promising alternative we compared our approach with was using the built-in functionality of looking
up “similar” web-pages that some search engines provide. The details of the comparison are as follows.

(a)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20000 40000 60000 80000 100000 120000

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Queries Issued

Query Length 5

OR5
MLT5

(b)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500

Sl
ov

en
ia

n
D

oc
um

en
ts

 F
ou

nd

Total Documents Retrieved

Query Length 5

OR5
MLT5

Figure 12. “More Like This” compared to Odds-Ratio (a) in the number of queries issued and (b) in the number of documents
retrieved.

7.1 “Related Pages”

Search engines provide functionality to allow users to find similar pages, based on both content and hyper-
link information (Dean & Henzinger, 1999). We hypothesize that our system can outperform the “Related
Pages” feature and in order to test our hypothesis, we ran an experiment using AltaVista’s “Related Pages”
function. We start with the same initial documents as in the systematic Slovenian experiments described
earlier, and use CorpusBuilder query generation, setting include and exclude lengths to 5 and the term
selection method to odds-ratio. Then for each AltaVista hit classified as relevant by our language filter,
we query AltaVista using like:URL to find documents “like” the one we retrieved then continue to repeat
this process with all of the relevant ones, finding more “like” them each time.

The algorithm is as follows:

1. MoreLikeThisList = ()

2. PositiveDocList = InitialSlovenianDoc

3. While(1)

• while we have no documents in the MoreLikeThisList

– use the CorpusBuilder query generation method generate query(odds-ratio, 5, odds-ratio, 5) to find
AltaVista hits, add URLS of documents classified as positive to the MoreLikeThisList

• while we have URLs in the MoreLikeThisList

(a) take the first URL from the MoreLikeThisList
(b) query AltaVista with “like:URL”

(c) add URLS of documents classified as positive to the end of the MoreLikeThisList

We used generate query(odds-ratio, 5, odds-ratio, 5) as this method had been performing well
in other experiments. We find that odds-ratio outperforms MoreLikeThis, as can be seen in Figure 12.
MoreLikeThis finds a document in the target language around 33% of the time, while using a query based
on the odds-ratio term-selection method with 5 terms each for inclusion and exclusion finds a document
in the target language around 90% of the time.

7.2 Using Existing Corpus-construction Techniques

Ghani and Jones (Ghani & Jones, 2000) showed that single word queries were sufficient for finding doc-
uments in Tagalog, and that selecting the query-words according to their probabilities in the current
documents performed the best. It is important to note that their experiments were run on a small corpus2

2the corpus consisted of 500 Tagalog documents and 15000 documents mostly in English and Brazilian Portuguese

of Tagalog documents and other distractor documents collected from the web and stored on disk. We com-
pared their best-performing methods against other query generation methods and lengths, on the tasks of
finding both Tagalog and Slovenian documents on the Web.

Applying single-word term-frequency and probabilistic term-frequency queries to the Web for Slovenian
results in relatively low precision, as shown in Figure 13. Using the odds-ratio query generation method
described in section 3.3 outperforms the probabilistic term-frequency approach with single include and
exclude-word queries. Furthermore, using more words in the query (3 for inclusion and 3 for exclusion)
performs better than the single word queries previously used.

(a)

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500 3000 3500

Sl
ov

en
ia

n
do

cu
m

en
ts

 F
ou

nd

Total documents Examined

OR-3
OR-1

PTF-1
TF-1

(b)

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000

T
ag

al
og

 d
oc

um
en

ts
 F

ou
nd

Total documents Examined

Comparison of Previous Methods of Length One to Odds-Ratio Lengths One and Three for Tagalog

TF-1
PTF-1
OR-3

Figure 13. a) On Slovenian term-frequency (TF) and probabilistic term-frequency (PTF) term selection methods with one
inclusion and one exclusion term were outperformed by odds-ratio (OR) with one inclusion and one exclusion term, and an
even better-performing odds-ratio with 3 inclusion and 3 exclusion terms. b) On Tagalog less documents were found overall,
but odds-ratio for 3 terms still dominated TF-1 and PTF-1.

To establish whether the better performance of odds-ratio was due to the choice of language, we performed
the same evaluation on Tagalog. Although less documents were found overall, the trend remained the
same, with OR-3 finding over 600 documents in Tagalog after examining 1000 documents, while OR-1 had
found just over 300, PTF-1 had found 122 and TF-1 had found only 17 documents in Tagalog as shown in
Figure 13.

7.3 Query Length Parameterization

Up till now we have been estimating parameters separately for each length and method by assuming that
they are independent of each other. We can formalize these assumptions by proposing four different ways
of parameterizing query-lengths. These differ according to two kinds of independence assumptions and
combinations of these: (1) Method and Length Independence which would assume that ideal query-length
is independent of the query-generation method used. This assumption means that less parameters need
to be tuned. In our experiments we use this assumption of independence; experimentation with the other
models is part of future work. With method and length dependence, the ideal query length depends on the
method chosen. (2) Length Independence which would assume that query lengths are independent of one
another. This is the multinomial query-length model, and uses more parameters (one per candidate length).
This setting is denoted in our experiments with II. Another model requiring less parameters matches our
intuition that similar length queries are likely to perform relatedly. To this end we parameterized query
lengths as a Gamma distribution, denoted here as ID.

We can summarize the use of the independence and dependence models as follows:

Method-Length Method-Length

Independent Dependent

Lengths Independent II DD
(Multinomial Model)

Lengths Dependent ID DD
(Gamma Model)

The abbreviations will be used when describing these combinations and In the experiments in this paper,
we only used II and ID. Experimentation with the other models is part of future work. The previous
experiments reported results using the II model for the parameters. We ran the same experiments again
using the ID model for the learning methods using both variants of Long-Term Memory and Fading
Memory. Using ID model actually hurts the performance of the Fading Memory Method and does not
result in any improvement for the Long-Term Memory method when compared to the II model. Actually
after about 5500 queries, the Long-Term Memory method using additive update rule LTAID catches up
with LTMII.

8. Conclusions and Future Work

We presented an approach for automatically collecting web-pages in a minority language and showed that
it performs well on several natural languages (Slovenian, Croatian, Czech and Tagalog) and only requires
a handful of documents to start with.

We found that our basic odds-ratio query construction method outperforms our other methods and also
performs better than simply using the existing Related Pages function in AltaVista. odds-ratio picks
inclusion query terms that are highly unique to the target language while excluding terms that are unique to
non-relevant languages. Since this is the only method which uses both relevant and non-relevant documents
simultaneously to select query terms, we believe that this property is the key to its success. tf picks terms
that are frequent in the target language but not necessarily unique and hence results in queries that are
not as precise as those generated by odds-ratio.

We also found that in the experiments with learning query parameters, Memory-Less learning ML performs
worse than all the other learning methods over different natural languages. This was expected since ML is
a naive algorithm which persists with a successful mechanism until it fails and then switches to another
one randomly thus ignoring past knowledge of success rates. The best performance was achieved using
Long-Term Memory learning LT with either multiplicative or additive update rule. It accumulates all
the information from earlier queries by counting the successes and failures of individual mechanisms and
updates their scores accordingly. It is interesting to note that Fading Memory learning FM, which relies
more on recent information, performs worse than LT.

In experiments investigating length parameterization, we found that using a Gamma distribution hurts
the performance when Long-Term Memory is used for learning. Further experimental work is needed to
draw solid conclusions about the consequences of the length independence assumption used in this work.
We plan to look into using more than one document at each iteration so the learning process can be faster
although that could come at the expense of precision.

An interesting question is how our results transfer to other target concepts such as collecting documents
about some topic or getting documents that match a user profile. We conducted some preliminary experi-
ments for collecting Course web pages starting from a handful of examples and we plan to pursue collecting
topic-specific corpora in future work. Using these techniques to augment existing techniques for developing
a domain specific search engine is also an interesting future direction.

Our approach for automatic query-generation is useful for any application where we are able to build a
very accurate, but expensive classifier. We can then use the search engine as a simpler filtering mechanism,
bringing in only those documents likely to satisfy our classifier, thus saving us the expense of running the

classifier on all documents retrieved by the crawler. The kinds of high-precision classifiers which would
benefit from this approach include systems with parsers, systems which fetch more web-pages to decide
on the classification for a given web-page and systems which involve user input thus making our approach
applicable in various useful and important areas.

Acknowledgements

The authors are grateful to Avrim Blum and Belinda Thom for valuable discussion and suggestions. The
authors also wish to thank to Andrej Bauer, Janez Brank and Marko Grobelnik for contributing Slovenian
words.

References

Blum, A. (1996). On-line algorithms in machine learning. In Proceedings of the Workshop on On-Line
Algorithms, Dagstuhl, 1996..

Boley, D., Gini, M., Gross, R., Han, E.-H. S., Hastings, K., Karypis, G., Kumar, V., Mobasher, B., , &
Moor, J. (1999). Document categorization and query generation on the world wide web using webace.
AI Review, 13, 365–391.

Brown, P., Pietra, S. D., Pietra, V. D., & Mercer, R. (1993). The mathematics of statistical machine
translation. Computational Linguistics, 19.

Cavnar, W. B., & Trenkle, J. M. (1994). N-gram-based text categorization. Proceedings of Third Annual
Symposium on Document Analysis and Information Retrieval (pp. 161–175). Las Vegas, NV.

Chen, Z., Meng, X., Zhu, B., & Fowler, R. H. (2000). Websail: From on-line learning to web search.
Proceedings of the 2000 International Conference on Web Information Systems Engineering.

Dean, J., & Henzinger, M. (1999). Finding related pages in the world wide web. Proceedings of the Eighth
International World Wide Web Conference..

Diligenti, M., Coetzee, F., Lawrence, S., Giles, C. L., & Gori, M. (2000). Focused crawling using context
graphs. 26th International Conference on Very Large Databases (pp. 527–534). Cairo, Egypt.

Ghani, R., & Jones, R. (2000). Learning a monolingual language model from a multilingual text database.
Proceedings of the Ninth International Conference on Information and Knowledge Management.

Glover, E., Flake, G., Lawrence, S., Birmingham, W. P., Kruger, A., Giles, C. L., & Pennock, D. (2001).
Improving category specific web search by learning query modifications. Symposium on Applications and
the Internet. San Diego, CA.

Golding, A. R., & Roth, D. (1999). A winnow-based approach to context-sensitive spelling correction.
Machine Learning, 34, 107–130.

Haines, D., & Croft, B. (1993). Relevance feedback and inference networks. Proceedings of the Sixteenth
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.

Jelinek, F. (1999). Statistical methods for speech recognition. MIT Press.

Liberman, M., & Cieri, C. (1998). The creation, distribution and use of linguistic data. Proceedings of the
First International Conference on Language Resources and Evaluation. Grenada, Spain.

Mladenic, D., & Grobelnik, M. (1999). Feature selection for unbalanced class distribution and naive bayes.
Proceedings of the 16th International Conference on Machine Learning.

Rennie, J., & McCallum, A. K. (1999). Using reinforcement learning to spider the web efficiently. Proceed-
ings of the 16th International Conference on Machine Learning.

Resnik, P. (1999). Mining the web for bilingual text. Proceedings of 34th Annual Meeting of the Association
of Computational Linguistics. Maryland.

van Noord, G. (1997). Textcat. http://odur.let.rug.nl/ vannoord/TextCat/.

Yang, Y., & Pedersen, J. (1997). A comparative study on feature selection in text categorization. Proceed-
ings of the 14th International Conference on Machine Learning.

