The Impact of False Sharing on Shared Congestion
Management *

Aditya Akellal

1 Introduction

Recently, several proposals have been made for sharing congestion
information across concurrent flows between end-systems. In these
proposals, the granularity for sharing has ranged from all flows to
a common host to all hosts on a shared LAN. While these propos-
als have been successful at ensuring sound AIMD behavior of the
aggregate of flows, they suffer from what we term “false sharing”.
False sharing occurs when two or more flows sharing congestion
state may, in fact, not share the same bottleneck.

In this work, we investigate the effects of false sharing on shared
congestion management schemes. We characterize the origins of
false sharing into two distinct cases: (i) networks with QoS en-
hancements such as differentiated services, where a flow classi-
fier segregates flows into different queues, and (ii) networks with
path diversity where different flows to the same destination address
are routed differently — a situation that occurs in dispersity rout-
ing, load-balancing, and with network address translators (NATS).
We evaluate the impact of false sharing on flow performance and
consider whether it might cause a bottleneck link to become persis-
tently overloaded. We propose schemes for detecting false sharing
and show how different metrics (loss rate, delay distribution, and
reordering) compare for this purpose. We also consider the issue of
how a sender should respond when it detects false sharing.

2 Results

One danger of false sharing is that the slower of two senders may
be confused by the faster sender and, as a result, may send at a rate
faster than its bottleneck link can sustain. Our simulation results
show that even under extreme false sharing conditions, window-
based congestion control algorithms force the faster sender to send
at a slower rate and thus ensure that the slower sender does not
overload any links. Figure 1 illustrates the simulation results of such
a false sharing situation. This simulation tests 10 flows belonging
to the DiffServ Assured Forwarding (AF) class and 40 Best Effort
(BE) flows under different bandwidth allocations to the AF and BE
classes. The figure plots the bandwidth achieved by a single AF and
BE flow when congestion sharing is performed and when it is not.
The bandwidth achieved under congestion sharing is clearly lower
than either flow under any conditions - ensuring that sharing never
leads to overload. We have also analytically modeled this behavior.
The plot of this analytic throughput prediction closely matches the
simulation results in Figure 1.

We have also developed tests to detect false sharing based on delay

*A technical report that describes this work is available at
http://www.cs.cmu.edu/~aditya/papers/tech-rep.ps

tSchool of Computer Science, Carnegie Mellon University,
Pittsburgh, PA. {aditya+, srini+}@cs.cmu.edu

Srinivasan Seshant

AF Flow (share) --A--
BE Flow (share) —e—
AF Flow (no share) —%—

BE Flow (no share)*—e—
Predicted curve -

15| o 4

Bandwidth in Mbps
-
T

05 [

.
0 20 40 60 80 100
Share of AF in percentage

Figure 1: The impact of false sharing in a Service Differentiation
setting. The curves for AF and BE flows (which share congestion
information) and the analytical prediction overlap.

and loss correlation between packets across the participating flows.
Our tests show that delay and reordering statistics are superior to
those based on loss patterns in terms of detection time and accuracy.
We have also found that for such tests, it is markedly easier and
quicker to identify when false sharing is occurring than to identify
situations where congestion information can be shared safely. For
example, in our simulations, the tests could typically identify false
sharing in 5-10 seconds but could only identify “safe” sharing in
60-70 seconds.

Based on these observations, we believe that the default behavior
of congestion sharing systems should be to share congestion state
aggressively and react to false sharing. This design is motivated
by three key observations: 1) false sharing never results in danger-
ous congestion control behavior or network overload, 2) it is easier
to detect false sharing than safe sharing, and 3) the detection tests
work best when packets from different streams are sent in an in-
terleaved fashion and such scheduling only occurs when sharing is
performed. Using this design, the key concern becomes the perfor-
mance degradation of the faster flow. Our simulations show that the
performance of the faster sender recovers completely in approxi-
mately 3 times the period taken to detect and react to false sharing.

3 FutureWork

Most of our current results are based on simulations of relatively
long-lived flows. We are confident that our schemes would work
well even with short flows given the robustness of the metrics.
We plan to implement these algorithms in the Linux kernel and
test out the validity of our hypotheses in the wide-area. We expect
that these real-world tests will require us to face the challenges of
measurement-noise and realistic traffic patterns.



