
Using data groups to specify and check side effects

K. Rustan M. Leino
∗

Compaq SRC
Arnd Poetzsch-Heffter

†
FernUniversität Hagen

Yunhong Zhou
‡

Compaq SRC

ABSTRACT
Reasoning precisely about the side effects of procedure calls
is important to many program analyses. This paper intro-
duces a technique for specifying and statically checking the
side effects of methods in an object-oriented language. The
technique uses data groups, which abstract over variables
that are not in scope, and limits program behavior by two
alias-confining restrictions, pivot uniqueness and owner ex-
clusion. The technique is shown to achieve modular sound-
ness and is simpler than previous attempts at solving this
problem.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.2.1 [Software Engineering]: Requirements/
Specifications; D.2.4 [Software Engineering]: Software/
Program Verification; D.3.3 [Programming Languages]:
Language Constructs and Features

General Terms
Documentation, Languages, Verification

Keywords
Side effects, modifies lists, frame conditions, data groups,
verification, modular soundness, alias confinement, pivot
uniqueness, owner exclusion

∗ The author’s current address is Microsoft Research, One
Microsoft Way, Redmond, WA 98052, USA. Email:
leino@microsoft.com.† This work was done when Poetzsch-Heffter spent a sab-
batical at Compaq SRC, summer 2001. The author’s current
address is Fachbereich Informatik, Postfach 3049, D-67653
Kaiserslautern, Germany. Email:
poetzsch@informatik.uni-kl.de.
‡ The author’s address is Compaq SRC, 130 Lytton Ave.,
Palo Alto, CA 94301, USA. Email:
yunhong.zhou@compaq.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

0. INTRODUCTION
Many static program analyses that support procedural ab-

straction need to know what variables a procedure call may
modify. For example, an optimizing compiler can leave the
value of a variable x in a register for the duration of a pro-
cedure call if it knows that the procedure will not modify the
value of x . As another example, a program analyzer that
searches for programming errors can reason more precisely
about a procedure call if it knows on which variables the
call may have side effects. In this paper, we present a tech-
nique for specifying and statically checking the side effects
of methods in an object-oriented programming language.

In many practical situations, a program analyzer does not
have access to all the source code of a program. Therefore,
we are interested in modular analyses, that is, the piecewise
checking (or compilation, etc.) of a program. Consequently,
we will not assume that the program analyzer knows the
implementation that will execute as a result of a call, nor
that it knows all variables in the program.

We are also interested in modular soundness [19], that is,
we don’t want our analyses to go awry on account of doing
modular checking (or on account of anything else, for that
matter). Modular soundness can be stated as the property of
scope monotonicity [19]: with more modules of a program
available, reasoning about a program should lead to more
precise information about possible program behaviors.

Since we cannot rely on having the implementation of a
called procedure, we instead incorporate into the declaration
of the procedure a description (a specification) of which vari-
ables may be modified by the procedure. The specification
consists of a modifies list [20]: the declaration

proc p(t) modifies m

introduces a procedure p with formal parameter t , and
specifies that the implementation of p only modifies vari-
ables in the list m .

Modifies lists have been incorporated into many program
formalisms, specification languages, and program checkers:
Morgan’s specification statement [22], Z [29], Larch [10],
JML [14], and ESC [5, 8], to mention but a few. The mod-
ifies list has also been shown to be the part of a proce-
dure specification that is most useful to an optimizing com-
piler [32]. But there’s a problem: how can one declare all the
variables that a procedure may modify if many of these vari-
ables are not available (visible, in scope) where the proce-
dure is declared? For example, in object-oriented languages,
where subclasses can add instance variables and method im-
plementations, instance variables are often not visible at the

declarations of the methods whose implementations modify
the variables.

The answer is to use some form of abstraction mechanism
with which one can refer to the unavailable variables without
directly mentioning their names. In this paper, we will use
data groups [16] as that abstraction mechanism. A data
group represents a set of variables and other (nested) data
groups. In particular, a data group can represent variables
that are not in scope. By mentioning a data group in the
modifies list of a procedure declaration, the procedure gets
the license to modify any variables that are included in the
group (or in a nested group).

Data groups can be seen as a restricted form of abstract
variables and abstraction dependencies [15, 19]. The treat-
ment of data groups changes character depending on what
the groups are allowed to include. In this paper, we study
two kinds of data group inclusions, corresponding to static
dependencies and dynamic dependencies, which seem to be
the most fundamental kinds of abstraction dependencies [19].
These inclusions, which will be defined in Section 2, are suf-
ficient to specify many interesting programs.

So far, the picture we’ve painted looks pretty rosy. But
achieving modular soundness for a program checker for real-
istic programs is not easy. Leino and Nelson have achieved
sound modular checking for static dependencies [15, 19], but
not for dynamic dependencies [19, 4]. In his PhD thesis, Pe-
ter Müller has used a different formal encoding (the logic by
Müller and Poetzsch-Heffter [24]) and has achieved modular
soundness for any abstraction dependencies [23], provided
universe types [25] are used to confine sharing of objects
(usually called aliasing of objects).

In this paper, we present a simpler system for specify-
ing and statically checking the side effects in object-oriented
programs. We restrict programs in two ways, by pivot unique-
ness and by owner exclusion, both defined later. These
restrictions confine sharing. They don’t seem to severely
limit writing interesting and useful programs. We show a
language and formal system, oolong, that enforces the two
restrictions and checks that procedure implementations ad-
here to their specified side effects.

We have implemented our formal system in a static checker
for oolong, based on Simplify, the automatic theorem prover
that powers the program checkers ESC/Modula-3 [5] and
ESC/Java [8]. Our checker takes oolong programs as in-
put and automatically checks them, reporting any errors it
finds. Our formal system satisfies modular soundness, as we
show in this paper, and so far appears to be adequate for
checking interesting programs, based on empirical evidence
of running the checker on a number of small but nontrivial
examples.

The rest of the paper is organized as follows. In the next
section, we continue to motivate specifying and checking side
effects, and compare some features of our work with previous
work. Section 2 describes the oolong language. Section 3 de-
fines the pivot uniqueness and owner exclusion restrictions.
In Section 4, we formalize the checking of oolong programs,
and in Section 5, we go through some examples in more
detail. We conclude the paper in Section 6.

1. RELATED WORK
Greenhouse and Boyland have developed a system based

on abstract regions to specify and reason about effects [9].
Their regions are much like data groups but don’t allow a

field to be included in more than one region, which we view
as a severe limitation (see [16] for programs that would be
forbidden under the limitation).

The Aspect system also provides an abstraction mecha-
nism like data groups called aspects [11]. The system does
not define a statically checkable discipline for avoiding the
problems we describe in Section 3.

Much work has been devoted to various techniques for
alias confinement in object-oriented languages, but many
of these techniques do not avoid the problems described in
Section 3. Among those that come the closest are extended
local stores [31] and alias burying [1], and also the system
of universe types [25] which has been proved to solve the
problems [23], though with a system that is not as simple
as ours.

It is interesting that an alias confinement technique like
alias burying needs reads lists (which specify which variables
a procedure may read), and that a treatment of reads lists
seems to need alias confinement [2]. Our technique does
not require reads lists, nor do we need a special notion of
read-only like the one in [25]. However, our technique for
checking side effects does entail alias confinement. Others
have also identified the need for alias confinement in achiev-
ing abstraction and modular reasoning [0].

To reduce the overhead of specifying side effects, tech-
niques have been developed to automatically infer informa-
tion about side effects [13, 30]. Such inference tends to re-
quire large parts or all of a program, whereas an explicit
abstraction mechanism like data groups caters to more mod-
ular checking.

A grander vision of which the specification and checking
of side effects is a part, is the goal of strengthening the in-
variants that a programming language guarantees (cf. [18,
17]). A language under development in this area is Vault [3],
which aims at improving resource management in programs.
Other work along these lines includes LCLint [7], which
goes beyond the (admittedly weak) type system of C to find
various common programming errors; extended static check-
ing [5, 8], which provides a flexible and powerful system for
specifying and checking programmer design decisions; and
refinement-types (e.g., [33]), which also go beyond the con-
ventional type systems of today’s popular languages.

It is interesting that most work on refinement-types has
been played out in the context of functional programming
languages, quite likely because the situation gets harder
when the program invariants implied by refinement-types
do not hold at every program point (cf. [18]). Indeed, there
is a feeling that functional languages are easier to reason
about because one knows what their side effects are, namely
none [27]. By using a technique like ours, one can both allow
side effects and know what they are.

2. THE OOLONG LANGUAGE
In this section, we define oolong, a primitive object-ori-

ented language. It is intended to model real languages at an
appropriate level of detail with respect to the features rele-
vant for this presentation. An oolong program consists of a
set of declarations. A declaration introduces a data group,
object field, procedure (method), or procedure implementa-
tion (see Figure 0). We assume all names of declared entities
to be unique. The language is untyped; ostensibly, every
object possesses every field, but a program can refrain from
using all of these fields for all objects in a way that cor-

Decl ::= group Id [in IdList]
| field Id [in IdList] (maps Id into IdList)∗

| proc Id “(” IdList “)” [modifies ExprList]
| impl Id “(” IdList “)” “{” Cmd “}”

Figure 0: The grammar of the language oolong.

responds to typed object-oriented languages where a given
type possesses only some of the fields.

The declaration

group g in h, k , . . .

introduces a data group named g and declares it to be in-
cluded in groups h, k , These inclusions are not allowed
to form a cycle. Similarly, the declaration

field f in h, k , . . .

introduces an object field (instance variable) named f and
declares it to be included in groups h, k , An attribute
is either a group or a field. For any object-valued expres-
sion e and attribute x , we write e.x , called a designator
expression, to denote attribute x of the object denoted by
e .

The declaration

proc p(t , u, . . .) modifies E ,F , . . .

introduces a procedure named p with formal parameters
t , u, . . . and grants p the license to modify the object fields
designated by the designator expressions E ,F , For any
object t and group g , the license to modify t .g implies
the license to modify t .x for any attribute x included in
g .

For example, a part of a rational-number library may de-
clare

group value
proc normalize(r) modifies r .value

in its public interface. These declarations state that proce-
dure normalize may change the rational value represented
by object r , but do not state how rational numbers are
represented. Thus, this example shows data groups as an
abstraction mechanism that can be used in the context of
information hiding. The private implementation of the li-
brary may declare further attributes:

field num in value field den in value

which reveal some or all of the representation of the more
abstract notion of “ value ”. Given these declarations, pro-
cedure normalize has been granted the license to modify
r .num and r .den .

Note the direction of inclusion declarations: whether or
not an attribute x is included in a group g is determined as
part of x ’s declaration; it is not the case that the enclosing
group g declares what attributes it includes. This direction
is important for modular soundness; in fact, it suffices to
achieve modular soundness0 [16]. The direction also makes
sense from a methodological standpoint, because enclosing
groups will be visible more widely than the attributes they
include.

0 provided the formal encoding takes into account possible
inclusions involving fields that are not in scope

The inclusions that arise from in clauses are called local
inclusions, because they say that an attribute of one object
is included in a group of the same object.1 A local inclu-
sion is useful when the data group plays the role of hiding
a field in the object’s implementation. Often, however, one
object is implemented in terms of other objects. For ex-
ample, a stack object may be implemented in terms of a
vector object. Then, each stack has a field that points to
the underlying vector object. Such object fields play such
a prominent role in our methodology that we give them a
name: pivot fields [19]. Whether a field is a pivot field or
not is made manifest by its declaration (see below).

Attributes of an object referenced by a pivot field can be
construed as attributes of the enclosing object, but instead
of being local to the enclosing object, they distance them-
selves through an indirection of the pivot field.2

To specify how the attributes of the underlying objects are
used in the enclosing object, oolong features a maps into
clause: the declaration

field f maps x into g

introduces a field f and declares group g to include f .x ,
where x is an attribute. Consequently, for any object t ,
the license to modify t .g implies the license to modify t .f .x .
A field is a pivot field if and only if its declaration contains
a maps into clause.

For example, if contents is a data group of stack objects
and elems is a data group of vector objects, then

proc push(s, o) modifies s.contents
field vec maps elems into contents

introduces pivot field vec and specifies that push has li-
cense to modify s.vec.elems .

A field declaration can have both an in clause and any
number of maps into clauses.

The inclusions that arise from maps into clauses are
called rep inclusions, because they say that (some attribute
of) one object is part of the representation of (a data group
of) another object.3 Rep inclusions are conspicuously more
difficult to handle soundly than local inclusions, because rep
inclusions seem to require restrictions on what can be done
with the values of pivot fields. Our next section will address
this point, but first we will describe procedure implementa-
tions in oolong.

The declaration

impl p(t , u, . . .) { C }
introduces command C as an implementation for procedure
p . For simplicity, we require the list of parameters t , u, . . .
to be the same as in the declaration of p . There is no limit
on the number of implementations that can be given for one
procedure; a call is arbitrarily dispatched to any one of the
implementations. This is our way of encoding dynamically
dispatched methods in our untyped language.

1 Local inclusions correspond to static dependencies [19].
2 The fact that the attributes of the underlying object are
not “inlined” into the representation of the enclosing object
offers considerable flexibility to programmers. For example,
it means that the particular subtype of the underlying ob-
ject (e.g., one of several possible vector subtypes) can be
determined as late as at runtime. But the indirection also
has a price, which we try to get under control in this paper.
3 Rep inclusions correspond to dynamic dependencies [19].

Cmd ::= assert Expr
| assume Expr
| var Id in Cmd end
| Expr “ := ”Expr
| Expr “ := ”new “(” “)”
| Cmd “ ; ”Cmd
| Cmd “ ”Cmd
| Id “(”ExprList “)”

Expr ::= Const | Id
| Expr “.” Id | Expr Op Expr

Const ::= null | false | true
| 0 | 1 | 2 | . . .

Figure 1: The grammar of oolong commands and
expressions.

The grammars for commands and expressions are given in
Figure 1. Data groups are not allowed in commands; they
are provided only for the purpose of specifying side effects.

The assert and assume commands terminate normally if
the expression evaluates to true . Otherwise, the assert
command causes the computation to go wrong, a condition
that is undesirable, and the assume command causes the
computation to block, a condition that will never lead to
anything undesirable (see, e.g., [26]).

The var command introduces a new local variable, with
an arbitrary initial value, for use within the given sub-com-
mand.

The next two commands in Figure 1 update the value of a
local variable (if the left operand is an Id) or an object field
(if the left operand is a designator expression). No other left-
hand sides are allowed (not even formal parameters, which
for simplicity we treat as unchangeable once they’ve been
bound as part of a call). In the second assignment command,
the value assigned is a newly allocated value.

The command C ; D executes C and then, if C ter-
minates normally, executes D . The command C D arbi-
trarily chooses either C or D to execute.

Finally, the procedure call evaluates the actual parameters
and then gives rise to the execution of an implementation,
chosen arbitrarily, for the named procedure.

Expressions are constants, local variables or formal pa-
rameters, designator expressions, or pre-defined operations
(like equality and arithmetic minus). The grammar in Fig-
ure 1 shows only binary operators, but we can allow other
operators, too, like negation.

In our primitive language, the conventional if statement

if B then C else D end

is encoded as

(assume B ; C) (assume ¬B ; D)

Iteration is performed by recursion. Our language does not
provide special constructs for writing pre- and postcondi-
tions, but these can be achieved for any procedure p by the
following disciplined use of our language: for a precondition
P , precede every call to p with the command assert P
and start every implementation of p with assume P ; for
a postcondition Q , end every implementation of p with
the command assert Q and follow each call to p with

assume Q (at call sites, one also needs to substitute the
actual parameters for the formals in P and Q).

Our primitive language does not include explicit features
for information hiding, like being able to declare interface
modules and implementation modules. In oolong, a module
is just a set of declarations. Note then, that the declarations
available in the public interface of a module form a subset
of the declarations available in the private implementation
of the module, and also forms a (different) subset of the
declarations available to a client of the interface.

So far, we have mostly described the syntax of oolong. In
the next section, we describe some further restrictions in the
language. These restrictions will be important in achieving
sound modular checking of modifies lists in the presence of
rep inclusions.

3. PROGRAMMING METHODOLOGY
So what’s so difficult in producing a sound, practical,

modular, and statically-checkable methodology for program-
ming with rep inclusions? Let’s consider two problems and
go through the restrictions we impose to overcome the prob-
lems.

3.0 Pivot Uniqueness
Suppose a program contains the following declarations:

group contents field cnt

Think of contents as being declared in the public interface
of a stack module and of cnt as being declared in the public
interface of a vector module. Suppose also that the stack
interface contains the following declarations:

proc push(st , o) modifies st .contents
proc m(st , r) modifies r .obj

where obj is a field that is used as a vehicle for return-
ing an object from a procedure (primitive as it is, oolong
lacks a more direct way to return a value from a procedure).
Consider the following implementation of a procedure q :

impl q() {
var st in var result in var v in var n in

st := new() ;
result := new() ; m(st , result) ; v := result .obj ;
n := v .cnt ; push(st , 3) ; assert n = v .cnt

end end end end }
Since push(st , 3) modifies st .contents and the declarations
given do not reveal any inclusion relation between contents
and cnt , should a modular static checker be able to in-
fer that the assertion will not go wrong, that is, infer that
push(st , 3) has no effect on the value of v .cnt ?

“No” runs the risk of producing an impractical checker,
for what could such a checker infer at all!

But “yes” runs the risk of producing an unsound checker,
for consider the situation where stacks are represented in
terms of vectors and m is implemented to return the vector
that underlies a stack:

field vec maps cnt into contents
impl m(st , r) {r .obj := st .vec }

This example reveals a violation of modular soundness, be-
cause the addition of the declaration of vec would cause the

assertion above no longer to pass the checker. Stated differ-
ently, under the “yes” alternative, we have shown that addi-
tional program information (the declaration of vec) leads to
less precise information about the possible behavior of the
call push(st , 3) , which is a violation of scope monotonicity.

So how do we get out of our dilemma? Further scrutiny of
the example has led us (the authors) to the conclusion that
the vector underlying the stack st should be available only
as st .vec , not as the value of the local variable v . More
precisely, in a scope where the rep inclusion via a pivot field
is not known, unsound reasoning can arise if the value of
the pivot field is available (cf. [19]). As long as the value of
the pivot field is accessed directly from the field itself, then
the pivot field will be available, thus the rep inclusion will
be known, and hence modular soundness is achieved.

To prevent the problematic situation from arising, we im-
pose drastic restrictions on what can be done with the values
of pivot fields; these restrictions will go under the rubric of
“pivot uniqueness restrictions”.

First, the pivot uniqueness restriction limits what values
can be assigned to a pivot field. If the left operand of an
assignment command has the form e.f where f is a pivot
field, then the right operand must be either new() or null .

Second, the pivot uniqueness restriction limits the right
operand of assignments, to prevent the value of a pivot field
from flowing into a local variable or other field. If the right
operand has the form e.f , then f may not be a pivot field.
And if the right operand is an operator expression, then the
operator may not return an object.

Third, what about passing the value of a pivot field as a
parameter? It would be too strict to outlaw this case, be-
cause, for example, it would mean that the push method of
a stack could not call any method on the underlying vector
object. Instead, the pivot uniqueness restriction limits the
use of formal parameters. We said already in the previous
section that assignments to formal parameters are not al-
lowed. The remaining case is that if the right operand of an
assignment command is an identifier t , then t may not be
a formal parameter (that is, it must be a local variable).

The pivot uniqueness restriction ensures that values in
pivot fields are either null or are unique, except possibly for
copies stored in formal parameters on the call stack. Pivot
uniqueness allows us to avoid the problem we showed in
procedure q above, because the fact that v is not a formal
parameter implies v �= st .vec . Therefore, a static checker
will not complain about the assertion in procedure q , re-
gardless of whether the declaration of vec is available to the
checker.

The pivot uniqueness restriction confines sharing of ob-
jects that are referenced by pivot fields. Note, however,
that it does not restrict sharing via non-pivot fields.

3.1 Owner Exclusion
Now that our methodology keeps close tabs on the values

of pivot fields, one might think we’d be done. But a prob-
lem still remains. Consider a procedure w , declared and
implemented as follows:

proc w(st , v) modifies st .contents
impl w(st , v) {

var n in
n := v .cnt ; push(st , 3) ; assert n = v .cnt

end }

As for procedure q in the previous subsection, we argue that
any practical static checker will pass this implementation of
w in a scope where the declaration of the pivot field vec
is not available (which is the case if the implementation of
w is declared in some module other than the private stack
implementation). However, if the pivot field vec is in scope,
then the implementation of w will not pass, because of the
possibility that v = st .vec . Hence modular soundness, that
is, scope monotonicity, is violated. Notice that the pivot
uniqueness restriction does not help, since v is a formal
parameter in this example. Indeed, so far our methodology
would allow a call

w(st , st .vec)

from within the private implementation of the stack module,
which would cause the assertion in w ’s implementation to
fail at runtime.

The problem we’ve described violates modular soundness
because of an unexpected side effect between the contents
group of a stack and the cnt field of the stack’s underlying
vector object. The side effect is unexpected only if a piece
of code uses the values of both st and st .vec in a scope
where the rep inclusion is not known.

Further scrutiny of the example has led us to the conclu-
sion that the problem occurs only under the combination of
three conditions. First, the problem occurs only when the
value of a pivot field, like st .vec , is passed as a parameter
(in other cases, pivot uniqueness takes effect). Second, the
problem occurs only when the owner of the pivot value, that
is, st in the case of the pivot value st .vec , is accessible to
the callee. In the call to w above, st is passed directly as
a parameter, but there are other ways in which the stack
could be accessed from the implementation of w , for exam-
ple if w took a parameter s where s.x .y .z = st . Third,
the problem occurs only if st .contents is modified. From
these three conditions, we suggest a restriction to avoid the
problem: the owner exclusion restriction.

Owner exclusion takes effect at call sites, and states that
the value of a pivot field can be passed as a parameter only
if the callee does not have license to modify the group with
the rep inclusion. More precisely, suppose f is a pivot field
declared to map x into g . Then, for any object t and
any procedure p , if p has the license to modify t .g , then
none of p ’s parameters is allowed to equal t .f . In our ex-
ample, procedure w has the license to modify st .contents ,
so owner exclusion prohibits the value st .vec from being
passed as a parameter. A static checker enforces owner
exclusion as a precondition check at every call. This pre-
condition can then also be assumed on entry to procedure
implementations, which gives the checker enough informa-
tion not to warn about the assertion in the implementation
of w .

A final note. In this exposition, we have used the prop-
erty that a procedure implementation modifies only what it
is allowed to. If this were checked only at the end of a proce-
dure implementation, the condition would not be checked for
implementations that do not terminate (for example by al-
ways blocking), since then there would be no execution path
leading to the exit of the procedure. For owner exclusion to
have the desired effect, modifications must be checked as
they occur, not at the end of procedure implementations.4

4 The issue described is not a problem with modular sound-

4. VERIFICATION CONDITION GENERA-
TION

In this section, we formalize what it means in our tech-
nique for a program to be side-effect correct. In particular,
for every method implementation C of a method with a de-
clared modifies list w , we prescribe a verification condition,
a logical formula that is valid if and only if every execution
of C modifies only what is allowed by w and no execution
of C goes wrong.

The prescription of the verification condition is a function
of a set of program declarations. Since we are doing modu-
lar checking, we do not assume that the given declarations
make up the entire, eventual program. Instead, the given
set of declarations provides a sub-program context that we
will refer to as a scope. We require a scope to satisfy the
rule of self-contained names: every attribute and method
referred to in the scope is also declared in the scope. In
other words, a scope is a set of declarations that will not
give rise to an “undeclared attribute/method” error. In a
language with explicit features for information hiding, like
interface modules and implementation modules, the scope
of an implementation module M would typically be the set
of declarations in M and in the interface modules that M
transitively imports.

We don’t want to be penalized by the absence of entire-
program information; that is, we don’t want the absence of
entire-program information to cause our modular analysis to
miss program errors. More precisely, for any implementa-
tion C of a method m in a module M , if the verification
condition prescribed for C in the scope of M is valid, then
we want the verification condition prescribed for C in the
scope of the entire program to be valid too. In fact, since the
eventual program may be any extension of the scope of M ,
we want the validity of VCD (m,C) to entail the validity of
VCE (m,C) , where VC is the function that prescribes the
verification condition, D is the scope of module M (or,
more generally, any scope containing the implementation
C), and E is any extension of D . We identify this prop-
erty of scope monotonicity with modular soundness [19].

We use the formalization technique developed by Poetzsch-
Heffter [28] to achieve modular soundness: The properties of
a scope D are formalized by a set of axioms AxD such that
AxD ⊆ AxE for scopes E larger than D . Following this
technique, the verification condition for an implementation
C in a scope D has the shape:

RD ⇒ wlp(C , true) (0)

where function wlp gives the semantics of commands and
RD formalizes the properties of scope D (defined below).
The important point is that only the antecedent, RD , of this
formula depends on the scope. To achieve modular sound-
ness, we therefore just need to ensure RE ⇒ RD for any
extension E of scope D .5

Let’s add more detail. For any method m declared with

ness, but a problem with the soundness of the axiomatic
semantics with respect to an underlying operational seman-
tics.
5 The property of scope independence in the right-hand side
of (0) is simple, but stronger than necessary. To apply the
described formalization technique, it suffices for the right-
hand side of (0) to be extension insensitive. That is, the
technique applies as long as extensions of D don’t change
the right-hand side of (0).

modifies list w and any implementation C of m in a scope
D , we define VCD (m,C) to be:

UBP ∧ BPD ∧ Init(m) ⇒ wlpw,$0(C , true) (1)

The function wlp is a version of Dijkstra’s weakest liberal
precondition [6], which gives the semantics of command C .
We will describe this application of wlp in Section 4.1,
where we also define wlp . Our definition of wlp uses some
function and predicate symbols. These symbols get their
meaning from a number of so-called background axioms that
are conjoined to make up UBP , the universal background
predicate, and BPD , the scope-dependent background pred-
icate for scope D . The predicate Init(m) describes the
state on entry to m .

Note, as alluded to before, that in formula (1), only BPD

depends on the scope D . Hence, we are able to achieve
modular soundness simply by producing more background
axioms in larger scopes.

In the next subsection, we describe our semantic model
for oolong, introducing the functions and predicates that it
uses. The subsequent two subsections define the semantics
of commands and some further background axioms, respec-
tively.

4.0 The semantic model
The central data structure in our semantic model is the

object store, or store for short. A store keeps track of the
values of object attributes and the set of objects that have
been allocated. Objects and attributes are values in our
semantic model. The declared attribute names are modeled
as distinct constants.

An object X and attribute A determine a unique loca-
tion in the store, denoted X �A . A store S functionally
maps locations to values, so we write:

S(X �A) (2)

to denote the value of attribute A of object X in S .6

For any value V , and any X ,A,S as above, the expres-
sion

S〈X �A := V 〉 (3)

denotes the store that is like S , except that X �A returns
the value V . Store selection (2) and store update (3) satisfy
the following familiar axioms [21]:

S〈X �A := V 〉(Y �B) =

�
V if X = Y and A = B
S(Y �B) otherwise

for all S ,X ,Y ,A, B ,V . These axioms are part of the uni-
versal background predicate.

The predicate

alive(S ,X)

asserts that object X has been allocated in store S (it may
or may not be reachable from the program). For any stores
S and T , we define S � T as:

(∀X ,A :: alive(S ,X) ⇒
alive(T ,X) ∧ S(X �A) = T (X �A))

6 Our model includes locations for groups, too, and a store
defines values for these locations. However, there is no com-
mand that assigns to a group (nor is there any expression
that reads the value of a group). Therefore, the values of
group locations remain constant, and so need not be repre-
sented at runtime.

which says that T may have more allocated objects than
S , and that S and T agree on the values of attributes for
their commonly allocated objects.

We associate with every store S the next object to be
allocated, denoted new(S) ; the store that results by allo-
cating this object is written S+ [28]. Thus, for any S , we
have the following properties:

¬alive(S ,new(S)) ∧ S � S+ ∧ alive(S+, new(S))

which are included as part of the universal background pred-
icate.

Next, we describe the formalization of inclusions, for which
we will use three relations. We follow the strategy of Müller
and Poetzsch-Heffter [24] by letting the relations denote
what is true in the entire, eventual program. In the given
verification scope, the relations will then necessarily be left
underspecified, so that the only properties one can infer from
them are properties that hold in any extension of the given
scope.

The first two relations are relations on attributes. For
any attributes a and b , relation a
→1 b corresponds to
local inclusions and asserts that the program declares a field
b with a clause “ in a ”. As it turns out, it will be more
convenient to work in terms of the reflexive, transitive clo-
sure of
→1 , which we will write simply as a
→ b . In fact,

→1 will not be part of the formalization and we will men-

tion it no more. For any attributes a, f , b , relation a
f
→ b

corresponds to rep inclusions and asserts that the program
declares a field f with a clause “ maps b into a ”. Note

that a
f
→ b holds only if f is a pivot field.

From these relations, we define a relation on locations: for
any X ,Y , A,B ,S , the main inclusion relation

X �A
S→ Y �B

asserts that location X �A “includes” location Y �B in
store S . For example, in terms of the running example
in Section 3, we have

st �contents
S→ S(st �vec) �cnt

for any store S .
The connection between the three relations is captured by

the following background axiom, for all X ,Y ,A,B ,S :

(4)X �A
S→ Y �B ≡

(X = Y ∧ A
→ B) ∨
(X �= Y ∧ (∃Z ,H ,F ,K :: Y = S(Z �F) ∧

X �A
S→ Z �H ∧ H

F
→ K ∧ K
→ B))

This axiom says that if X and Y are equal, then the main
inclusion relation boils down to the local inclusion relation;
if X and Y are different objects, then the main inclusion
relation is a composition of inclusions going through at least
one pivot field, F . We also add the background axiom:

S→ is transitive

to the universal background predicate.
The universal background predicate also contains other

axioms about the three inclusion relations, and the scope-
dependent background predicate contains axioms that con-
nect the first two relations to the attribute declarations in
the program. These background axioms are described in
Section 4.2. Next, we’ll focus on the semantics of commands.

wlpw,S (assert E ,Q) = tr(E) ∧ Q
wlpw,S (assume E ,Q) = tr(E) ⇒ Q
wlpw,S (var x in C end,Q) = (∀ x :: wlpw,S (C ,Q))

provided x does not occur free in Q
wlpw,S (C0 ; C1,Q) = wlpw,S (C0,wlpw,S (C1,Q))
wlpw,S (C0 C1,Q) = wlpw,S (C0,Q) ∧ wlpw,S (C1,Q)
wlpw,S (x := E ,Q) = Q [x := tr(E)]
wlpw,S (x := new(),Q) = Q [x := new($)][$:= $+]
wlpw,S (E0.f := E1,Q) = mod(tr(E0) �f ,w , S) ∧

Q [$:= $〈tr(E0) �f := tr(E1)〉]
wlpw,S (E .f := new(),Q) = mod(tr(E) �f , w ,S) ∧

Q [$:= $〈tr(E) �f := new($)〉][$:= $+]
tr(c) = c
tr(x) = x
tr(E .f) = $(tr(E) �f)
tr(E0 Op E1) = tr(E0) Op tr(E1)

Figure 2: The semantics of commands and ex-
pressions are given by the functions wlp and tr .
(Method call is defined in Figure 3.)

4.1 The semantics of commands
The function wlp is a version of Dijkstra’s weakest liberal

precondition [6] for a command C . For any modifies list
w , object store S , command C , and postcondition Q ,
the predicate wlpw,S (C ,Q) denotes those program states
from which:

• every terminating execution of C terminates in a state
satisfying Q ,

• every execution of C modifies only what is allowed
by w evaluated in S , and

• no execution of C goes wrong.

Note that the second of these bullets mentions “ w evalu-
ated in S ”. The reason for this is that the meaning of a
modifies list depends on the values of pivot fields, which are
defined by an object store. In our definition and application
of wlp , we take the point of view that what is allowed to
be modified by a method is determined by the method’s de-
clared modifies list evaluated using the values of pivot fields
on entry to the method.

The verification condition (1) only checks that C is side-
effect correct. Therefore, it applies wlp with the postcon-
dition true (which has the effect of trivially satisfying the
first of the bullets above). The side effects that C in (1) is
allowed are those specified by m ’s modifies list evaluated in
the initial state of m . Therefore, (1) applies wlp with the
subscripted arguments w , $0 , where $0 denotes the object
store on entry to m , as defined by Init(m) below.

The wlp of a command C is defined over the structure
of C , using the cases in oolong’s grammar in Figure 1. The
definition is found in Figures 2 and 3. Except for method
call, the commands have a fairly standard definition, but
several remarks are still in order.

The translation of oolong expressions into formulas is done
using function tr , defined in Figure 2. It turns object deref-
erences into expressions that pick out the value from the
current store, which we denote by the special variable $.
For brevity, we have left out the conditions that stipulate

For method q declared as: proc q(t1, . . ., tn) modifies wt ,

wlpw,S (q(E1, . . .,En),Q) =
(∀ s1, . . ., sn :: s1 = tr(E1) ∧ · · · ∧ sn = tr(En) ⇒

(∧E , f
��� E .f ∈ ws :: mod(tr(E) �f ,w ,S)) ∧

ownExcl(s1,ws, $) ∧ · · · ∧ ownExcl(sn ,ws, $) ∧
(∀ $′ ::

(∀X :: alive($,X) ⇒ alive($′,X)) ∧
(∀X ,F :: $(X �F) = $′(X �F) ∨ mod(X �F ,ws, $))
⇒ Q [$:= $′]))

where the si ’s and $′ are fresh variables, and ws denotes
wt with each ti replaced by the corresponding si .

Figure 3: The semantics of method call.

expression evaluation to be well defined (for example, that
no null dereferences or division-by-zero errors occur).

For commands that can change the value of a variable v
(including the special variable $), the semantics uses an
expression of the form E0[v := E1] , which denotes the ex-
pression E0 with all free occurrences of v replaced by ex-
pression E1 .

The allocation commands have the effect of setting their
targets to the next object to be allocated, new($) , and then
updating the store accordingly, to $+ .

The field update commands require that their targets be
assignable according to the modifies list w evaluated in the
store S . This is spelled out by function mod , which is
defined below.

The semantics of method call, shown in Figure 3, is more
complicated. First, it identifies the actual parameters with
formal-parameter counterparts. Second, it requires that ev-
erything listed in the modifies list of the callee be assignable
according to w evaluated in S . We use the notation:

(∧E , f
��� E .f ∈ ws :: R(E , f))

to denote the conjunction of all predicates R(E , f) where
E and f range over the terms E .f in ws . Third, it
requires that the owner exclusion restriction be observed,
where ownExcl is defined below. Finally, it updates $ to
take into consideration the side effects that the callee is per-
mitted.7

We now define what it means for a location X �A to be
assignable according to a modifies list w evaluated in a
store S , written mod(X �A,w ,S) . For all X ,A,w ,S :

mod(X �A,w ,S) ≡ ¬alive(S ,X) ∨ incl(X �A,w ,S)

7 The wlp of method call actually needs the scope in order
to look up the modifies list wt of the called method q .
Formally, this would require adding a scope parameter to
wlp , but, for brevity, we have left that parameter implicit.
The scope parameter, whether explicit or implicit, means
that the right-hand side of (1) is in fact dependent on the
scope, which jeopardizes the application of the formalization
technique for modular soundness. Note, however, that a
modifies list is given at the declaration of a method and is
not changed by any subsequent program extension. Since
scopes satisfy the rule of self-contained names, any scope
D that contains an implementation C also contains the
declarations of the methods called from C . Therefore, the
wlp of C is extension insensitive, and the formalization
technique can be applied, see footnote 5.

where incl is defined as follows, for all X ,A, w ,S :

incl(X �A,w ,S) ≡
(∨E , f

��� E .f ∈ w :: tr(E) �f
S→ X �A)

In words, modifies list w evaluated in store S allows lo-
cation X �A to be assigned if and only if object X is not
allocated in S or there is a term E .f in w such that lo-
cation tr(E) �f includes X �A .

Next, we formalize the owner exclusion restriction. For
any method m with modifies list w , any variable t (cor-
responding to a formal parameter of m), and store S (at
the time of entry to m), we define ownExcl as follows:

ownExcl(t , w ,S) ≡
(∀X ,A,F ,B :: A

F
→ B ∧ t = S(X �F) ∧ t �= null
⇒ ¬incl(X �A,w ,S))

The property says that the non-null value of a pivot field F
for an object X can be passed as the parameter t only if
m does not have the license to modify the A attribute of
X . In terms of our example from Section 3.1, this owner
exclusion restriction says that the pivot field vec for an
object st can be passed as a parameter to a method m
only if m does not have the license to modify st .contents .

Because it is checked at every call site, owner exclusion
will hold on entry to every method implementation. This
fact is often useful to the verification of a method implemen-
tation. Therefore, for any method m declared with modifies
list w , we define Init(m) to contain the conjuncts

ownExcl(t , w , $0) ∧ alive(t , $0) (5)

for every formal parameter t of m . Additionally, Init(m)
contains the conjunct:

$ = $0

which identifies $0 with the current store on entry to the
method.

4.2 Properties of inclusions
In this section, we describe additional background axioms.
The universal background predicate contains three more

axioms, which can be proved to hold in every oolong pro-
gram execution. The first axiom states that non-null pivot
fields in the store have unique values, which is a consequence
of the pivot uniqueness restriction:

G
F
→ A ∧ (X �= Y ∨ F �= B) ∧ S(X �F) �= null

⇒ S(X �F) �= S(Y �B)
(6)

Here and in the next two axioms, all free variables are uni-
versally quantified. Note how the axiom uses the rep inclu-

sion relation G
F
→ A to say “ F is a pivot field”. The second

axiom states that the main inclusion relation is insensitive
to changes of non-pivot fields:

(∀Z ,F ,G, H :: G
F
→ H ⇒ S(Z �F) = T (Z �F))

⇒ (X �A
S→ Y �B ≡ X �A

T→ Y �B)

The third axiom states that if F is a pivot field that maps
into G , then X �G is not included in any group of X .F :

G
F
→ A ∧ Y = S(X �F) ∧ Y �= null

⇒ ¬Y �B
S→ X �G

(7)

In other words, this axiom states that there are no cycles
among the inclusions of locations.

So far, all of the background axioms we have presented are
part of the universal background predicate, because they ap-
ply to all oolong programs. Next, we present the background
axioms that are generated from the attribute declarations in
a given scope. For a given scope D , these axioms make up
the scope-dependent background predicate BPD .

When performing a verification of a method implemen-
tation, one frequently needs to discharge proof obligations
of the form mod(X �A, w , $0) , to prove that the implemen-
tation has the appropriate license to modify the value at a
location X �A . Such license comes from the method’s mod-
ifies list evaluated on entry to the method, and so the proof
of having such license involves establishing properties of the

form Y �G
$0→ X �A . This, in turn, is done via the inclusion

connection (4) by showing the presence of various ·
→ · and

· ·
→ · relations.
Verifying a method implementation also involves discharg-

ing the conditions given in assert commands, to prove that
no execution goes wrong. The proof of such a condition may
involve showing that some method call does not have a side
effect on some particular object field (as was the case with
push and v .cnt in the examples in Section 3). To show that

requires establishing properties of the form ¬Y �G
S→ X �A ,

which in turn is done using the owner exclusion property (5)
assumed on entry, using axiom (7), or via the inclusion con-
nection (4) by showing the absence of various ·
→ · and

· ·
→ · relations.
It may not be clear how one can show the absence of cer-

tain inclusions in a modular setting, since a program exten-
sion can always declare more inclusions. However, inclusions
are only declared with in and maps into clauses, which
are part of particular attribute declarations. Thus, the pres-
ence or absence of certain in and maps into clauses on
a particular attribute a gives us perfect information about
certain inclusions involving a . We now describe exactly
what this information is.

For any attribute a declared in a scope D , all groups
that include a , directly or indirectly, are also declared in
D . This is because the in clause of the declaration of a
states which groups directly include a ; and, since scopes
satisfy the rule of self-contained names, these groups are
also declared in D ; and the in clauses of the declarations of
these groups state which other groups directly include these
groups; and so on. Let g1, . . . , gn be the set of groups
that directly or indirectly include attribute a . Then the
following background axiom is part of BPD :

(∀G :: G
→ a ≡ G = a ∨ G = g1 ∨ · · ·G = gn)

Note that in the special case where a has no in clause,
the right-hand side is simply G = a . Note also that this
axiom enables us to derive either g
→ a or ¬g
→ a , for
any attribute g whatsoever. Since, as we have just argued
above, the set of enclosing groups of a are all declared in
D , this set of groups, and the axiom, are the same in every
extension of D .

Similarly, for rep inclusions, the maps into clauses of
the declaration of an attribute f in a scope D allows us to

determine all pairs of attributes a and b such that a
f
→ b .

Let b1, . . . , bn be the attributes mapped by f ; that is, sup-
pose the maps into clauses of f are “ maps b1 into . . . ”,

. . . , “ maps bn into . . . ”. Then, the following background
axiom is part of BPD :

(∀A,B :: A
f
→ B ⇒ B = b1 ∨ · · · ∨ B = bn) (8)

This axiom says that the possible right-hand arguments of

· f
→ · are b1, . . . , bn . Note that in the special case where f
has no maps into clauses, the right-hand side is the empty
disjunction, false .

Furthermore, for any attribute f declared with a clause
“ maps b into . . . ”, let a1, . . . , an be the groups that f
maps b into; that is, suppose that the “ maps b into . . . ”
clauses of f are “ maps b into a1 ”, . . . , “ maps b into an ”.
Then, the following background axiom is part of BPD :

(∀A :: A
f
→ b ≡ A = a1 ∨ · · · ∨ A = an) (9)

This axiom says that the possible (left-hand) arguments of

· f
→ b are exactly a1, . . . , an .
Note that, for any attribute f declared in D , axioms (8)

and (9) enable us to derive either a
f
→ b or ¬a

f
→ b , for
any attributes a and b whatsoever. And note that these
axioms will be the same for any scope that contains this
declaration of f , in particular the axioms will be the same
in every extension of D .

We have now described all the axioms of the background
predicate, and have thus described the entire prescription of
verification conditions in oolong.

5. EXAMPLES
Our goal is to produce a sound, practical, modular checker.

The formalization technique we used in the previous section
achieves modular soundness. It requires that the wlp can
be expressed in a scope-independent way. This, in turn, was
facilitated by the object store and inclusion relations, which
assert properties of the entire, eventual program. So then,
if that is all that is required for modular soundness, then
what happened to the pivot uniqueness and owner exclu-
sion restrictions? In our system, they are key ingredients
to making verification go through, as required for the prac-
ticality of the checking technique. Note for example that
pivot uniqueness is needed to verify the implementation of
method q in Section 3.0; background axiom (6) implies that
the value of result .obj is not the value of any pivot field,
and thus st .vec �= v . Also, owner exclusion is needed to
verify the implementation of method w in section 3.1; the
initial condition (5) implies that st .vec �= v . In this section,
we give three examples involving small programs of the sort
we have used in testing our checker implementation. These
examples show how the two programming restrictions enable
the verifications.

First example. Let’s consider in some detail the verifi-
cation of the following program:

field c field d field f group g
proc p(t) modifies t .c.d .g
proc q(u) modifies u.g
impl p(t) {

assume t �= null ;
var y in

y := t .f ; q(t .c.d) ; assert y = t .f
end }

The verification condition for the implementation of p is:

UBP ∧ BP ∧ ownExcl(t , t .c.d .g , $0) ∧ alive($0, t) ∧
$ = $0 ∧ t �= null ⇒

(∀ y :: (∀u :: u = $($(t �c) �d) ⇒
mod(u �g , t .c.d .g , $0) ∧ ownExcl(u, u.g , $) ∧
(∀ $′ ::

(∀X :: alive($,X) ⇒ alive($′,X)) ∧
(∀X ,F :: $(X �F) = $′(X �F) ∨ mod(X �F , u.g , $))
⇒ $(t �f) = $′(t �f))))

For brevity, we didn’t expand mod and ownExcl in this
formula. There are three proof obligations, two for the call
and one for the assert.

The first proof obligation checks that the caller has the
license to modify the targets of the callee. It expands to:

¬alive($0, u) ∨ $($(t �c) �d) �g
$0→ u �g

and follows from u = $($(t �c) �d) and “fieldwise reflexiv-
ity”: the scope-specific background axiom g
→ g and the
inclusion connection (4).

The second proof obligation checks the owner exclusion
restriction at the call site. It expands to:

(∀X ,A,F ,B :: A
F
→ B ∧ u = $(X �F) ∧ u �= null

⇒ ¬u �g
$→ X �A)

(10)

and follows directly from axiom (7). In fact, for any method
with a parameter u and a modifies list u.g , the following
useful property holds, for all S :

(7) ⇒ ownExcl(u, u.g , S) (11)

There is an alternative way of proving (10): the pivot
uniqueness axiom (6) and $($(t �c) �d) = $(X �F) imply
that d = F , but d is not a pivot field, so the antecedent
of (10) is false .

The third proof obligation comes from the assert state-
ment, which sees the effects of the call. It is discharged by
proving ¬mod(t �f , u.g , $) and using the antecedent about
$′ . This negated mod expression expands to:

¬(¬alive($, t) ∨ u �g
$→ t �f)

To prove the negation of the second disjunct, we first de-
compose it using the inclusion connection (4), and get:

¬((u = t ∧ g
→ f) ∨
(u �= t ∧ (∃Z ,H ,F ′,K :: t = $0(Z �F ′) ∧

u �g
$0→ Z �H ∧ H

F ′
→ K ∧ K
→ f)))

The first disjunct is false , because the scope-specific back-
ground predicate implies ¬ g
→ f . The negation of the
second disjunct is a perfect match for the owner exclusion
property assumed on entry, which expands to:

(∀Z ,H ,F ′,K :: H
F ′
→ K ∧ t = $0(Z �F ′) ∧ t �= null

⇒ ¬$($(t �c) �d) �g
$0→ Z �H)

This concludes the verification of our first example program.
Second example. We proceed using less detail than in

the first example. Consider the following program:

group g
proc once(t) modifies t .g
proc twice(t) modifies t .g
impl twice(t) { once(t) ; once(t) }

The essence of the verification condition for the implemen-
tation of twice is:

$ = $0 ∧ t0 = t ⇒
mod(t0 �g , t .g , $0) ∧ ownExcl(t0, t0.g , $) ∧
(∀ $′ :: . . . ∧ t1 = t ⇒

mod(t1 �g , t .g , $0) ∧ ownExcl(t1, t1.g , $′) ∧
(∀ $′′ :: . . . ⇒ true))

The two mod expressions follow from fieldwise reflexivity,
and the ownExcl expressions follow from (11).

This example was used by Leino and Nelson to motivate
their swinging pivots restriction [19]. A consequence of our
way of enforcing the pivot uniqueness restriction is that pro-
grams always satisfy the swinging pivots restriction, and our
proof system makes programs such as the one above easy to
prove.

Third example. This final example considers linked lists
and an operation on such lists:

group g
field value in g
field next maps g into g
proc updateAll(t) modifies t .g
impl updateAll(t) {

assume t �= null ;
t .value := t .value + 1 ;
(assume t .value = null

assume t .value �= null ; updateAll(t .next)
) }

Recall that the construction with assume and is really
just an if statement. Note the “cyclic” rep inclusion in this
example: t .g includes t .next .g . We call it cyclic because
g occurs on both sides of the main inclusion relation, not
because of any cycle through pivot fields in the object store
(which pivot uniqueness prevents, anyhow).

The essence of the verification condition for the imple-
mentation of updateAll is:

t �= null ⇒
mod(t �value, t .g , $) ∧
($′ = $〈t �value := . . . 〉 ∧ $′(t �next) �= null ∧
t0 = $′(t �next) ⇒
mod(t0 �g , t .g , $′) ∧ ownExcl(t0, t0.g , $′) ∧
(∀ $′′ :: . . . ⇒ true))

where we have introduced the name $′ for the store after the
update of t .value . The mod expressions follow straightfor-
wardly from the background axioms about inclusions, and
the ownExcl expression holds on account of (11).

We find this proof delightfully simple. Unfortunately,
the simplicity of this hand proof is not reflected in our
checker implementation. The theorem prover we’re using
(Simplify) uses some matching heuristics to guide its in-
stantiation of quantified expressions. These heuristics show
signs of fragility when cyclic inclusions are involved, caus-
ing the prover to loop irrevocably, and so we have not had
complete success in mechanically verifying simple programs
with cyclic inclusions like the one above. This is similar
to Joshi and Leino’s attempt to mechanize the analogous
cyclic dependencies [12], but our hand proofs are consider-
ably simpler, which makes us more optimistic about finding
a way to prevent the divergent behavior in our mechanical
implementation.

6. CONCLUSION
In summary, we have introduced a technique for speci-

fying and statically checking the side effects of methods in
an object-oriented language. The technique works in the
presence of information hiding and features data groups as
a mechanism to represent variables that a method’s imple-
mentations can modify but that are not available in the
scope where the method is declared and specified. In this
paper, we have allowed data groups to include fields of the
same object and fields of underlying representation objects,
which seem to be the two inclusions most useful in prac-
tice. To achieve modular soundness and make our technique
practical, we have proposed two alias-confining restrictions,
pivot uniqueness and owner exclusion. These restrictions
also account for the simplicity of our technique.

Achieving modular soundness in a formal system has taken
considerable effort. Essentially, there are two different ap-
proaches to formally handle modular soundness. Here, we
used one variable to represent the entire store, including
object fields whose names are not known in the verification
scope, and one relation to model inclusions [23]. An alterna-
tive approach is to encode object fields as different variables
and dealing with the inclusion relation as a preprocessing
step rather than explicitly in the logic [19]. Our conclusion
is that the former approach offers a much quicker road to
soundness than latter.

We have implemented our formal system in an automatic
checker for a primitive object-oriented language. We have
gained confidence in our technique by running small but
nontrivial examples through this checker, but would like to
try the technique in the setting of a real language and real
programs.

Our formal system produces verification conditions, logi-
cal formulas that in our checker are analyzed by a mechani-
cal theorem prover. The experience with ESC [5, 8] suggests
that using a theorem prover as part of a program analysis en-
gine is feasible. Nevertheless, it is entirely possible that our
technique of data groups and the two restrictions can also
be checked, albeit more conservatively, using more primitive
techniques (cf. [11]).

We are also interested in the extension of our work to
other kinds of inclusions. At the top of our list is the kind
of inclusion that arises when an object is implemented in
terms of an array of underlying objects (an inclusion that
corresponds to array dependencies [19]).

Since the overhead for specifying data groups, inclusions,
and modifies lists does not seem overwhelming, we hope to
see a technique like ours included as part of a programming
language. By allowing design decisions about side effects
to be written down by programmers and checked automati-
cally by the compiler, such a language could both eliminate
programming errors and enable further program analyses.

7. ACKNOWLEDGMENTS
We are grateful to Raymie Stata for helping design the

first owner exclusion restriction in a more complicated set-
ting, which inspired this simpler one; to John Boyland for
some of the notation we’ve used; and to Roy Levin for sug-
gesting “oolong” as the name of an object-oriented language—
it combines two popular features of such names: double-o
and caffeinated beverage. We’d also like to thank the refer-
ees for their detailed comments.

8. REFERENCES
[0] A. Banerjee and D. A. Naumann. Representation

independence, confinement and access control
[extended abstract]. In Proc. 29th POPL, pages
166–177, Jan. 2002.

[1] J. Boyland. Alias burying: Unique variables without
destructive reads. SP&E, 31(1):533–553, Jan. 2001.

[2] J. Boyland. The interdependence of effects and
uniqueness. In 3rd workshop on Formal Techniques for
Java Programs, 2001.

[3] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Proc. PLDI’01,
volume 36 of SIGPLAN Notices 36(5), pages 59–69.
ACM, May 2001.

[4] D. L. Detlefs, K. R. M. Leino, and G. Nelson.
Wrestling with rep exposure. Research Report 156,
Digital Equipment Corporation Systems Research
Center, July 1998.

[5] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe. Extended static checking. Research Report 159,
Compaq SRC, Dec. 1998.

[6] E. W. Dijkstra. A Discipline of Programming.
Prentice Hall, Englewood Cliffs, NJ, 1976.

[7] D. Evans, J. V. Guttag, J. J. Horning, and Y. M. Tan.
LCLint: A tool for using specifications to check code.
In D. S. Wile, editor, Proc. 2nd SIGSOFT, ACM
SIGSOFT Software Eng. Notes 19(5), pages 87–96,
Dec. 1994.

[8] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In Proc. PLDI’02, 2002.

[9] A. Greenhouse and J. Boyland. An object-oriented
effects system. In Proc. 13th ECOOP, number 1628 in
LNCS, pages 205–229. Springer, June 1999.

[10] J. V. Guttag and J. J. Horning, editors. Larch:
Languages and Tools for Formal Specification. Texts
and Monographs in Computer Science.
Springer-Verlag, 1993. With S. J. Garland, K. D.
Jones, A. Modet, and J. M. Wing.

[11] D. Jackson. Aspect: Detecting bugs with abstract
dependences. ACM Trans. Software Eng. and
Methodology, 4(2):109–145, Apr. 1995.

[12] R. Joshi. Extended static checking of programs with
cyclic dependencies. In J. Mason, editor, 1997 SRC
Summer Intern Projects, Technical Note 1997-028.
DEC SRC, 1997.

[13] P. Jouvelot and D. K. Gifford. Algebraic
reconstruction of types and effects. In Proc. 18th
POPL, pages 303–310, Jan. 1991.

[14] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. Technical Report 98-06f, Iowa State
University, Department of Computer Science, July
1999.

[15] K. R. M. Leino. Toward Reliable Modular Programs.
PhD thesis, Caltech, 1995. Technical Report
Caltech-CS-TR-95-03.

[16] K. R. M. Leino. Data groups: Specifying the
modification of extended state. In Proc. OOPSLA ’98,
pages 144–153. ACM, 1998.

[17] K. R. M. Leino. Applications of extended static
checking. In P. Cousot, editor, Static Analysis: 8th

International Symposium, SAS 2001, volume 2126 of
LNCS, pages 185–193. Springer, July 2001.

[18] K. R. M. Leino. Extended static checking: A ten-year
perspective. In R. Wilhelm, editor, Informatics—10
Years Back, 10 Years Ahead, volume 2000 of LNCS,
pages 157–175. Springer, Jan. 2001.

[19] K. R. M. Leino and G. Nelson. Data abstraction and
information hiding. Research Report 160, Compaq
SRC, Nov. 2000. To appear in TOPLAS.

[20] B. Liskov and J. Guttag. Abstraction and Specification
in Program Development. MIT Electrical Engineering
and Computer Science Series. MIT Press, 1986.

[21] J. McCarthy and J. Painter. Correctness of a compiler
for arithmetic expressions. In J.-T. Schwartz, editor,
Proc. Symposia in Applied Mathematics. American
Mathematical Society, 1967.

[22] C. Morgan. The specification statement. ACM Trans.
Prog. Lang. Syst., 10(3):403–419, July 1988.

[23] P. Müller. Modular Specification and Verification of
Object-Oriented Programs, volume 2262 of LNCS.
Springer-Verlag, 2002. The author’s PhD thesis,
FernUniversität Hagen.

[24] P. Müller and A. Poetzsch-Heffter. Modular
specification and verification techniques for
object-oriented software components. In G. T. Leavens
and M. Sitaraman, editors, Foundations of
Component-Based Systems, chapter 7, pages 137–159.
Cambridge University Press, 2000.

[25] P. Müller and A. Poetzsch-Heffter. Universes: A type
system for alias and dependency control. Technical
Report 279, FernUniversität Hagen, 2001.

[26] G. Nelson. A generalization of Dijkstra’s calculus.
ACM Trans. Prog. Lang. Syst., 11(4):517–561, 1989.

[27] R. Page. Functional programming, and where you can
put it. ACM SIGPLAN Notices, 36(9):19–24, Sept.
2001.

[28] A. Poetzsch-Heffter. Specification and verification of
object-oriented programs. Habilitationsschrift,
Technische Universität München, 1997.

[29] J. M. Spivey. The Z Notation: A Reference Manual.
Prentice Hall International, 2nd edition edition, 1992.

[30] J.-P. Talpin and P. Jouvelot. Polymorphic type, region
and effect inference. Journal of Functional
Programming, 2(3):245–271, July 1992.

[31] M. Utting. Reasoning about aliasing. In Proc. 4th
Australasian Refinement Workshop, pages 195–211.
School of Comp. Sci. and Eng., The Univ. of New
South Wales, Apr. 1995.

[32] M. T. Vandevoorde. Exploiting Specifications to
Improve Program Performance. PhD thesis,
Massachusetts Institute of Technology, Feb. 1994.
Available as Technical Report MIT/LCS/TR-598.

[33] H. Xi and F. Pfenning. Dependent types in practical
programming. In Proc. 26th POPL, pages 214–227,
Jan. 1999.

