
Featherweight JavaA Minimal Core Cal
ulus for Java and GJ�Atsushi IgarashiyDepartment of Graphi
s and Computer S
ien
eGraduate S
hool of Arts and S
ien
esUniversity of Tokyoigarashi�gra
o.
.u-tokyo.a
.jp Benjamin Pier
eDepartment of Computer and Information S
ien
eUniversity of Pennsylvaniab
pier
e�
is.upenn.eduPhilip WadlerBell LaboratoriesLu
ent Te
hnologieswadler�resear
h.bell-labs.
omJuly 14, 2000Abstra
tSeveral re
ent studies have introdu
ed lightweight versions of Java: redu
ed languages in whi
h
om-plex features like threads and re
e
tion are dropped to enable rigorous arguments about key propertiessu
h as type safety. We
arry this pro
ess a step further, omitting almost all features of the full language(in
luding interfa
es and even assignment) to obtain a small
al
ulus, Featherweight Java, for whi
hrigorous proofs are not only possible but easy.Featherweight Java bears a similar relation to full Java as the lambda-
al
ulus does to languagessu
h as ML and Haskell. It o�ers a similar
omputational \feel," providing
lasses, methods, �elds,inheritan
e, and dynami
 type
asts, with a semanti
s
losely following Java's. A proof of type safety forFeatherweight Java thus illustrates many of the interesting features of a safety proof for the full language,while remaining pleasingly
ompa
t. The syntax, type rules, and operational semanti
s of FeatherweightJava �t on one page, making it easier to understand the
onsequen
es of extensions and variations.As an illustration of its utility in this regard, we extend Featherweight Java with generi

lasses inthe style of GJ (Bra
ha, Odersky, Stoutamire, and Wadler) and give a detailed proof of type safety. Theextended system formalizes for the �rst time some of the key features of GJ.1 Introdu
tion\Inside every large language is a small language struggling to get out..."Formal modeling
an o�er a signi�
ant boost to the design of
omplex real-world artifa
ts su
h as program-ming languages. A formal model may be used to des
ribe some aspe
t of a design pre
isely, to state andprove its properties, and to dire
t attention to issues that might otherwise be overlooked. In formulatinga model, however, there is a tension between
ompleteness and
ompa
tness: the more aspe
ts the modeladdresses at the same time, the more unwieldy it be
omes. Often it is sensible to
hoose a model that is�A preliminary summary appeared in the pro
eedings of the ACM
onferen
e on Obje
t-Oriented Programming, Systems,Languages, and Appli
ations (OOPSLA'99), ACM SIGPLAN Noti
es volume 34 number 10, pages 132{146, Denver, CO,O
tober 1999.yThis work was done while the author was visiting University of Pennsylvania as a resear
h fellow of the Japan So
iety ofthe Promotion of S
ien
e. 1

2less
omplete but more
ompa
t, o�ering maximum insight for minimum investment. This strategy maybe seen in a
urry of re
ent papers on the formal properties of Java, whi
h omit advan
ed features su
has
on
urren
y and re
e
tion and
on
entrate on fragments of the full language to whi
h well-understoodtheory
an be applied.We propose Featherweight Java, or FJ, as a new
ontender for a minimal
ore
al
ulus for modelingJava's type system. The design of FJ favors
ompa
tness over
ompleteness almost obsessively, having just�ve forms of expression: obje
t
reation, method invo
ation, �eld a

ess,
asting, and variables. Its syntax,typing rules, and operational semanti
s �t
omfortably on a single page. Indeed, our aim has been to omitas many features as possible { even assignment { while retaining the
ore features of Java typing. There is adire
t
orresponden
e between FJ and a purely fun
tional
ore of Java, in the sense that every FJ programis literally an exe
utable Java program.FJ is only a little larger than Chur
h's lambda
al
ulus [3℄ or Abadi and Cardelli's obje
t
al
ulus [1℄,and is signi�
antly smaller than previous formal models of
lass-based languages like Java, in
luding thoseput forth by Drossopoulou, Eisenba
h, and Khurshid [11℄, Syme [23℄, Nipkow and Oheimb [20℄, and Flatt,Krishnamurthi, and Felleisen [15, 16℄. Being smaller, FJ lets us fo
us on just a few key issues. For example, wehave dis
overed that
apturing the behavior of Java's
ast
onstru
t in a traditional \small-step" operationalsemanti
s is tri
kier than we would have expe
ted, a point that has been overlooked or underemphasized inother models.One use of FJ is as a starting point for modeling languages that extend Java. Be
ause FJ is so
ompa
t,we
an fo
us attention on essential aspe
ts of the extension. Moreover, be
ause the proof of soundness forpure FJ is very simple, a rigorous soundness proof for even a signi�
ant extension may remain manageable.The se
ond part of the paper illustrates this utility by enri
hing FJ with generi

lasses and methods �a laGJ [7℄. The model omits some important aspe
ts of GJ (su
h as \raw types" and type argument inferen
efor generi
 method
alls). Nonetheless, it led to the dis
overy and �x of one bug in the GJ
ompiler and,more importantly, has been a useful tool in
larifying our thought. Be
ause the model is small, it is easy to
ontemplate further extensions, and we have begun the work of adding raw types to the model; so far, thishas revealed at least one
orner of the design that was underspe
i�ed.Our main goal in designing FJ was to make a proof of type soundness (\well-typed programs don'tget stu
k") as
on
ise as possible, while still
apturing the essen
e of the soundness argument for the fullJava language. Any language feature that made the soundness proof longer without making it signi�
antlydi�erent was a
andidate for omission. As in previous studies of type soundness in Java, we don't treatadvan
ed features su
h as
on
urren
y, inner
lasses, and re
e
tion. Other Java features omitted fromFJ in
lude assignment, interfa
es, overloading, messages to super, null pointers, base types (int, bool,et
.), abstra
t method de
larations, shadowing of super
lass �elds by sub
lass �elds, a

ess
ontrol (publi
,private, et
.), and ex
eptions. The features of Java that we do model in
lude mutually re
ursive
lassde�nitions, obje
t
reation, �eld a

ess, method invo
ation, method override, method re
ursion throughthis, subtyping, and
asting.One key simpli�
ation in FJ is the omission of assignment. In essen
e, all �elds and method parametersin FJ are impli
itly marked final: we assume that an obje
t's �elds are initialized by its
onstru
tor andnever
hanged afterwards. This restri
ts FJ to a \fun
tional" fragment of Java, in whi
h many
ommon Javaidioms, su
h as use of enumerations,
annot be represented. Nonetheless, this fragment is
omputationally
omplete (it is easy to en
ode the lambda
al
ulus into it), and is large enough to in
lude many usefulprograms (many of the programs in Felleisen and Friedman's Java text [13℄ use a purely fun
tional style).Moreover, most of the tri
ky typing issues in both Java and GJ are independent of assignment. An importantex
eption is that the type inferen
e algorithm for generi
 method invo
ation in GJ has some twists imposedon it by the need to maintain soundness in the presen
e of assignment. This paper treats a simpli�ed versionof GJ without type inferen
e.The remainder of this paper is organized as follows. Se
tion 2 introdu
es the main ideas of FeatherweightJava, presents its syntax, type rules, and redu
tion rules, and develops a type soundness proof. Se
tion 3extends Featherweight Java to Featherweight GJ, whi
h in
ludes generi

lasses and methods. Se
tion 4presents an erasure map from FGJ to FJ, modeling the te
hniques used to
ompile GJ into Java. Se
tion 5dis
usses related work, and Se
tion 6
on
ludes.

32 Featherweight JavaIn FJ, a program
onsists of a
olle
tion of
lass de�nitions plus an expression to be evaluated. (Thisexpression
orresponds to the body of the main method in full Java.) Here are some typi
al
lass de�nitionsin FJ.
lass A extends Obje
t {A() { super(); }}
lass B extends Obje
t {B() { super(); }}
lass Pair extends Obje
t {Obje
t fst;Obje
t snd;Pair(Obje
t fst, Obje
t snd) {super(); this.fst=fst; this.snd=snd;}Pair setfst(Obje
t newfst) {return new Pair(newfst, this.snd);}}For the sake of synta
ti
 regularity, we always in
lude the supertype (even when it is Obje
t), we alwayswrite out the
onstru
tor (even for the trivial
lasses A and B), and we always write the re
eiver for a�eld a

ess (as in this.snd) or a method invo
ation, even when the re
eiver is this. Constru
tors alwaystake the same stylized form: there is one parameter for ea
h �eld, with the same name as the �eld; thesuper
onstru
tor is invoked on the �elds of the supertype; and the remaining �elds are initialized to the
orresponding parameters. In this example the supertype is always Obje
t, whi
h has no �elds, so theinvo
ations of super have no arguments. Constru
tors are the only pla
e where super or = appears in an FJprogram. Sin
e FJ provides no side-e�e
ting operations, a method body always
onsists of return followedby an expression, as in the body of setfst().In the
ontext of the above de�nitions, the expressionnew Pair(new A(), new B()).setfst(new B())evaluates to the expressionnew Pair(new B(), new B()).There are �ve forms of expression in FJ. Here, new A(), new B(), and new Pair(e1,e2) are obje
t
on-stru
tors, and e3.setfst(e4) is a method invo
ation. In the body of setfst, the expression this.snd is a�eld a

ess, and the o

urren
es of newfst and this are variables. (The syntax of FJ di�ers from Java inthat this is a variable rather than a keyword.) The remaining form of expression is a
ast. The expression((Pair)new Pair(new Pair(new A(), new B()), new A()).fst).sndevaluates to the expressionnew B().Here, ((Pair)e7), where e7 is new Pair(...).fst, is a
ast. The
ast is required, be
ause e7 is a �elda

ess to fst, whi
h is de
lared to
ontain an Obje
t, whereas the next �eld a

ess, to snd, is only valid ona Pair. At run time, it is
he
ked whether the Obje
t stored in the fst �eld is a Pair (and in this
ase the
he
k su

eeds).In Java, one may pre�x a �eld or parameter de
laration with the keyword final to indi
ate that itmay not be assigned to, and all parameters a

essed from an inner
lass must be de
lared final. Sin
e FJ

4
ontains no assignment and no inner
lasses, it matters little whether or not final appears, so we omit itfor brevity.Dropping side e�e
ts has a pleasant side e�e
t: evaluation
an be easily formalized entirely within thesyntax of FJ, with no additional me
hanisms for modeling the heap. Moreover, in the absen
e of sidee�e
ts, the order in whi
h expressions are evaluated does not a�e
t the �nal out
ome, so we
an de�nethe operational semanti
s of FJ straightforwardly using a nondeterministi
 small-step redu
tion relation,following long-standing tradition in the lambda
al
ulus. Of
ourse, Java's
all-by-value evaluation strategyis subsumed by this more general relation, so the soundness properties we prove for redu
tion will hold forJava's evaluation strategy as a spe
ial
ase.There are three basi

omputation rules: one for �eld a

ess, one for method invo
ation, and one for
asts. Re
all that, in the lambda
al
ulus, the beta-redu
tion rule for appli
ations assumes that the fun
tionis �rst simpli�ed to a lambda abstra
tion. Similarly, in FJ the redu
tion rules assume the obje
t operatedupon is �rst simpli�ed to a new expression. Thus, just as the slogan for the lambda
al
ulus is \everythingis a fun
tion," here the slogan is \everything is an obje
t."The following example shows the rule for �eld a

ess in a
tion:new Pair(new A(), new B()).snd �! new B()Be
ause of the stylized form for obje
t
onstru
tors, we know that the
onstru
tor has one parameter forea
h �eld, in the same order that the �elds are de
lared. Here the �elds are fst and snd, and an a

ess tothe snd �eld sele
ts the se
ond parameter.Here is the rule for method invo
ation in a
tion (= denotes substitution):new Pair(new A(), new B()).setfst(new B())�! � new B()=newfst;new Pair(new A(),new B())=this � new Pair(newfst, this.snd)i.e., new Pair(new B(), new Pair(new A(), new B()).snd)The re
eiver of the invo
ation is the obje
t new Pair(new A(), new B()), so we look up the setfstmethodin the Pair
lass, where we �nd that it has formal parameter newfst and body new Pair(newfst, this.snd).The invo
ation redu
es to the body with the formal parameter repla
ed by the a
tual, and the spe
ialvariable this repla
ed by the re
eiver obje
t. This is similar to the beta rule of the lambda
al
ulus,(�x.e0)e1 �! [e1=x℄e0. The key di�eren
es are the fa
t that the
lass of the re
eiver determines where tolook for the body (supporting method override), and the substitution of the re
eiver for this (supporting\re
ursion through self"). Readers familiar with Abadi and Cardelli's Obje
t Cal
ulus will see a strong sim-ilarity to their & redu
tion rule [1℄. In FJ, as in the lambda
al
ulus and the pure Abadi-Cardelli
al
ulus,if a formal parameter appears more than on
e in the body this may lead to dupli
ation of the a
tual, butsin
e there are no side e�e
ts this
auses no problems.Here is the rule for a
ast in a
tion:(Pair)new Pair(new A(), new B()) �! new Pair(new A(), new B())On
e the subje
t of the
ast is redu
ed to an obje
t, it is easy to
he
k that the
lass of the
onstru
tor is asub
lass of the target of the
ast. If so, as is the
ase here, then the redu
tion removes the
ast. If not, asin the expression (A)new B(), then no rule applies and the
omputation is stu
k, denoting a run-time error.There are three ways in whi
h a
omputation may get stu
k: an attempt to a

ess a �eld not de
laredfor the
lass, an attempt to invoke a method not de
lared for the
lass (\message not understood"), or anattempt to
ast to something other than a super
lass of an obje
t's run-time
lass. We will prove that the�rst two of these never happen in well-typed programs, and the third never happens in well-typed programsthat
ontain no down
asts (and no \stupid
asts"|a te
hni
ality explained below).As usual, we allow redu
tions to apply to any subexpression of an expression. Here is a
omputation forthe se
ond example expression above, where the next subexpression to be redu
ed is underlined at ea
h step.((Pair)new Pair(new Pair(new A(), new B()), new A()).fst).snd�! ((Pair)new Pair(new A(),new B())).snd�! new Pair(new A(), new B()).snd�! new B()

5We will prove a type soundness result for FJ: if an expression e redu
es to expression e0, and if e is welltyped, then e0 is also well typed and its type is a subtype of the type of e.With this informal introdu
tion in mind, we may now pro
eed to a formal de�nition of FJ.2.1 SyntaxThe syntax, typing rules, and
omputation rules for FJ are given in Figure 1, with a few auxiliary fun
tionsin Figure 2.The metavariables A, B, C, D, and E range over
lass names; f and g range over �eld names; m rangesover method names; x ranges over parameter names; d and e range over expressions; CL ranges over
lassde
larations; K ranges over
onstru
tor de
larations; and M ranges over method de
larations. We assumethat the set of variables in
ludes the spe
ial variable this, but that this is never used as the name of anargument to a method. Instead, it is
onsidered to be impli
itly bound in every method de
laration. Theevaluation rule for method invo
ation will have the job of substituting an appropriate obje
t for this inaddition to substituting the argument values for the parameters.We write f as shorthand for f1,. . . ,fn (and similarly for C, x, e, et
.) and write M as shorthand forM1. . . Mn (with no
ommas). We write the empty sequen
e as � and denote
on
atenation of sequen
es usinga
omma. The length of a sequen
e x is written #(x). We abbreviate operations on pairs of sequen
esin the obvious way, writing \C f" for \C1 f1,. . . ,Cn fn", where n is the length of C and f, and similarly\C f;" as shorthand for the sequen
e of de
larations \C1 f1;. . .Cn fn;" and \this.f=f;" as shorthand for\this.f1=f1;. . . ;this.fn=fn;". Sequen
es of �eld de
larations, parameter names, and method de
larationsare assumed to
ontain no dupli
ate names.The
lass de
laration
lass C extends D {C f; K M} introdu
es a
lass named C with super
lass D.The new
lass has �elds f with types C, a single
onstru
tor K, and a suite of methods M. The instan
evariables de
lared by C are added to the ones de
lared by D and its super
lasses, and should have namesdistin
t from these. (In full Java, instan
e variables of super
lasses may be rede
lared, in whi
h
ase therede
laration shadows the original in the
urrent
lass and its sub
lasses. We omit this feature in FJ.) Themethods of C, on the other hand, may either override methods with the same names that are already presentin D or add new fun
tionality spe
ial to C.The
onstru
tor de
laration C(D g; C f) {super(g); this.f=f;} shows how to initialize the �eldsof an instan
e of C. Its form is
ompletely determined by the instan
e variable de
larations of C and itssuper
lasses: it must take exa
tly as many parameters as there are instan
e variables, and its body must
onsist of a
all to the super
lass
onstru
tor to initialize its �elds from the parameters g, followed by anassignment of the parameters f to the new �elds of the same names de
lared by C. (These
onstraints area
tually enfor
ed by the typing rule for
lasses in Figure 1.)The method de
laration D m(C x) {return e;} introdu
es a method named m with result type D andparameters x of types C. The body of the method is the single statement return e. The variables x arebound in e. The spe
ial variable this is also
onsidered bound in e.A
lass table CT is a mapping from
lass names C to
lass de
larations CL. A program is a pair (CT ; e)of a
lass table and an expression. To lighten the notation in what follows, we always assume a �xed
lasstable CT .The abstra
t syntax of FJ
lass de
larations,
onstru
tor de
larations, method de
larations, and expres-sions is given at the top left of Figure 1. As in Java, we assume that
asts bind less tightly than other formsof expression. We assume that the set of variables in
ludes the spe
ial variable this, but that this is neverused as the name of an argument to a method.Every
lass has a super
lass, de
lared with extends. This raises a question: what is the super
lass ofthe Obje
t
lass? There are various ways to deal with this issue; the simplest one that we have found is totake Obje
t as a distinguished
lass name whose de�nition does not appear in the
lass table. The auxiliaryfun
tions that look up �elds and method de
larations in the
lass table are equipped with spe
ial
ases forObje
t that return the empty sequen
e of �elds and the empty set of methods. (In full Java, the
lassObje
t does have several methods. We ignore these in FJ.)By looking at the
lass table, we
an read o� the subtype relation between
lasses. We write C <: D whenC is a subtype of D|i.e., subtyping is the re
exive and transitive
losure of the immediate sub
lass relation

6Syntax:CL ::=
lass C extends C {C f; K M}K ::= C(C f) {super(f); this.f = f;}M ::= C m(C x) {return e;}e ::= xj e.fj e.m(e)j new C(e)j (C)eSubtyping: C <: CC <: D D <: EC <: ECT (C) =
lass C extends D {...}C <: DComputation:�elds(C) = C f(new C(e)).fi �! ei (R-Field)mbody(m; C) = (x; e0)(new C(e)).m(d)�! [d=x; new C(e)=this℄e0 (R-Invk)C <: D(D)(new C(e)) �! new C(e) (R-Cast)Congruen
e: e0 �! e00e0.f �! e00.f (RC-Field)e0 �! e00e0.m(e) �! e00.m(e) (RC-Invk-Re
v)ei �! ei0e0.m(: : :,ei, : : :)�! e0.m(: : :,ei0, : : :) (RC-Invk-Arg)

ei �! ei0new C(: : : ,ei, : : :)�! new C(: : :,ei0, : : :) (RC-New-Arg)e0 �! e00(C)e0 �! (C)e00 (RC-Cast)Expression typing:� ` x 2 �(x) (T-Var)� ` e0 2 C0 �elds(C0) = C f� ` e0.fi 2 Ci (T-Field)� ` e0 2 C0mtype(m; C0) = D!C� ` e 2 C C <: D� ` e0.m(e) 2 C (T-Invk)�elds(C) = D f� ` e 2 C C <: D� ` new C(e) 2 C (T-New)� ` e0 2 D D <: C� ` (C)e0 2 C (T-UCast)� ` e0 2 D C <: D C 6= D� ` (C)e0 2 C (T-DCast)� ` e0 2 D C 6<: D D 6<: Cstupid warning� ` (C)e0 2 C (T-SCast)Method typing:x : C; this : C ` e0 2 E0 E0 <: C0CT (C) =
lass C extends D {...}override(m; D; C!C0)C0 m (C x) {return e0;} OK IN C(T-Method)Class typing:K = C(D g, C f) {super(g); this.f = f;}�elds(D) = D g M OK IN C
lass C extends D {C f; K M} OK(T-Class)Figure 1: FJ: Main de�nitions

7Field lookup: �elds(Obje
t) = �CT (C) =
lass C extends D {C f; K M}�elds(D) = D g�elds(C) = D g; C fMethod type lookup:CT (C) =
lass C extends D {C f; K M}B m (B x) {return e;} 2 Mmtype(m; C) = B!BCT (C) =
lass C extends D {C f; K M}m is not de�ned in Mmtype(m; C) = mtype(m; D)

Method body lookup:CT (C) =
lass C extends D {C f; K M}B m (B x) {return e;} 2 Mmbody(m; C) = (x; e)CT (C) =
lass C extends D {C f; K M}m is not de�ned in Mmbody(m; C) = mbody(m; D)Valid method overriding:mtype(m; D) = D!D0implies C = D and C0 = D0override(m; D; C!C0)Figure 2: FJ: Auxiliary de�nitionsgiven by the extends
lauses in CT . Formally, it is de�ned in the middle of the left
olumn of Figure 1.The given
lass table is assumed to satisfy some sanity
onditions: (1) CT (C) =
lass C ... for everyC 2 dom(CT); (2) Obje
t =2 dom(CT); (3) for every
lass name C (ex
ept Obje
t) appearing anywhere inCT , we have C 2 dom(CT); and (4) there are no
y
les in the subtype relation indu
ed by CT { that is,the <: relation is antisymmetri
. Note that the types de�ned by the
lass table are allowed to be re
ursive,in the sense that the de�nition of a
lass A may use the name A in the types of its methods and instan
evariables. Indeed, even mutual re
ursion between
lass de�nitions is allowed.For the typing and redu
tion rules, we need a few auxiliary de�nitions, given in Figure 2. The �elds ofa
lass C, written �elds(C), is a sequen
e C f pairing the
lass of ea
h �eld with its name, for all the �eldsde
lared in
lass C and all of its super
lasses. The type of the method m in
lass C, written mtype(m; C), is apair, written B!B, of a sequen
e of argument types B and a result type B. Similarly, the body of the methodm in
lass C, written mbody(m; C), is a pair, written (x,e), of a sequen
e of parameters x and an expressione. The predi
ate override(m; C!C0; D) judges whether a method m with argument types C and a result typeC0 may be de�ned in a sub
lass of D. In
ase of overriding, if a method with the same name is de
lared inthe super
lass then it must have the same type.2.2 TypingThe typing rules for expressions, method de
larations, and
lass de
larations are in the right
olumn ofFigure 1. An environment � is a �nite mapping from variables to types, written x:C.The typing judgment for expressions has the form � ` e 2 C, read \in the environment �, expression ehas type C." The typing rules are syntax dire
ted, with one rule for ea
h form of expression, save that thereare three rules for
asts. The typing rules for
onstru
tors and method invo
ations
he
k that ea
h a
tualparameter has a type that is a subtype of the
orresponding formal. We abbreviate typing judgments onsequen
es in the obvious way, writing � ` e 2 C as shorthand for � ` e1 2 C1, . . . , � ` en 2 Cn and writingC <: D as shorthand for C1 <: D1, . . . , Cn <: Dn.One te
hni
al innovation in FJ is the introdu
tion of \stupid"
asts. There are three rules for type
asts:in an up
ast the subje
t is a sub
lass of the target, in a down
ast the target is a sub
lass of the subje
t, andin a stupid
ast the target is unrelated to the subje
t. The Java
ompiler reje
ts as ill typed an expression
ontaining a stupid
ast, but we must allow stupid
asts in FJ if we are to formulate type soundness as asubje
t redu
tion theorem for a small-step semanti
s. This is be
ause a sensible expression may be redu
edto one
ontaining a stupid
ast. For example,
onsider the following, whi
h uses
lasses A and B as de�ned

8as in the previous se
tion:(A)(Obje
t)new B() �! (A)new B()We indi
ate the spe
ial nature of stupid
asts by in
luding the hypothesis stupid warning in the type rulefor stupid
asts (T-SCast); an FJ typing
orresponds to a legal Java typing only if it does not
ontain thisrule. (Stupid
asts were omitted from Classi
 Java [15℄,
ausing its published proof of type soundness to bein
orre
t; this error was dis
overed independently by ourselves and the Classi
 Java authors.)The typing judgment for method de
larations has the form M OK IN C, read \method de
laration M isok when it o

urs in
lass C." It uses the expression typing judgment on the body of the method, wherethe free variables are the parameters of the method with their de
lared types, plus the spe
ial variable thiswith type C.The typing judgment for
lass de
larations has the form CL OK, read \
lass de
laration CL is ok." It
he
ks that the
onstru
tor applies super to the �elds of the super
lass and initializes the �elds de
lared inthis
lass, and that ea
h method de
laration in the
lass is ok.The type of an expression may depend on the type of any methods it invokes, and the type of a methoddepends on the type of an expression (its body), so it behooves us to
he
k that there is no ill-de�ned
ir
ularity here. Indeed there is none: the
ir
le is broken be
ause the type of ea
h method is expli
itlyde
lared. It is possible to load the
lass table and de�ne the auxiliary fun
tions mtype , mbody , and �eldsbefore all the
lasses in it are
he
ked, so long as ea
h
lass is eventually
he
ked.2.3 ComputationThe redu
tion relation is of the form e �! e0, read \expression e redu
es to expression e0 in one step." Wewrite �!� for the re
exive and transitive
losure of �!.The redu
tion rules are given in the bottom left
olumn of Figure 1. There are three redu
tion rules,one for �eld a

ess, one for method invo
ation, and one for
asting. These were already explained in theintrodu
tion to this se
tion. We write [d=x; e=y℄e0 for the result of repla
ing x1 by d1, . . . , xn by dn, and yby e in expression e0.The redu
tion rules may be applied at any point in an expression, so we also need the obvious
ongruen
erules (if e �! e0 then e.f �! e0.f, and the like), whi
h also appear in the �gure.2.4 PropertiesFormal de�nitions are fun, but the proof of the pudding is in. . . well, the proof. If our de�nitions are sensible,we should be able to prove a type soundness result, whi
h relates typing to
omputation. Indeed we
an provesu
h a result: if a term is well typed and it redu
es to a normal form, then it is either a value of a subtypeof the original term's type, or an expression that gets stu
k at a down
ast. The type soundness theorem(Theorem 2.4.7) is proved by using the standard te
hnique of subje
t redu
tion and progress theorems [25℄.2.4.1 Theorem [Subje
t redu
tion℄: If � ` e 2 C and e �! e0, then � ` e0 2 C0 for some C0 <: C.Before giving the proof, we develop a number of required lemmas.2.4.2 Lemma: If mtype(m; D) = C!C0, then mtype(m; C) = C!C0 for all C <: D.Proof: Straightforward indu
tion on the derivation of C <: D. Note that, whether m is de�ned in CT (C) ornot, mtype(m; C) should be the same as mtype(m; E) where CT (C) =
lass C extends E {...}. �2.4.3 Lemma [Term substitution preserves typing℄: If �; x : B ` e 2 D, and � ` d 2 A where A <: B,then � ` [d=x℄e 2 C for some C <: D.Proof: By indu
tion on the derivation of �; x : B ` e 2 D. The intuitions are exa
tly the same as for thelambda-
al
ulus with subtyping (details vary a little, of
ourse).

9Case T-Var: e = x D = �(x)If x 62 x, then the
on
lusion is immediate sin
e [d=x℄x = x. On the other hand, if x = xi and D = Bi, then,sin
e [d=x℄x = [d=x℄xi = di, letting C = Ai �nishes the
ase.Case T-Field: e = e0.fi �; x : B ` e0 2 D0�elds(D0) = C f D = CiBy the indu
tion hypothesis, there is some C0 su
h that � ` [d=x℄e0 2 C0 and C0 <: D0. Then, it is easy toshow that�elds(C0) = �elds(D0); D gfor some D g. Therefore, by the rule T-Field, � ` ([d=x℄e0).fi 2 Ci.Case T-Invk: e = e0.m(e) �; x : B ` e0 2 D0 mtype(m; D0) = E!D�; x : B ` e 2 D D <: EBy the indu
tion hypothesis, there are some C0 and C su
h that� ` [d=x℄e0 2 C0 C0 <: D0� ` [d=x℄e 2 C C <: DBy Lemma 2.4.2, mtype(m; C0) = E!D. Moreover, C <: E by the transitivity of <:. Therefore, by the ruleT-Invk, � ` [d=x℄e0.m([d=x℄e) 2 D.Case T-New: e = new D(e) �elds(D) = D f �; x : B ` e 2 C C <: DBy the indu
tion hypothesis, there are E su
h that � ` [d=x℄e 2 E and E <: C. Moreover E <: D, by transitivityof <:. Therefore, by the rule T-New, � ` new D([d=x℄e) 2 D.Case T-UCast: e = (D)e0 �; x : B ` e0 2 C C <: DBy the indu
tion hypothesis, there is some E su
h that � ` [d=x℄e0 2 E and E <: C. Moreover E <: D by thetransitivity of <:; this yields � ` (D)([d=x℄e0) 2 D by the rule T-UCast.Case T-DCast: e = (D)e0 �; x : B ` e0 2 C D <: C D 6= CBy the indu
tion hypothesis, there is some E su
h that � ` [d=x℄e0 2 E and E <: C. If E <: D or D <: E, then� ` (D)([d=x℄e0) 2 D by the rule T-UCast or T-DCast, respe
tively. On the other hand, if both D 6<: Eand E 6<: D, then � ` (D)([d=x℄e0) 2 D (with a stupid warning) by the rule T-SCast.Case T-SCast: e = (D)e0 �; x : B ` e0 2 C D 6<: C C 6<: DBy the indu
tion hypothesis, there is some E su
h that � ` [d=x℄e0 2 E and E <: C. This means that E 6<: D.(To see this, note that ea
h
lass in FJ has just one super
lass. It follows that, if both E <: C and E <: D,then either C <: D or D <: C.) So � ` (D)([d=x℄e0) 2 D (with a stupid warning), by T-SCast. �2.4.4 Lemma [Weakening℄: If � ` e 2 C, then �; x : D ` e 2 C.Proof: Straightforward indu
tion. �2.4.5 Lemma: If mtype(m; C0) = D!D, and mbody(m; C0) = (x; e), then, for some D0 with C0 <: D0, thereexists C <: D su
h that x : D; this : D0 ` e 2 C.Proof: By indu
tion on the derivation of mbody(m; C0). The base
ase (where m is de�ned in C0) is easysin
e m is de�ned in CT (C0) and x : D; this : C0 ` e 2 C by T-Method. The indu
tion step is alsostraightforward. �We are now ready to give the proof of the subje
t redu
tion theorem.Proof of Theorem 2.4.1: By indu
tion on a derivation of e �! e0, with a
ase analysis on the redu
tionrule used.

10Case R-Field: e = (new C0(e)).fi e0 = ei �elds(C0) = D fBy rule T-Field, we have� ` new C0(e) 2 D0C = Difor some D0. Again, by the rule T-New,� ` e 2 CC <: DD0 = C0In parti
ular, � ` ei 2 Ci, �nishing the
ase sin
e Ci <: Di.Case R-Invk: e = (new C0(e)).m(d)e0 = [d=x; new C0(e)=this℄e0mbody(m; C0) = (x; e0)By the rules T-Invk and T-New, we have� ` new C0(e) 2 C0� ` d 2 CC <: Dmtype(m; C0) = D!Cfor some C and D. By Lemma 2.4.5, x : D; this : D0 ` e0 2 B for some D0 and B where C0 <: D0 and B <: C.By Lemma 2.4.4, �; x : D; this : D0 ` e0 2 B. Then, by Lemma 2.4.3, � ` [d=x; new C0(e)=this℄e0 2 E forsome E <: B. By transitivity of <:, E <: C. Finally, letting C0 = E �nishes this
ase.Case R-Cast: e = (D)(new C0(e)) C0 <: D e0 = new C0(e)The proof of � ` (D)(new C0(e)) 2 C must end with the rule T-UCast sin
e the derivation ending withT-SCast or T-DCast
ontradi
ts the assumption C0 <: D. By the rule T-UCast, we have � ` new C0(e) 2C0 and D = C, whi
h �nishes the
ase.The
ases for
ongruen
e rules are easy. We show just one:Case RC-Cast: e = (D)e0 e0 = (D)e00 e0 �! e00There are three sub
ases a

ording to the last typing rule used.Sub
ase T-UCast: � ` e0 2 C0 C0 <: D D = CBy the indu
tion hypothesis, � ` e00 2 C00 for some C00 <: C0. By transitivity of <:, C00 <: C. Therefore, bythe rule T-UCast, � ` (C)e00 2 C (without any additional stupid warning).Sub
ase T-DCast: � ` e0 2 C0 D <: C0 D = C 6= C0By the indu
tion hypothesis, � ` e00 2 C00 for some C00 <: C0. If either C00 <: C or C <: C00, then � ` (C)e00 2 Cby the rule T-UCast or T-DCast (without any additional stupid warning). On the other hand, if bothC00 6<: C and C 6<: C00, then, � ` (C)e00 2 C with stupid warning by the rule T-SCast.Sub
ase T-SCast: � ` e0 2 C0 D 6<: C0 C0 6<: D D = CBy the indu
tion hypothesis, � ` e00 2 C00 for some C00 <: C0. Then, both C00 6<: C and C 6<: C00 alsohold following the same argument found in the proof of Lemma 2.4.3 (the
ase for T-SCast). Therefore,� ` (C)e00 2 C with stupid warning. �We
an also show that if a program is well typed, then the only way it
an get stu
k is if it rea
hes apoint where it
annot perform a down
ast.2.4.6 Theorem [Progress℄: Suppose e is a well-typed expression.(1) If e in
ludes new C0(e).f as a subexpression, then �elds(C0) = T f and f 2 f.(2) If e in
ludes new C0(e).m(d) as a subexpression, then mbody(m; C0) = (x; e0) and #(x) = #(d).

11Proof sket
h: If e has new C0(e).f as a subexpression, then, by well-typedness of the subexpression, itis easy to
he
k that �elds(C0) is well-de�ned and f appears in it. Similarly, if e has new C0(e).m(d) asa subexpression, then, it is also easy to show mbody(m; C) = (x; e0) and #(x) = #(d) from the fa
t thatmtype(m; C) = C!D where #(x) = #(C). �To state type soundness formally, we will give the de�nition of values, given by the following syntax:v ::= new C(v):2.4.7 Theorem [FJ type soundness℄: If � ` e 2 C and e �!� e0 with e0 being a normal form, then e0 iseither a value v or an expression
ontaining (D)new C(e) where C 6<: D.Proof: Immediate from Theorems 2.4.1 and 2.4.6. �To state a similar property for
asts, we say that an expression e is safe in � if the type derivations of theunderlying CT and � ` e 2 C
ontain no down
asts or stupid
asts (uses of rules T-DCast or T-SCast).In other words, a safe program in
ludes only up
asts. Then we see that a safe expression always redu
esto another safe expression, and, moreover, type
asts in a safe expression will never fail, as shown in thefollowing pair of theorems.2.4.8 Theorem [Redu
tion preserves safety℄: If e is safe in � and e�!e0, then e0 is safe in �.Proof sket
h: Similar to the proof of Theorem 2.4.1. Note that, the derivation of e0 will have additionalstupid warning only if the derivation of e (and CT) uses the rules T-DCast and/or T-SCast. �2.4.9 Theorem [Progress of safe programs℄: Suppose e is safe in �. If e has (C)new C0(e) as a subex-pression, then C0 <: C.Proof sket
h: Easy from the fa
t that the subexpression (C)new C0(e) is given type C by the ruleT-UCast. �2.4.10 Theorem [Safe programs don't
ause type
ast errors℄: If e is safe in � and e�!�e0 with e0being a nomal form, then e0 is a value v.Proof: Immediate from Theorems 2.4.8 and 2.4.9. �3 Featherweight GJJust as GJ adds generi
 types to Java, Featherweight GJ (or FGJ, for short) adds generi
 types to FJ. Hereis the
lass de�nition for pairs in FJ, rewritten with generi
 type parameters in FGJ.
lass A extends Obje
t {A() { super(); }}
lass B extends Obje
t {B() { super(); }}
lass Pair<X extends Obje
t, Y extends Obje
t> extends Obje
t {X fst;Y snd;Pair(X fst, Y snd) {super(); this.fst=fst; this.snd=snd;}<Z extends Obje
t> Pair<Z,Y> setfst(Z newfst) {return new Pair<Z,Y>(newfst, this.snd);}}

12Both
lasses and methods may have generi
 type parameters. Here X and Y are parameters of the
lass,and Z is a parameter of the setfst method. Ea
h type parameter has a bound ; here X, Y, and Z are ea
hbounded by Obje
t.In the
ontext of the above de�nitions, the expressionnew Pair<A,B>(new A(), new B()).setfst(new B())evaluates to the expressionnew Pair<B,B>(new B(), new B())If we were being extraordinarily pedanti
, we would write A<> and B<> instead of A and B, but we allow thelatter as an abbreviation for the former in order that FJ is a proper subset of FGJ.In GJ, type parameters to generi
 method invo
ations are inferred. Thus, in GJ the expression abovewould be writtennew Pair<A,B>(new A(), new B()).setfst(new B())with no in the invo
ation of setfst. So while FJ is a subset of Java, FGJ is not quite a subset ofGJ. We regard FGJ as an intermediate language { the form that would result after type parameters havebeen inferred. While parameter inferen
e is an important aspe
t of GJ, we
hose in FGJ to
on
entrate onmodeling other aspe
ts of GJ.The bound of a type variable may not be a type variable, but may be a type expression involving typevariables, and may be re
ursive (or even, if there are several bounds, mutually re
ursive). For example,if C<X> and D<Y> are
lasses with one parameter ea
h, one may have bounds su
h as <X extends C<X>>or even <X extends C<Y>, Y extends D<X>>. For more on bounds, in
luding examples of the utility ofre
ursive bounds, see the GJ paper [7℄.GJ and FGJ are intended to support either of two implementation styles. They may be implementedby type-passing, augmenting the run-time system to
arry information about type parameters, or they maybe implemented by erasure, removing all information about type parameters at run-time. This se
tionexplores the �rst style, giving a dire
t semanti
s for FGJ that maintains type parameters, and proving atype soundness theorem. Se
tion 4 explores the se
ond style, giving an erasure mapping from FGJ into FJand showing a
orresponden
e between redu
tions on FGJ expressions and redu
tions on FJ expressions.The se
ond style
orresponds to the
urrent implementation of GJ, whi
h
ompiles GJ into the Java VirtualMa
hine (JVM), whi
h of
ourse maintains no information about type parameters at run-time; the �rst stylewould
orrespond to using an augmented JVM that maintains information about type parameters.3.1 SyntaxIn what follows, for the sake of
on
iseness we abbreviate the keyword extends to the symbol / and thekeyword return to the symbol ".The syntax, typing rules, and
omputation rules for FGJ are given in Figures 3 and 4 , with a fewauxiliary fun
tions in Figure 5. The metavariables X, Y, and Z range over type variables; T, U, and V rangeover types; and N, O, P, and Q range over nonvariable types (types other than type variables). We write Xas shorthand for X1,. . . ,Xn (and similarly for T, N, et
.), and assume sequen
es of type variables
ontain nodupli
ate names.The abstra
t syntax of FGJ is given at the top left of Figure 3. We allow C<> and m<> to be abbreviatedas C and m, respe
tively.As before, we assume a �xed
lass table CT , whi
h is a mapping from
lass names C to
lass de
larationsCL, obeying the essentially same sanity
onditions as given previously. (For the
ondition (4), we usethe relation between
lass names, de�ned as the re
exive and transitive
losure indu
ed by the
lauseC<X /N> /D<T>; we write C E D for it.)

13
Syntax:CL ::=
lass C<X /N> /N {T f; K M}K ::= C(T f) {super(f); this.f = f;}M ::= <X /N> T m (T x) {"e;}e ::= xj e.fj e.m<T>(e)j new N(e)j (N)eT ::= Xj NN ::= C<T>Subtyping: � ` T <: T (S-Refl)� ` S <: T � ` T <: U� ` S <: U (S-Trans)� ` X <: �(X) (S-Var)CT (C) =
lass C<X / N> /N {...}� ` C<T> <: [T=X℄N (S-Class)

Computation:�elds(N) = T f(new N(e)).fi �! ei (GR-Field)mbody(m<V>; N) = (x; e0)(new N(e)).m<V>(d)�! [d=x; new N(e)=this℄e0 (GR-Invk); ` N <: O(O)(new N(e)) �! new N(e) (GR-Cast)Congruen
e: e0 �! e00e0.f �! e00.f (GRC-Field)e0 �! e00e0.m<T>(e) �! e00.m<T>(e)(GRC-Inv-Re
v)ei �! ei0e0.m<T>(: : : ,ei, : : :)�! e0.m<T>(: : :ei0, : : :) (GRC-Inv-Arg)ei �! ei0new N(: : :,ei, : : :)�! new N(: : : ei0, : : :) (GRC-New-Arg)e0 �! e00(N)e0 �! (N)e00 (GRC-Cast)Figure 3: FGJ: Main de�nitions (1)

14
Well-formed types:� ` Obje
t ok (WF-Obje
t)X 2 dom(�)� ` X ok (WF-Var)CT (C) =
lass C<X / N> /N {...}� ` T ok � ` T <: [T=X℄N� ` C<T> ok (WF-Class)Expression typing:�;� ` x 2 �(x) (GT-Var)�; � ` e0 2 T0�elds(bound�(T0)) = T f�;� ` e0.fi 2 Ti (GT-Field)�; � ` e0 2 T0mtype(m; bound�(T0)) = <Y /O>U!U� ` V ok � ` V <: [V=Y℄O�;� ` e 2 S � ` S <: [V=Y℄U�;� ` e0.m<V>(e) 2 [V=Y℄U (GT-Invk)� ` N ok �elds(N) = T f�;� ` e 2 S � ` S <: T�;� ` new N(e) 2 N (GT-New)�; � ` e0 2 T0 � ` bound�(T0) <: N�;� ` (N)e0 2 N (GT-UCast)

�; � ` e0 2 T0 � ` N ok� ` N <: bound�(T0)N = C<T> bound�(T0) = D<U>d
ast(C; D)�; � ` (N)e0 2 N (GT-DCast)�; � ` e0 2 T0 � ` N okN = C<T> bound�(T0) = D<U>C 6E D D 6E Cstupid warning�;� ` (N)e0 2 N (GT-SCast)Method typing:� = X<:N; Y<:O � ` T; T; O ok�; x : T; this : C<X> ` e0 2 S � ` S <: TCT (C) =
lass C<X / N> /N {...}override(m; N; <Y / O>T!T)<Y / O> T m (T x) {"e0;} OK IN C<X /N>(GT-Method)Class typing:X<:N ` N; N; T ok�elds(N) = U g M OK IN C<X / N>K = C(U g, T f){super(g); this.f = f;}
lass C<X /N> /N {T f; K M} OK(GT-Class)Figure 4: FGJ: Main de�nitions (2)

15

Bound of type:bound�(X) = �(X)bound�(N) = NField lookup:�elds(Obje
t) = � (F-Obje
t)CT (C) =
lass C<X / N> /N {S f; K M}�elds([T=X℄N) = U g�elds(C<T>) = U g; [T=X℄S f (F-Class)Method type lookup:CT (C) =
lass C<X / N> /N {S f; K M}<Y / O> U m (U x) {"e;} 2 Mmtype(m; C<T>) = [T=X℄(<Y /O>U!U) (MT-Class)CT (C) =
lass C<X / N> /N {S f; K M}m is not de�ned in Mmtype(m; C<T>) = mtype(m; [T=X℄N) (MT-Super)

Method body lookup:CT (C) =
lass C<X /N> /N {S f; K M}<Y /O> U m (U x) {"e0;} 2 Mmbody(m<V>; C<T>) = (x; [T=X; V=Y℄e0)(MB-Class)CT (C) =
lass C<X / N> /N {S f; K M}m is not de�ned in Mmbody(m<V>; C<T>) = mbody(m<V>; [T=X℄N)(MB-Super)Valid method overriding:mtype(m; N) = <Z /P>U!U0 impliesO,T = [Y=Z℄(P,U) and � ` T0 <: [Y=Z℄U0override(m; N; <Y / O>T!T0)Valid down
ast:d
ast(C; D) d
ast(D; E)d
ast(C; E)CT (C) =
lass C<X / N> /D<T> {...}X = FV (T)d
ast(C; D)(FV (T) denotes the set of type variable in T.)Figure 5: FGJ: Auxiliary de�nitions

163.2 TypingA type environment � is a �nite mapping from type variables to nonvariable types, written X <: N, thattakes ea
h type variable to its bound.Bounds of typesWe write bound�(T) for the upper bound of T in �, as de�ned in Figure 5. Unlike
al
uli su
h as F� [9℄,this promotion relation does not need to be de�ned re
ursively: the bound of a type variable is always anonvariable type.SubtypingThe subtyping relation is de�ned in the left
olumn of Figure 3. As before, subtyping is the re
exive andtransitive
losure of the extends relation. Type parameters are invariant with regard to subtyping (forreasons explained in the GJ paper), so T <: U does not imply C<T> <: C<U>.Well-formed typesIf the de
laration of a
lass C begins
lass C<X / N>, then a type like C<T> is well formed only if substitutingT for X respe
ts the bounds N, that is if T <: [T=X℄N. We write � ` T ok if type T is well-formed in
ontext �.The rules for well-formed types appear in Figure 4 . Note that we perform a simultaneous substitution, soany variable in X may appear in N, permitting re
ursion and mutual re
ursion between variables and bounds.A type environment � is well formed if � ` �(X) ok for all X in dom(�). We also say that an environment� is well formed with respe
t to �, written � ` � ok, if � ` �(x) ok for all x in dom(�).Field and method lookupFor the typing and redu
tion rules, we need a few auxiliary de�nitions, given in Figure 5; these are fairlystraightforward adaptations of the lookup rules given previously. The �elds of a nonvariable type N, written�elds(N), are a sequen
e of
orresponding types and �eld names, T f. The type of the method invo
ationm at nonvariable type N, written mtype(m; N), is a type of the form <X /N>U!U. In this form, the variablesX are bound in N, U, and U and we regard �-
onvertible ones as equivalent; appli
ation of type substitution[T=X℄ is de�ned in the
ustomary manner. When X /N is empty, we abbreviate <>U!U to U!U. The bodyof the method invo
ation m at nonvariable type N with type parameters V, written mbody(m<V>; N), is a pair,written (x,e), of a sequen
e of parameters x and an expression e.Typing rulesTyping rules for expressions, methods, and
lasses appear in Figure 4 .The typing judgment for expressions is of form �;� ` e 2 T, read as \in the type environment � andthe environment �, the expression e has type T." Most of the subtleties are in the �eld and method lookuprelations that we have already seen; the typing rules themselves are straightforward.In the rule GT-DCast, the last premise d
ast(C; D) ensures that the result of the
ast will be the sameat run time, no matter whether we use the high-level (type-passing) redu
tion rules de�ned later in thisse
tion or the erasure semanti
s
onsidered in Se
tion 4. Intuitively, when C<T> <: D<U> holds, all the typearguments T of C must \
ontribute" for the relation to hold. For example, suppose we have de�ned:
lass List<X / Obje
t> / Obje
t { ... }
lass LinkedList<X / Obje
t> / List<X> { ... }Now, if o has type Obje
t, then the
ast (List<C>)o is not permitted. (If, at run time, o is bound tonew List<D>(), then the
ast would fail in the type-passing semanti
s but su

eed in the erasure semanti
s,sin
e (List<C>)o erases to (List)o while both new List<C>() and new List<D>() erase to new List().)On the other hand, if
l has type List<C>, then the
ast (LinkedList<C>)
l is permitted, sin
e the type-passing and erased versions of the
ast are guaranteed to either both su

eed or both fail. The formalde�nition of d
ast(C; D) appears in Figure 5.

17The typing rule for methods
ontains one additional subtlety. In FGJ (and GJ), unlike in FJ (and Java),
ovariant subtyping of method results is allowed. That is, the result type of a method may be a subtype ofthe result type of the
orresponding method in the super
lass, although the bounds of type variables andthe argument types must be identi
al (modulo renaming of type variables).As before, a
lass table is ok if all its
lass de�nitions are ok.3.3 Redu
tionThe operational semanti
s of FGJ programs is only a little more
ompli
ated than what we had in FJ. Therules appear in the right
olumn of Figure 3.3.4 PropertiesType SoundnessFGJ programs enjoy subje
t redu
tion, progress properties, and thus a type soundness property exa
tly likeprograms in FJ (Theorems 3.4.13, 3.4.14, and 3.4.15), The basi
 stru
tures of the proofs are similar to thoseof Theorems 2.4.1 and 2.4.6. For subje
t redu
tion, however, sin
e we now have parametri
 polymorphism
ombined with subtyping, we need a few more lemmas. The main lemmas required are a term substitutionlemma as before, plus similar lemmas about the preservation of subtyping and typing under type substitution.(Readers familiar with proofs of subje
t redu
tion for typed lambda-
al
uli like F� [9℄ will noti
e manysimilarities). the required lemmas in
luding three substitution lemmas, whi
h are proved by straightforwardindu
tion on a derivation of � ` S <: T or �; � ` e 2 T. In the following proof, the underlying
lass table isassumed to be ok. abbreviate the keyword3.4.1 Lemma [Weakening℄: Suppose �; X<:N ` N ok and � ` U ok.1. If � ` S <: T, then �; X<:N ` S <: T.2. If � ` S ok, then �; X<:N ` S ok.3. If �; � ` e 2 T, then �; �; x : U ` e 2 T and �; X<:N; � ` e 2 T.Proof: Ea
h of them is proved by straightforward indu
tion on the derivation of � ` S <: T and � ` S okand �; � ` e 2 T. �3.4.2 Lemma: If � ` E<V> <: D<U> and D 6E C and C 6E D, then E 6E C and C 6E E.Proof: It is easy to see that � ` E<V> <: D<U> implies E E D. The
on
lusions are easily proved by
ontradi
tion. (A similar argument is found in the proof of Lemma 2.4.3.) �3.4.3 Lemma: Suppose d
ast(C; D) and � ` C<T> <: D<U>. If � ` C<T0> <: D<U>, then T0 = T.Proof: The
ase where d
ast(C; D) be
ause d
ast(C; E) and d
ast(E; D) is easy: note that, from everyderivation of � ` C<T> <: D<U>, we
an also derive � ` C<T> <: E<V> and � ` E<V> <: D<U> for someV. Finally, if D is the dire
t super
lass of C, by the rule S-Class, D<U> = [T=X℄D<V> where CT (C) =
lass C<X /N> /D<V> {...} for some V. Sin
e FV (V) = X, if D<U> = [T0=X℄D<V>, then it must be the
asethat T = T0, �nishing the proof. �3.4.4 Lemma: If d
ast(C; E) and C E D E E with C 6= D 6= E, then d
ast(C; D) and d
ast(D; E).Proof: Easy. �3.4.5 Lemma [Type substitution preserves subtyping℄: If �1; X<:N;�2 ` S <: T and �1 ` U <: [U=X℄Nwith �1 ` U ok and none of X appearing in �1, then �1; [U=X℄�2 ` [U=X℄S <: [U=X℄T.Proof: By indu
tion on the derivation of �1; X<:N;�2 ` S <: T.

18Case S-Refl:Trivial.Case S-Trans, S-Class:Easy.Case S-Var: S = X T = (�1; X<:N;�2)(X)If X 2 dom(�1) [dom(�2), then the
on
lusion is immediate. On the other hand, if X = Xi, then, byassumption, we have �1 ` Ui <: [U=X℄Ni. Finally, Lemma 3.4.1 �nishes the
ase. �3.4.6 Lemma [Type substitution preserves type well-formedness℄: If �1; X<:N;�2 ` T ok and �1 `U <: [U=X℄N with �1 ` U ok and none of X appearing in �1, then �1; [U=X℄�2 ` [U=X℄T ok.Proof: By indu
tion on the derivation of �1; X<:N; �2 ` T ok, with a
ase analysis on the last rule used.Case WF-Obje
t:Trivial.Case WF-Var: T = X X 2 dom(�1; X<:N; �2)The
ase X 2 Xi follows from �1 ` U ok and Lemma 3.4.1; otherwise immediate.Case WF-Class: T = C<T> �1; X<:N; �2 ` T ok �1; X<:N; �2 ` T <: [T=Y℄PCT (C) =
lass C<Y /P> /N {...}By the indu
tion hypothesis,�1; [U=X℄�2 ` [U=X℄T ok:On the other hand, by Lemma 3.4.5, �1; [U=X℄�2 ` [U=X℄T <: [U=X℄[T=Y℄P. Sin
e Y<:P ` P by the ruleGT-Class, P does not in
lude any of X as a free variable. Thus, [U=X℄[T=Y℄P = [[U=X℄T=Y℄P, and �nally, wehave �1; [U=X℄�2 ` C<[U=X℄T> ok by WF-Class. �3.4.7 Lemma: Suppose �1; X<:N;�2 ` T ok and �1 ` U <: [U=X℄N with �1 ` U ok and none of X appearingin �1. Then, �1; [U=X℄�2 ` bound�1; [U=X℄�2([U=X℄T) <: [U=X℄(bound�1;X<:N;�2(T)).Proof: The
ase where T is a nonvariable type is trivial. The
ase where T is a type variable X andX 2 dom(�1) [dom(�2) is also easy. Finally, if T is a type variable Xi, then bound�1; [U=X℄�2([U=X℄T) = Uiand [U=X℄(bound�1;X<:N;�2(T)) = [U=X℄Ni; the assumption �1 ` U <: [U=X℄N and Lemma 3.4.1 �nish the proof.�3.4.8 Lemma: If � ` S <: T and �elds(bound�(T)) = T f, then �elds(bound�(S)) = S g and Si = Ti andgi = fi for all i � #(f).Proof: By straightforward indu
tion on the derivation of � ` S <: T.Case S-Refl:Trivial.Case S-Var:Trivial be
ause bound�(S) = bound�(T).Case S-Trans:Easy.Case S-Class: S = C<T> T = [T=X℄N CT (C) =
lass C<X /N> /N {S g; ...}By the rule F-Class, �elds(C<T>) = U f; [T=X℄S g where U f = �elds([T=X℄N). �3.4.9 Lemma: If � ` T ok and mtype(m; bound�(T)) = <Y /P>U!U0, then for any S su
h that � ` S <: Tand � ` S ok, we have mtype(m; bound�(S)) = <Y / P>U!U00 and �; Y<:P ` U00 <: U0.Proof: By straightforward indu
tion on the derivation of � ` S <: T with a
ase analysis by the last ruleused.

19Case S-Refl:Trivial.Case S-Var:Trivial be
ause bound�(S) = bound�(T).Case S-Trans:Easy.Case S-Class: S = C<T> T = [T=X℄N CT (C) =
lass C<X /N> /N { ... M}If M do not in
lude a de
laration of m, it is easy to show the
on
lusion, sin
emtype(m; bound�(S)) = mtype(m; bound�(T))by the rule MT-Super.On the other hand, suppose M in
ludes a de
laration of m. By straightforward indu
tion on the derivationof mtype(m; T), we
an showmtype(m; T) = [T=X℄<Y / P0>U0!U000where <Y / P0>U0!U000 = mtype(m; N). Without loss of generality, we
an assume that X and Y are distin
tand, in parti
ular, that [T=X℄U000 = U0. By GT-Method, it must be the
ase that<Y /P0> W00 m (U0 x) {...} 2 Mand X<:N; Y<:P0 ` W00<:U000:By Lemmas 3.4.5 and 3.4.1, we have�; Y<:P ` [T=X℄W00<:U0:Sin
e mtype(m; bound�(S)) = mtype(m; S) = [T=X℄<Y / P0>U0!W00 by MT-Class, letting U00 = [T=X℄W00�nishes the
ase. �3.4.10 Lemma [Type substitution preserves typing℄: If �1; X<:N; �2; � ` e 2 T and �1 ` U <: [U=X℄Nwhere �1 ` U ok and none of X appears in �1, then �1; [U=X℄�2; [U=X℄� ` [U=X℄e 2 S for some S su
h that�1; [U=X℄�2 ` S <: [U=X℄T.Proof: By indu
tion on the derivation of �1; X<:N;�2; � ` e 2 T with a
ase analysis on the last rule used.Case GT-Var:Trivial.Case GT-Field: e = e0.fi �1; X<:N; �2; � ` e0 2 T0 �elds(bound�1; X<:N; �2(T0)) = T fT = TiBy the indu
tion hypothesis, �1; [U=X℄�2; [U=X℄� ` [U=X℄e0 2 S0 and �1; [U=X℄�2 ` S0 <: [U=X℄T0 for someS0. By Lemma 3.4.7,�1; [U=X℄�2 ` bound�1; [U=X℄�2([U=X℄T0) <: [U=X℄bound�1; X<:N; �2(T0):Then, it is easy to show�1; [U=X℄�2 ` bound�1; [U=X℄�2(S0) <: [U=X℄bound�1; X<:N; �2(T0):By Lemma 3.4.8, �elds(bound�1; [U=X℄�2(S0)) = S g and we have fj = gj and Sj = [U=X℄Tj for j � #(f). Bythe rule GT-Field, �1; [U=X℄�2; [U=X℄� ` [U=X℄e0.fi 2 Si. Letting S = Si (= [U=X℄Ti) �nishes the
ase.

20Case GT-Invk: e = e0.m<V>(e) �1; X<:N; �2; � ` e0 2 T0mtype(m; bound�1;X<:N;�2(T0)) = <Y /P>W!W0�1; X<:N; �2 ` V ok �1; X<:N; �2 ` V <: [V=Y℄P�1; X<:N; �2; � ` e 2 S �1; X<:N; �2 ` S <: [V=Y℄WT = [V=Y℄W0By the indu
tion hypothesis,�1; [U=X℄�2; [U=X℄� ` [U=X℄e0 2 S0�1; [U=X℄�2 ` S0 <: [U=X℄T0and �1; [U=X℄�2; [U=X℄� ` [U=X℄e 2 S0�1; [U=X℄�2 ` S0 <: [U=X℄S:By using Lemma 3.4.7, it is easy to show�1; [U=X℄�2 ` bound�1; [U=X℄�2(S0) <: [U=X℄bound�1; X<:N; �2(T0):Then, by Lemma 3.4.9,mtype(m; bound�1;[U=X℄�2(S0)) = <Y / [U=X℄P>[U=X℄W!W00�1; [U=X℄�2; Y<:[U=X℄P ` W00 <: [U=X℄W0:By Lemma 3.4.6,�1; [U=X℄�2 ` [U=X℄V okWithout loss of generality, we
an assume that X and Y are distin
t and that none of Y appear in U; then[U=X℄[V=Y℄ = [[U=X℄V=Y℄[U=X℄. By Lemma 3.4.5,�1; [U=X℄�2 ` [U=X℄V <: [U=X℄[V=Y℄P (= [[U=X℄V=Y℄[U=X℄P)�1; [U=X℄�2 ` [U=X℄S <: [U=X℄[V=Y℄W (= [[U=X℄V=Y℄[U=X℄W):By the rule S-Trans,�1; [U=X℄�2 ` S0 <: [[U=X℄V=Y℄[U=X℄W:By Lemma 3.4.5, we have�1; [U=X℄�2 ` [V=Y℄W00 <: [U=X℄[V=Y℄W0 (= [[U=X℄V=Y℄[U=X℄W0):Finally, by the rule GT-Invk,�1; [U=X℄�2; [U=X℄� ` ([U=X℄e0).m<[U=X℄V>([U=X℄d) 2 Swhere S = [V=Y℄W00, �nishing the
ase.Case GT-New, GT-UCast:Easy.Case GT-DCast: e = (N)e0 � = �1; X<:N; �2 �;� ` e0 2 T0 � ` N <: bound�(T0)N = C<T> bound�(T0) = E<V> d
ast(C; E)By the indu
tion hypothesis, �1; [U=X℄�2; [U=X℄� ` [U=X℄e0 2 S0 for some S0 su
h that �1; [U=X℄�2 ` S0 <:[U=X℄T0. Let �0 = �1; [U=X℄�2. We have three sub
ases a

ording to a relation between S0 and N.Sub
ase: �0 ` bound�0(S0) <: NBy the rule GT-UCast, �0; � ` [U=X℄((N)e0) 2 [U=X℄N.Sub
ase: �0 ` N <: bound�0(S0) N 6= bound�0(S0)By using Lemma 3.4.7 and the fa
t that � ` S <: T implies � ` bound�(S) <: bound�(T), we have�0 ` bound�0(S0) <: [U=X℄bound�(T0). Then, C E D E E where bound�0(S0) = D<W>. If C 6= D 6= E, we have,by Lemma 3.4.4, d
ast(C; D); the rule GT-DCast �nishes the sub
ase. The
ase C = D
annot happen sin
eit implies N = bound�0(S0) and, the other
ase D = E is trivial.

21Sub
ase: �0 ` N 6<: bound�0(S0) �0 ` bound�0(S0) 6<: NBy using Lemma 3.4.7 and the fa
t that �0 ` S <: T implies �0 ` bound�0(S) <: bound�0(T), we have�0 ` bound�0(S0) <: [U=X℄bound�(T0).Let bound�(S0) = D<W>. We show below that, by
ontradi
tion, that neither C E D nor D E C holds.Suppose C E D. Then, there exist some V0 su
h that �0 ` C<V0> <: bound�(S0). By Lemma 3.4.4, we haved
ast(C; D); it follows from Lemma 3.4.3 that C<V0> = N,
ontradi
ting the assumption �0 ` N <: bound�0(S0);thus, C 6E D. On the other hand, suppose D E C. Sin
e we have �0 ` bound�0(S0) <: [U=X℄(bound�(T0)), we
an have C<V0> su
h that �0 ` bound�0(S0) <: C<V0> and �0 ` C<V0> <: [U=X℄(bound�(T0)). Then, N = C<V0>by Lemma 3.4.3,
ontradi
ting the assumption �0 ` bound�0(S0) <: N; thus, D 6E C.Finally, by the rule GT-SCast, �; � ` [T=X℄((N)e0) 2 [T=X℄N with stupid warning. �Case GT-SCast: e = (N)e0 � = �1; X<:N; �2 �;� ` e0 2 T0N = C<T> bound�(T0) = E<V> C 6E E E 6E CBy the indu
tion hypothesis, �1; [U=X℄�2; [U=X℄� ` [U=X℄e0 2 S0 for some S0 su
h that �1; [U=X℄�2 `S0 <: [U=X℄T0. Using Lemma 3.4.7, we have �1; [U=X℄�2 ` bound�1; [U=X℄�2(S0) <: [U=X℄bound�(T0). Letbound�(S0) = D<W>. Sin
e [U=X℄bound�(T0) = E<[U=X℄V>, by Lemma 3.4.2, D 6E C and C 6E D. By the ruleGT-SCast, �1; [U=X℄�2; [U=X℄� ` [U=X℄(N)e0 2 [U=X℄N with stupid warning, �nishing the
ase.3.4.11 Lemma [Term substitution preserves typing℄: If �; �; x : T ` e 2 T and, �; � ` d 2 S where� ` S <: T, then �; � ` [d=x℄e 2 S for some S su
h that � ` S <: T.Proof: By indu
tion on the derivation of �; �; x : T ` e 2 T with a
ase analysis on the last rule used.Case GT-Var: e = xIf x 2 dom(�), then the
on
lusion is immediate sin
e [d=x℄x = x. On the other hand, if x = xi and T = Ti,then letting S = Si �nishes the
ase.Case GT-Field: e = e0.fi �;�; x : T ` e0 2 T0 �elds(bound�(T0)) = T f T = TiBy the indu
tion hypothesis, �; � ` [d=x℄e0 2 S0 for some S0 su
h that � ` S0 <: T0. By Lemma 3.4.8,�elds(bound�(S0)) = S g su
h that Sj = Tj and fj = gj for all j � #(T). Therefore, by the rule GT-Field,�; � ` [d=x℄e0.fi 2 TCase GT-Invk: e = e0.m<V>(e) �;�; x : T ` e0 2 T0 mtype(m; bound�(T0)) = <Y / P>U!U� ` V ok � ` V <: [V=Y℄P �;�; x : T ` e 2 S� ` S <: [V=Y℄U T = [V=Y℄UBy the indu
tion hypothesis, �; � ` [d=x℄e0 2 S0 for some S0 su
h that � ` S0 <: T0 and �; � ` [d=x℄e 2 W forsome W su
h that � ` W <: S. By Lemma 3.4.9, mtype(m; bound�(S0)) = <Y / P>U!U0 and �; Y<:P ` U0 <: U.By Lemma 3.4.5, � ` [V=Y℄U0 <: [V=Y℄U. By the rule GT-Method, �; � ` [d=x℄(e0.m<V>(e)) 2 [V=Y℄U0.Letting S = [V=Y℄U0 �nishes the
ase.Case GT-New, GT-UCast:Easy.Case GT-DCast: e = (N)e0 �;�; x : T ` e0 2 T0 � ` N <: bound�(T0)N = C<U> bound�(T0) = E<V> d
ast(C; E)By the indu
tion hypothesis, �; � ` [d=x℄e0 2 S0 for some S0 su
h that � ` S0 <: T0. We have three sub
asesa

ording to a relation between S0 and N.Sub
ase: � ` bound�(S0) <: NBy the rule GT-UCast, �; � ` [d=x℄((N)e0) 2 N.Sub
ase: � ` N <: bound�(S0) N 6= bound�(S0)By using Lemma 3.4.7 and the fa
t that � ` S <: T implies � ` bound�(S) <: bound�(T), we have� ` bound�(S0) <: bound�(T0). Then, C E D E E where bound�(S0) = D<W>. If C 6= D 6= E, we have, byLemma 3.4.4, d
ast(C; D); the rule GT-DCast �nishes the sub
ase. The
ase C = D
annot happen sin
e itimplies N = bound�(S0) and, the other
ase D = E is trivial.

22Sub
ase: � ` N 6<: bound�(S0) � ` bound�(S0) 6<: NLet bound�(S0) = D<W>. We show that, by
ontradi
tion, that C 6E D and D 6E C.Suppose C E D. Then, we
an have C<U0> su
h that � ` C<U0> <: D<W>. By transitivity of <: and the fa
tthat � ` S0 <: T0 implies � ` bound�(S0) <: bound�(T0), we have � ` C<U0> <: bound�(T0). Thus, U0 = U,
ontradi
ting the assumption � ` N 6<: bound�(S0) (= D<W>). On the other hand, suppose D E C. Sin
ewe have � ` bound�(S0) <: bound�(T0), we
an have C<V0> su
h that � ` bound�(S0) <: C<V0> and �0 `C<V0> <: bound�(T0). Then, N = C<V0> by Lemma 3.4.3,
ontradi
ting the assumption � ` bound�(S0) <: N;thus, D 6E C.Finally, by the rule GT-SCast, �; � ` [d=x℄((N)e0) 2 N with stupid warning. �Case GT-SCast: �;�; x : T ` e0 2 T0 N = C<U> bound�(T0) = E<V>C 6E E E 6E CBy the indu
tion hypothesis, �; � ` [d=x℄e0 2 S0 for some S0 su
h that � ` S0 <: T0, whi
h implies� ` bound�(S0) <: bound�(T0). Let bound�(S0) = D<W>. By Lemma 3.4.2, we have D 6E C and C 6E D. Then,by the rule GT-SCast, �; � ` [d=x℄((N)e0) 2 N again with stupid warning.3.4.12 Lemma: If mtype(m; C<T>) = <Y / P>U!U and mbody(m<V>; C<T>) = (x; e0) where � ` C<T> ok and� ` V ok and � ` V <: [V=Y℄P, then there exist some N and S su
h that � ` C<T> <: N and � ` N ok and� ` S <: [V=Y℄U and � ` S ok and �; x : [V=Y℄U; this : N ` e0 2 S.Proof: By indu
tion on the derivation of mbody(m<V>; C<T>) = (x; e) using Lemmas 3.4.5 and 3.4.10.Case MB-Class: CT (C) =
lass C<X /N> /P {... M}<Y /Q> T0 m (S x) {"e;} 2 MLet � = x : S; this : C<X> and �0 = X<:N; Y<:Q. By the rules GT-Class and GT-Method, we have�0; � ` e 2 S0 and �0; � ` S0 <: T0 for some S0. Sin
e � ` C<T> ok, we have � ` T <: [T=X℄N by the ruleWF-Class. By Lemmas 3.4.1, 3.4.5, and 3.4.10,�; Y<:[T=X℄Q ` [T=X℄S0 <: [T=X℄T0and �; Y<:[T=X℄Q; x : [T=X℄S; this : C<T> ` [T=X℄e 2 S00where�; Y<:[T=X℄Q ` S00 <: [T=X℄S0:Now, we
an assume X and Y are distin
t without loss of generality. By the rule MT-Class, we have[T=X℄Q = P [T=X℄S = U [T=X℄T0 = U:Again, by Lemmas 3.4.5 and 3.4.10,� ` [V=Y℄S00 <: [V=Y℄Uand �; x : [V=Y℄U; this : C<T> ` [V=Y℄[T=X℄e 2 S000:where� ` S000 <: [V=Y℄S00:Sin
e we
an assume that any of Y does not o

ur in T without loss of generality,e0 = [T=X; V=Y℄e = [V=Y℄[T=X℄e:Letting N = C<T> and S = S000 �nishes the
ase.

23Case MB-Super: CT (C) =
lass C<X /N> /N {... M}m is not de�ned in M.Immediate from the indu
tion hypothesis and the fa
t that � ` C<T> <: [T=X℄N. �3.4.13 Theorem [Subje
t redu
tion℄: If �; � ` e 2 T and e �! e0, then �; � ` e0 2 T0, for some T0 su
hthat � ` T0 <: T.Proof: By indu
tion on the derivation of e �! e0 with a
ase analysis on the redu
tion rule used. We willshow main
ases.Case GR-Field: e = new N(e).fi �elds(N) = T f e0 = eiBy the rules GT-Field and GT-New, we have�; � ` new N(e) 2 N�;� ` e 2 S� ` S <: T:In parti
ular, �; � ` ei 2 Si �nishes the
ase.Case GR-Invk: e = new N(e).m<V>(d) mbody(m<V>; N) = (x; e0)e0 = [d=x; new N(e)=this℄e0By the rules GT-Invk and GT-New, we have�; � ` new N(e) 2 N mtype(m; bound�(N)) = <Y /P>U!U� ` V ok � ` V <: [V=Y℄P�;� ` d 2 S � ` S <: [V=Y℄UT = [V=Y℄U � ` N okBy Lemma 3.4.12, �; x : [V=Y℄U; this : P ` e0 2 S for some P and S su
h that � ` N <: P where � ` P ok, and� ` S <: [V=Y℄U where � ` S ok. Then, by Lemmas 3.4.1 and 3.4.11, �; � ` [d=x; new N(e)=this℄e0 2 T0for some T0 su
h that � ` T0 <: S. By the rule S-Trans, we have � ` T0 <: T. Finally, letting T0 = T0�nishes the
ase.Case GR-Cast:Easy.Case GRC-Field: e = e0.f e0 = e00.f e0 �! e00By the rule GT-Field, we have�; � ` e0 2 T0�elds(bound�(T0)) = T fT = TiBy the indu
tion hypothesis, �; � ` e00 2 T00 for some T00 su
h that � ` T00 <: T0. By Lemma 3.4.8,�elds(bound�(T00)) = T0 g and, for j � #(f), we have gi = fi and Ti0 = Ti. Therefore, by the ruleGT-Field, �; � ` e00.f 2 Ti0. Letting T0 = Ti0 �nishes the
ase.Case GRC-Inv-Re
v: e = e0.m<V>(e) e0 = e00.m<V>(e) e0 �! e00By the rule GT-Invk, we have�; � ` e0 2 T0 mtype(m; bound�(T0)) = <Y / P>T!U� ` V ok � ` V <: [V=Y℄P� ` e 2 S � ` S <: [V=Y℄TT = [V=Y℄UBy the indu
tion hypothesis, �; � ` e00 2 T00 for some T00 su
h that � ` T00 <: T0. By Lemma 3.4.9,mtype(m; bound�(T00)) = <Y / P>T!V and �; Y<:P ` V <: U. By Lemma 3.4.5, � ` [V=Y℄V <: [V=Y℄U. Then,by the rule GT-Invk, �; � ` e00.m<V>(e) 2 [V=Y℄V. Letting T00 = [V=Y℄V �nishes the
ase.

24Case GRC-Cast: e = (N)e0 e0 = (N)e00 e0 �! e00There are three sub
ases a

ording to the last typing rule GT-UCast, GT-DCast or GT-SCast. Thesesub
ases are similar to the sub
ases in the
ase for GT-DCast in the proof of Lemma 3.4.11.Case GRC-Inv-Arg, GRC-New-Arg:Easy. �3.4.14 Theorem [Progress℄: Suppose e is a well-typed expression.(1) If e in
ludes new N0(e).f as a subexpression, then �elds(N0) = T f and f 2 f.(2) If e in
ludes new N0(e).m<V>(d) as a subexpression, then mbody(m<V>; N0) = (x; e0) and #(x) = #(d).Proof: Similar to the proof of Theorem 2.4.6. �To state FGJ type soundness formally, we will give the de�nition of FGJ values, too, given by the followingsyntax:w ::= new N(w):3.4.15 Theorem [FGJ type soundness℄: If �; � ` e 2 T and e �!� e0 with e0 being a normal form,then e0 is either an FGJ value w or an expression
ontaining (P)new N(e) where ; ` N 6<: P.Proof: Immediate from Theorems 3.4.13 and 3.4.14. �Ba
kward
ompatibilityFGJ is ba
kward
ompatible with FJ. Intuitively, this means that an implementation of FGJ
an be usedto type
he
k and exe
ute FJ programs without
hanging their meaning. In the following statements, we usesubs
ripts FJ or FGJ to show whi
h set of rules is used.3.4.16 Lemma: If CT is an FJ
lass table, then �eldsFJ(C) = �eldsFGJ(C) for all C 2 dom(CT).3.4.17 Lemma: Suppose CT is an FJ
lass table. Then, mtypeFJ(m; C) = C ! C if and only ifmtypeFGJ(m; C) =C ! C.3.4.18 Lemma: Suppose CT is an FJ
lass table. Then, mbodyFJ(m; C) = (x; e) if and only ifmbodyFGJ(m; C) =(x; e).Proof: All these lemmas are easy. Note that, in an FJ
lass table, all substitutions in the derivations areempty and there are no polymorphi
 methods. �We
an show that a well-typed FJ program is always a well-typed FGJ program and that FJ and FGJredu
tion
orrespond. (Note that it isn't quite the
ase that the well-typedness of an FJ program under theFGJ rules implies its well-typedness in FJ, be
ause FGJ allows
ovariant overriding and FJ does not.)3.4.19 Theorem [Ba
kward
ompatibility℄: If an FJ program (e; CT) is well typed under the typingrules of FJ, then it is also well-typed under the rules of FGJ. Moreover, for all FJ programs e and e0 (whetherwell typed or not), e �!FJ e0 i� e �!FGJ e0.Proof: The �rst half is shown by straightforward indu
tion on the derivation of � ` e 2 C (using FJ typingrules), followed by an analysis of the rules T-Method and T-Class. In the proof of the se
ond half, bothdire
tions are shown by indu
tion on a derivation of the redu
tion relation, with a
ase analysis on the lastrule used. �

254 Compiling FGJ to FJWe now explore the se
ond implementation style for GJ and FGJ. The
urrent GJ
ompiler works bytranslation into the standard JVM, whi
h maintains no information about type parameters at run-time. Wemodel this
ompilation in our framework by an erasure translation from FGJ into FJ. We show that thistranslation maps well-typed FGJ programs into well-typed FJ programs, and that the behavior of a programin FGJ mat
hes (in a suitable sense) the behavior of its erasure under the FJ redu
tion rules.A program is erased by repla
ing types with their erasures, inserting down
asts where required. A typeis erased by removing type parameters, and repla
ing type variables with the erasure of their bounds. Forexample, the
lass Pair<X,Y> in the previous se
tion erases to the following:
lass Pair extends Obje
t {Obje
t fst;Obje
t snd;Pair(Obje
t fst, Obje
t snd) {super(); this.fst=fst; this.snd=snd;}Pair setfst(Obje
t newfst) {return new Pair(newfst, this.snd);}}Similarly, the �eld sele
tionnew Pair<A,B>(new A(), new B()).snderases to(B)new Pair(new A(), new B()).sndwhere the added down
ast (B) re
overs type information of the original program. We
all su
h down
astsinserted by erasure syntheti
. A key property of the erasure transformation is that it satis�es a so-
alled
ast-iron guarantee: if the FGJ program is well-typed, then no down
ast inserted by the erasure transformationwill fail at run-time. In the following dis
ussion, we often distinguish syntheti

asts from type
asts derivedfrom original FGJ programs by supers
ripting type
ast expression, writing (C)s. Otherwise, they behaveexa
tly the same as ordinary type
asts.4.1 Erasure of TypesTo erase a type, we remove any type parameters and repla
e type variables with the erasure of their bounds.Write jTj� for the erasure of type T with respe
t to type environment �jTj� = Cwhere bound�(T) = C<T>.4.2 Field and Method LookupIn FGJ (and GJ), a sub
lass may extend an instantiated super
lass. This means that, unlike in FJ (andJava), the types of the �elds and the methods in the sub
lass may not be identi
al to the types in thesuper
lass. In order to spe
ify a type-preserving erasure from FGJ to FJ, it is ne
essary to de�ne additionalauxiliary fun
tions that look up the type of a �eld or method in the highest super
lass in whi
h it is de�ned.For example, we previously de�ned the generi

lass Pair<X,Y>. We may de
lare a spe
ialized sub
lassPairOfA as a sub
lass of the instantiation Pair<A,A>, whi
h instantiates both X and Y to a given
lass A.
lass PairOfA extends Pair<A,A> {PairOfA(A fst, A snd) {super(fst, snd);}

26PairOfA setfst(A newfst) {return new PairOfA(newfst, this.snd);}}Note that, in the setfst method, the argument type A mat
hes the argument type of setfst in Pair<A,A>,while the result type PairOfA is a subtype of the result type in Pair<A,A>; this is permitted by FGJ's
ovariant subtyping, as dis
ussed in the previous se
tion. Erasing the
lass PairOfA yields the following:
lass PairOfA extends Pair {PairOfA(Obje
t fst, Obje
t snd) {super(fst, snd);}Pair setfst(Obje
t newfst) {return new PairOfA(newfst, this.snd);}}Here arguments to the
onstru
tor and the method are given type Obje
t, even though the erasure of A isitself; and the result of the method is given type Pair, even though the erasure of PairOfA is itself. In both
ases, the types are
hosen to
orrespond to types in Pair, the highest super
lass in whi
h the �elds andmethod are de�ned.We de�ne variants of the auxiliary fun
tions that �nd the types of �elds and methods in the highestsuper
lass in whi
h they are de�ned. The maximum �eld types of a
lass C, written �eldsmax (C), is thesequen
e of pairs of a type and a �eld name de�ned as follows:�eldsmax (Obje
t) = �CT (C) =
lass C<X /N> /D<U> {T f; ... }� = X<:N C g = �eldsmax (D)�eldsmax (C) = C g; jTj� fThe maximum method type of m in C, written mtypemax (m, C), is de�ned as follows:CT (C) =
lass C<X /N> /D<U> {...} <Y /O>T!T = mtype(m; D<U>)mtypemax (m; C) = mtypemax (m; D)CT (C) =
lass C<X /N> /D<U> {...}mtype(m; D<U>) unde�ned<Y / O>T!T = mtype(m; C<X>) � = X<:N; Y<:Omtypemax (m; C) = jTj�!jTj�We also need a way to look up the maximum type of a given �eld. If �eldsmax (C) = D f then we set�eldsmax (C)(fi) = Di.4.3 Erasure of ExpressionsThe erasure of an expression depends on the typing of that expression, sin
e the types are used to determinewhi
h down
asts to insert. The erasure rules are optimized to omit
asts when it is trivially safe to do so;this happens when the maximum type is equal to the erased type.Write jej�;� for the erasure of a well-typed expression e with respe
t to environment � and type envi-ronment �: jxj�;� = x (E-Var)

27�; � ` e0.f 2 T �;� ` e0 2 T0 �eldsmax (jT0j�)(f) = jTj�je0.fj�;� = je0j�;�.f (E-Field)�; � ` e0.f 2 T �;� ` e0 2 T0 �eldsmax (jT0j�)(f) 6= jTj�je0.fj�;� = (jTj�)sje0j�;�.f (E-Field-Cast)�; � ` e0.m<V>(e) 2 T �;� ` e0 2 T0 mtypemax (m; jT0j�) = C!D D = jTj�je0.m<V>(e)j�;� = je0j�;�.m(jej�;�) (E-Invk)�; � ` e0.m<V>(e) 2 T �;� ` e0 2 T0 mtypemax (m; jT0j�) = C!D D 6= jTj�je0.m<V>(e)j�;� = (jTj�)sje0j�;�.m(jej�;�) (E-Invk-Cast)jnew N(e)j�;� = new jNj�(jej�;�) (E-New)j(N)e0j�;� = (jNj�) je0j�;� (E-Cast)(Stri
tly speaking, one should think of the erasure operation as a
ting on typing derivations rather thanexpressions. Sin
e well-typed expressions are in 1-1
orresponden
e with their typing derivations, the abuseof notation
reates no
onfusion.)4.4 Erasure of Methods and ClassesThe erasure of a method m with respe
t to type environment � in
lass C, written jMj�;C, is de�ned as follows:� = x:T; this : C<X> � = X<:N; Y<:Omtypemax (m; C) = D!D ei = � xi0 if Di = jTij�(jTij�)sxi0 otherwisej<Y /O> T m (T x) {"e0;}jX<:N;C = D m (D x0) {"[e=x℄je0j�;�;} (E-Method)Remark: In GJ, the a
tual erasure is somewhat more
omplex, involving the introdu
tion of bridge meth-ods, so that one ends up with two overloaded methods: one with the maximum type, and one with theinstantiated type. For example, the erasure of PairOfA would be:
lass PairOfA extends Pair {PairOfA(Obje
t fst, Obje
t snd) {super(fst, snd);}Pair setfst(A newfst) {return new PairOfA(newfst, (A)this.snd);}Pair setfst(Obje
t newfst) {return this.setfst((A)newfst);}}where the se
ond de�nition of setfst is the bridge method, whi
h overrides the de�nition of setfst in Pair.We don't model that extra
omplexity here, be
ause it depends on overloading of method names, whi
h isnot modeled in FJ; here, instead, the rule E-Method merges two methods into one by inline-expand thebody of the a
tual method into the body of the bridge method.The erasure of
onstru
tors and
lasses is:jC(U g, T f) {super(g); this.f = f;}jC= C(�eldsmax (C)) {super(g); this.f = f;} (E-Constru
tor)

28� = X<:Nj
lass C<X extends N> extends N {T f; K M}j=
lass C extends jNj�{jTj� f; jKjC jMj�;C} (E-Class)We write jCT j for the erasure of a
lass table CT , de�ned in the obvious way.4.5 Properties of CompilationHaving de�ned erasure, we may investigate some of its properties. As in the dis
ussion of ba
kward
om-patibility, we often use subs
ripts FJ or FGJ to avoid
onfusion.Preservation of TypingFirst, a well-typed FGJ program erases to a well-typed FJ program, as expe
ted; moreover, syntheti

astsare not stupid.4.5.1 Theorem [Erasure preserves typing℄: If an FGJ
lass table CT is ok and �; � `FGJ e 2 T, thenjCT j is ok using the FJ typing rules and j�j� `FJ jej�;� 2 jTj�. Moreover, every syntheti

ast in jCT j andjej�;� does not involve stupid warning.First, we show that, if an expression is well-typed, then its type is well formed (Lemma 4.5.5). Note thatwe assume that the underlying GJ
lass table CT is ok.4.5.2 Lemma: If � ` S <: T and � ` S ok for some well-formed type environment �, then � ` T ok.Proof: By indu
tion on the derivation of � ` S <: T with a
ase analysis on the last rule used. The
asesfor S-Refl and S-Trans are easy.Case S-Var: S = X T = �(X)T must be well formed sin
e � is well formed.Case S-Class: S = C<T> T = [T=X℄N CT (C) =
lass C<X / N> /N {...}� ` T ok � ` T <: [T=X℄NSin
e CT (C) is ok, we also have X<:N ` N ok by the rule GT-Class. Then, by Lemmas 3.4.1 and 3.4.6,� ` [T=X℄N ok. �4.5.3 Lemma: If � ` N ok for some well-formed type environment � and �eldsFGJ(N) = U f, then � ` U ok.Proof: By indu
tion on the derivation of �eldsFGJ(N) with a
ase analysis on the last rule used.Case F-Obje
t:Trivial.Case F-Class: N = C<T> CT (C) =
lass C<X / N> /P {S f; K M}U g = �eldsFGJ([T=X℄P); [T=X℄S fSin
e CT (C) is ok, by the rule GT-Class, X<:N ` P ok. By Lemmas 3.4.1 and 3.4.6, � ` [T=X℄P ok. Then,by the indu
tion hypothesis, � ` V ok. Sin
e � ` C<T> ok, we have � ` T ok and � ` T <: [T=X℄N by theruleWF-Class. On the other hand, by the rule GT-Class, we have X<:N ` S ok: Finally, by Lemmas 3.4.1and 3.4.6, � ` [T=X℄S ok, �nishing the
ase. �4.5.4 Lemma: If � ` N ok for some well-formed type environment � and mtypeFGJ(m; N) = <Y /P>U!U0,then �; Y<:P ` U0 ok.Proof: By indu
tion on the derivation of mtypeFGJ(m; N) with a
ase analysis on the last rule used.

29Case MT-Class: N = C<T>CT (C) =
lass C<X /N> /P {... M}<Y /Q> S0 m (S x) {"e0;} 2 M[T=X℄(<Y /Q>S!S0) = <Y /P>U!U0Without loss of generality, we
an assume that X and Y are distin
t and that [T=X℄Q = P and [T=X℄S0 = U0.By the rule GT-Method, we haveX<:N; Y<:Q ` S0 ok:By the rule WF-Class, we have � ` T ok and � ` T <: [T=X℄N. Then, by Lemma 3.4.1 and 3.4.6,�; Y<:[T=X℄Q ` [T=X℄S0 ok:�nishing the
ase.Case MT-Super:Sin
e CT (C) is ok, by the rule GT-Class, X<:N ` P ok. By Lemmas 3.4.1 and 3.4.6, � ` [T=X℄P ok. Theindu
tion hypothesis �nishes the
ase. �4.5.5 Lemma: If � ` � ok and �; � `FGJ e 2 T for some well-formed type environment �, then � ` T ok.Proof: By indu
tion on the derivation of �; � `FGJ e 2 T with a
ase analysis on the last rule used.Case GT-Var:Immediate from the de�nition of well-formedness of �.Case GT-Field: �;� `FGJ e0 2 T0 �eldsFGJ(bound�(T0)) = T fBy the indu
tion hypothesis, � ` T0 ok. Sin
e � is well formed, � ` bound�(T0) ok. Then, by Lemma 4.5.3,we have � ` T ok, �nishing the
ase.Case GT-Invk: �;� `FGJ e0 2 T0 mtypeFGJ(m; bound�(T0)) = <Y /P>U!U0� ` V ok � ` V <: [V=Y℄P�;� `FGJ e 2 S � ` S <: [V=Y℄UT = [V=Y℄U0By the indu
tion hypothesis, � ` T0 ok. Sin
e � is well formed, � ` bound�(T0) ok. Then, by Lemma 4.5.4,�; Y<:P ` U0 ok. Finally, by Lemma 3.4.6, we have � ` [V=Y℄U0 ok, �nishing the
ase.Case GT-UCast: �;� `FGJ e0 2 T0 � ` T0 <: N N = TBy the indu
tion hypothesis, � ` T0 ok. By Lemma 4.5.2, � ` N ok, �nishing the
ase.Case GT-New, GT-DCast, GT-SCast:Immediate from the fa
t that T is well formed by a premise of the rules. �After developing several lemmas about erasure, we prove Theorem 4.5.1. Note that, in the followingdis
ussions, the erased
lass table jCT j is not assumed to be ok; even so, however, if CT is ok, then jCT j iswell de�ned and thus �elds , mtype , mbody , and � are well de�ned with respe
t to jCT j.4.5.6 Lemma: If � ` S <:FGJ T, then jSj� <:FJ jTj�.Proof: Straightforward indu
tion on the derivation of � ` S <:FGJ T. �4.5.7 Lemma: If �1; X<:N; �2 ` U ok where none of X appear in �1, and �1 ` T <:FGJ [T=X℄N, thenj[T=X℄Uj�1; [T=X℄�2 <:FJ jUj�.Proof: If U is nonvariable or a type variable Y 62 X, then the result is trivial. If U is a type variable Xi, it'salso easy sin
e [T=X℄U = Ti and, by Lemma 4.5.6, jTij�1; [T=X℄�2 = jTij�1 <:FJ j[T=X℄Nij�1 = jNij� = jXj�. �4.5.8 Lemma: If � ` C<U> ok and �eldsFGJ(C<U>) = V f, then �eldsmax (C) = D f and jVj� <:FJ D.

30Proof: By indu
tion on the derivation of �eldsFGJ(C<U>) using Lemma 4.5.7 and the fa
t that � ` U <:[U=X℄N, where CT (C) =
lass C<X /N> ..., derived from the rule WF-Class. �4.5.9 Lemma: If � ` C<T> ok and mtypeFGJ(m; C<T>) = <Y /P>U!U0 where � ` V <:FGJ [V=Y℄P, thenmtypemax (m; C) = C!C0 and j[V=Y℄Uj� <:FJ C and j[V=Y℄U0j� <:FJ C0.Proof: Sin
e � ` C<T> ok, we
an have a sequen
e of type S su
h that S1 = C<T> and Sn = Obje
t and� ` Si <:FGJ Si+1 derived by the rule S-Class for any i. We prove by indu
tion on the length n of thesequen
e.Case: n = 1Cannot happen.Case: n = 2It must be the
ase thatCT (C) =
lass C<X / N> /Obje
t { ...<Y /Q>W0 m (W x) {...} ...}:By the de�nition of mtypemax , C = jWjX<:N; Y<:Q and C0 = jW0jX<:N; Y<:Q. Without loss of generality, we
anassume X and Y are distin
t. By the de�nition of mtypeFGJ,[T=X℄Q = P[T=X℄W = U[T=X℄W0 = U0;and therefore� ` V <:FGJ [V=Y℄[T=X℄Q:Moreover, by the rule WF-Class, we have� ` T <: [T=X℄N (= [V=Y℄[T=X℄N sin
e Y do not appear in [T=X℄N):By Lemma 4.5.7, j[V=Y℄[T=X℄Wj� <:FJ C and j[V=Y℄[T=X℄W0j� <:FJ C0, �nishing the
ase.Case: n = k + 1SupposeCT (C) =
lass C<X / N> /N {...}:Note that � ` C<T> <:FGJ [T=X℄N by the rule S-Class. Now, we have three sub
ases:Sub
ase: mtypeFGJ(m; [T=X℄N) is not well de�ned.The method m must be de
lared in C. Similarly for the base
ase above.Sub
ase: mtypeFGJ(m; [T=X℄N) is well de�ned and m is de�ned in C.By the rule GT-Method, it must be the
ase thatmtypeFGJ(m; [T=X℄N) = <Y /P>U!U00where �; Y<:P ` U0 <:FGJ U00. By Lemmas 3.4.5 and 4.5.6, j[V=Y℄U0j� <:FJ j[V=Y℄U00j�. The indu
tionhypothesis and transitivity of <:FJ �nish the sub
ase.Sub
ase: mtypeFGJ(m; [T=X℄N) is well de�ned and m is not de�ned in C.It is easy be
ausemtypeFGJ(m; [T=X℄N) = mtypeFGJ(m; C<T>) by the ruleMT-Super. The indu
tion hypothesis�nishes the sub
ase. �Proof of Theorem 4.5.1: We prove the theorem in two steps: �rst, it is shown that, if �; � `FGJ e 2 T,then j�j� `FJ jej�;� 2 jTj�; and se
ond, we show jCT j is ok.The �rst part is proved by indu
tion on the derivation of �; � `FGJ e 2 T with a
ase analysis on the lastrule used.

31Case GT-Field: e = e0.fi �;� `FGJ e0 2 T0 �eldsFGJ(bound�(T0)) = T f T = TiBy the indu
tion hypothesis, we have j�j� `FJ je0j� 2 jT0j�: By Lemma 4.5.5, � ` T0 ok. Then, whetherT0 is a type variable or not, we have, by Lemma 4.5.8, �eldsmax (jT0j�) = C f and jTj� <: C. Note that, byde�nition, it is obvious that �eldsFJ(C) = �eldsmax (C). By the rule T-Field, we have j�j� `FJ je0j�;�.fi 2Ci. If jTij� = Ci, then the equation je0.fij�;� = je0j�;�.fi derived from the rule E-Field �nishes the
ase.On the other hand, if jTij� 6= Ci, thenje0.fij�;� = (jTij�)sje0j�;�.fiby the rule E-Field-Cast and j�j� `FJ (jTj�)sje0j�;�.fi 2 jTj� by the rule T-DCast, �nishing the
ase.Note that the syntheti

ast is not stupid.Case GT-Invk:Similar to the
ase above.Case GT-New, GT-UCast, GT-DCast, GT-SCast:Easy. Noti
e that the nature of the
ast (up, down, or stupid) is also preserved.The se
ond part (jCT j is ok) follows from the �rst part with examination of the rules GT-Method andGT-Class. We show that, if M OK IN C<X /N>, then jMjX<:N; C OK IN C. SupposeM = <Y /P> T m (T x) {"e0;}jMjX<:N; C OK IN C = D m (D x0) {"e00;}mtypemax (m; C) = D!D� = x : T� = X<:N; Y<:Pei = � xi0 if Di = jTij�(jTij�)sxi0 otherwisee00 = [e=x℄je0j�; (�;this:C<X>):By the rule GT-Method, we have� ` T; T; P ok�; �; this : C<X> `FGJ e0 2 S� ` S <:FGJ Tif mtypeFGJ(m; N) = <Z /Q>U!U, then P; T = [Y=Z℄(Q; U) and � ` T <:FGJ [Y=Z℄Uwhere CT (C) =
lass C<X /N> /N {...}. We must show thatx0 : D; this : C `FJ e0 2 EE <:FJ Dif mtypeFJ(m; jNj�) = E!D0, then E = D and D0 = D.for some E. By the result of the �rst part, j�j�; this : C `FJ jej�;� 2 jSj�. Sin
e, by Lemma 4.5.9, jTij� <: Di,we have xi0 : Di ` ei 2 jTij�. By Lemma 3.4.11,x0 : D; this : C ` e00 2 C0for some C0 where C0 <:FJ jSj�. On the other hand, by Lemma 4.5.9, jTj� <:FJ D. Sin
e we have jSj� <:FJjTj� by Lemma 4.5.6, C0 <:FJ D by transitivity of <:. Let E be C0. Finally, suppose mtypemax (m; jNj�)is well de�ned. Then, mtypeFGJ(m; N) is also well de�ned. By de�nition, mtypemax (m; jNj�) = D!D =mtypeFJ(m; jNj�).It is easy to show that L OK in FGJ implies jLj OK in FJ. �

32Preservation of Exe
utionMore interestingly, we would intuitively expe
t that erasure from FGJ to FJ should also preserve the redu
tionbehavior of FGJ programs: e redu
e (FGJ)
//erase

��

e0erase
��jej redu
e (FJ) // je0jUnfortunately, this is not quite true. For example,
onsider the FGJ expressione = new Pair<A,B>(a,b).fst;where a and b are expressions of type A and B, respe
tively, and its erasure:jej�;� = (A)snew Pair(jaj�;�,jbj�;�).fstIn FGJ, e redu
es to a, while the erasure jej�;� redu
es to (A)sjaj�;� in FJ; it does not redu
e to jaj�;�when a is not a new expression. (Note that it is not an artifa
t of our nondeterministi
 redu
tion strategy: ithappens even if we adopt a
all-by-value redu
tion strategy, sin
e, after method invo
ation, we may obtainan expression like (A)se where e is not a new expression.) Thus, the above diagram does not
ommute evenif one-step redu
tion (�!) at the bottom is repla
ed with many-step redu
tion (�!�). In general, syntheti

asts
an persist for a while in the FJ expression, although we expe
t those
asts will eventually turn out tobe up
asts when a redu
es to a new expression.In the example above, an FJ expression d redu
ed from jej�;� had more syntheti

asts than je0j�;�.However, this is not always the
ase: d may have less
asts than je0j�;� when the redu
tion step involvesmethod invo
ation. Consider the FGJ expressione = new Pair<A,B>(a, b).setfst(b0)and its erasurejej�;� = new Pair(jaj�;�,jbj�;�).setfst(jb0j�;�):where a is an expression of type A and b and b0 are of type B. In FGJ,e �!FGJ new Pair<B,B>(b0,new Pair<A,B>(a,b).snd):In FJ, on the other hand,jej�;� �!FJ new Pair(jb0j�;�,new Pair(jaj�;�,jbj�;�).snd)whi
h has fewer syntheti

asts thannew Pair(jb0j�;�,(B)snew Pair(jaj�;�,jbj�;�).snd);whi
h is the erasure of the redu
ed expression in FGJ. The subtlety we observe here is that, when theerased term is redu
ed, syntheti

asts may be
ome \
oarser" than the
asts inserted when the redu
ed termis erased, or may be removed entirely as in this example. (Removal of down
asts
an be
onsidered as a
ombination of two operations: repla
ement of (A)s with the
oarser
ast (Obje
t)s and removal of theup
ast (Obje
t)s, whi
h does not a�e
t the result of
omputation.)To formalize both of these observations, we de�ne an auxiliary relation that relates FJ expressionsdi�ering only by the addition and repla
ement of some syntheti

asts. Suppose � `FJ e 2 C. Let us
all anexpression d an expansion of e under �, written � ` e exp=) d, if d is obtained from e by some
ombinationof (1) addition of zero or more syntheti
 up
asts, (2) repla
ement of some syntheti

asts (D)s with (C)s,where C is a supertype of D, or (3) removal of some syntheti

asts, and � `FJ d 2 D for some D.

334.5.10 Example: Suppose � = x:A; y:B; z:B for given
lasses A and B. Then,� ` x exp=) (A)sxand � ` new Pair(z,(B)snew Pair(x,y).snd) exp=) new Pair(z,new Pair(x,y).snd):Then, redu
tion
ommutes with erasure modulo expansion:4.5.11 Theorem [Erasure preserves redu
tion modulo expansion℄: If �; � ` e 2 T and e �!FGJ�e0, then there exists some FJ expression d0 su
h that j�j� ` je0j�;� exp=) d0 and jej�;� �!FJ d0. In otherwords, the following diagram
ommutes. e redu
e (FGJ)�
//erase

��

e0erase
��je0j
��jej redu
e (FJ) �

// d0Conversely, for the exe
ution of an erased expression, there is a
orresponded exe
ution in FGJ semanti
s:4.5.12 Theorem [Erased program re
e
ts FGJ exe
ution℄: Suppose �; � ` e 2 T and j�j� ` jej�;� exp=)d. If d redu
es to d0 with zero or more steps by redu
ing syntheti

asts, followed by one step by other kindsof redu
tion, then e�!FGJe0 for some e0 and j�j� ` je0j�;� exp=) d0. In other words, the following diagram
ommutes. e redu
e (FGJ)
//erase

��

e0erase
��jej

��

je0j
��d R-Cast �

// redu
e (FJ) // d0As easy
orollaries of these theorems, it
an be shown that, if an FGJ expression e redu
es to a \fully-evaluated expression," then the erasure of e redu
es to exa
tly its erasure and vi
e versa. Similarly, if FGJredu
tion gets stu
k at a stupid
ast, then FJ redu
tion also gets stu
k be
ause of the same type
ast andvi
e versa.4.5.13 Corollary [Erasure preserves exe
ution results℄: If �; � ` e 2 T and e �!FGJ� w, then jej�;� �!FJ�jwj�;�. Similarly, if �; � ` e 2 T and jej�;� �!FJ� v, then there exists an FGJ value w su
h that e �!FGJ� wand jwj�;� = v.4.5.14 Corollary [Erasure preserves type
ast errors℄: If �; � ` e 2 T and e �!FGJ� e0, where e0 hasa stu
k subexpression (C<S>)new D<T>(e), then jej�;� �!FJ� d0 su
h that d0 has a stu
k subexpression(C)new D(d), where d are expansions of the erasures of e, at the same position (modulo syntheti

asts)as the erasure of e0. Similarly, if �; � ` e 2 T and jej�;� �!FJ� e0, where e0 has a stu
k subexpression(C)new D<T>(e), then there exists an FGJ expression d su
h that e �!FGJ� d and j�j� ` jdj�;� exp=) e0 andd has a stu
k subexpression (C<S>)new D<T>(d), where e are expansions of the erasures of d, at the sameposition (modulo syntheti

asts) as e0.

34In the rest of this se
tion, we prove these theorems and
orollaries; we �rst prove the required lemmas.4.5.15 Lemma: If �; x:B ` e exp=) e0 and � `FJ d 2 A where A <:FJ B, then � ` [d=x℄e exp=) [d=x℄e0.Proof: By indu
tion on the derivation of �; x:B `FJ e 2 C. �4.5.16 Lemma: Suppose dom(�) = dom(�0) and � = �1; X<:N; �2 where none of X appears in �1. If�; � `FGJ e 2 T and �1 ` U <:FGJ [U=X℄N where �1 ` U ok, and �1; [U=X℄�2 ` �0(x) <:FGJ [U=X℄�(x) for allx 2 dom(�), then jej�;� is obtained from j[U=X℄ej�1; [U=X℄�2;�0 by some
ombination of repla
ements of somesyntheti

asts (D)s with (C)s where D <: C, or removals of some syntheti

asts.Proof: By indu
tion on the derivation of �; � ` e 2 T with a
ase analysis on the last rule used.Case GT-Var:Trivial.Case GT-Field: e = e0.f �;� ` e0 2 T0 �eldsFGJ(bound�(T0)) = T f T = TiBy the indu
tion hypothesis, je0j�;� is obtained from j[U=X℄e0j�1; [U=X℄�2; �0 by some
ombination of repla
e-ments of some syntheti

asts (D)s with (C)s where D <:FJ C, or removals of some syntheti

asts. ByTheorem 4.5.1, j�j� `FJ je0j�;� 2 jT0j�. By Lemma 4.5.8, �eldsmax (jT0j�) = C f and jTj� <:FJ C.Now we have two sub
ases.Sub
ase: jTij� 6= CiBy the rule E-Field-Cast,jej�;� = (jTij�)sje0j�;�.fi:Now we must show that j[U=X℄ej�1; [U=X℄�2; �0 = (D)sj[U=X℄e0j�1; [U=X℄�2; �0.fi for some D <:FJ jTj�. ByLemmas 3.4.10 and 3.4.11,�1; [U=X℄�2; �0 `FGJ [U=X℄e0 2 S0�1; [U=X℄�2 ` S0 <:FGJ [U=X℄T0:By Lemmas 3.4.7 and 3.4.8,�eldsFGJ(bound�1; [U=X℄�2(S0)) = [U=X℄T f; T0 g:Then, by Lemma 4.5.7,j[U=X℄Tij�1; [U=X℄�2 <:FJ jTij�:On the other hand,�eldsmax (jS0j�1; [U=X℄�2) = C f; D g:Therefore, by the rule E-Field-Cast,j[U=X℄ej�1; [U=X℄�2; �0 = (j[U=X℄Tij�1; [U=X℄�2)sj[U=X℄ej�1; [U=X℄�2; �0.fi:�nishing the sub
ase.Sub
ase: jTij� = CiSimilar to the sub
ase above.Case GT-Method: e = e0.m<V>(d) �;� `FGJ e0 2 T0mtypeFGJ(m; bound�(T0)) = <Y /P>U!U0� ` V ok � ` V <:FGJ [V=Y℄P�;� `FGJ d 2 S � ` S <:FGJ [V=Y℄UT = [V=Y℄U0By the indu
tion hypothesis, jdj�;� are obtained from j[U=X℄dj�1; [U=X℄�2; �0 by some
ombination of repla
e-ments of some syntheti

asts (D)s with (C)s where D <:FJ C, or removals of some syntheti

asts. ByTheorem 4.5.1, j�j� `FJ je0j�;� 2 jT0j�. By Lemma 4.5.9, mtypemax (m; jT0j�) = E!E0 and jTj� <:FJ E0.Now we have two sub
ases:

35Sub
ase: jTj� 6= E0By the rule E-Invk-Cast,jej�;� = (jTj�)sje0j�;�.m(jdj�;�):Now, we must show thatj[U=X℄ej�1; [U=X℄�2; �0 = (D)sj[U=X℄e0j�1; [U=X℄�2; �0.m(j[U=X℄dj�1; [U=X℄�2; �0)for some D <:FJ jTj�. By Lemmas 3.4.10 and 3.4.11,�1; [U=X℄�2; �0 `FGJ [U=X℄e0 2 S0�1; [U=X℄�2 ` S0 <:FGJ [U=X℄T0:Without loss of generality, we
an assume X and Y are distin
t. By Lemmas 3.4.7 and 3.4.9, we havemtypeFGJ(m; bound�1; [U=X℄�2(S0)) = <Y / [U=X℄P>[U=X℄U!U00�1; [U=X℄�2; Y<:[U=X℄P ` U00 <:FGJ [U=X℄U0:By Lemma 3.4.5,�1; [U=X℄�2 ` [U=X℄V <:FGJ [U=X℄[V=Y℄P (= [[U=X℄V=Y℄([U=X℄P))and by the same lemma,�1; [U=X℄�2 ` [[U=X℄V=Y℄U00 <:FGJ [[U=X℄V=Y℄[U=X℄U0 (= [U=X℄[V=Y℄U0 = [U=X℄T):Then, by Lemmas 4.5.6 and 4.5.7,j[[U=X℄V=Y℄U00j�1; [U=X℄�2 <:FJ j[U=X℄Tj�1; [U=X℄�2 <:FJ jTj�:On the other hand, it is easy to show thatmtypemax (m; jS0j�1; [U=X℄�2) = mtypemax (m; j[U=X℄T0j�1; [U=X℄�2) = E!E0:Then, by the rule E-Invk-Cast,j[U=X℄ej�1; [U=X℄�2; �0 = (j[[U=X℄V=Y℄U00j�1; [U=X℄�2)sj[U=X℄e0j�1; [U=X℄�2; �0.m(j[U=X℄dj�1; [U=X℄�2; �0)�nishing the sub
ase.Sub
ase: jTj�;� = E0Similar to the sub
ase above.Case GT-New, GT-UCast, GT-DCast, GT-SCast:Immediate from the indu
tion hypothesis. �4.5.17 Lemma: Suppose1. mbodyFGJ(m<V>; C<T>) = (x; e),2. mtypeFGJ(m; C<T>) = <Y /P>U!U0,3. � ` C<T> ok,4. � ` V <:FGJ [V=Y℄P,5. � ` W <:FGJ [V=Y℄U, and6. mbodyFJ(m; C) = (x; e0).Then, jx : W; this : C<T>j� ` jej�; x:W; this:C<T> exp=) e0.Proof: By indu
tion on the derivation of mbodyFGJ(m<V>; C<T>) with a
ase analysis on the last rule used.

36Case MB-Class: CT (C) =
lass C<X /N> /N { ...<Y /Q> S0 m (S x){"e0;}}[T=X; V=Y℄e0 = e[T=X℄Q = P[T=X℄S = U[T=X℄S0 = U0Let �0 = X<:N; Y<:P and � = x : S; this : C<X>. By the rule WF-Class, � ` T <:FGJ [T=X℄N (=[V=Y℄[T=X℄N). By Lemma 4.5.16, je0j�0; x:S; this:C<X> is obtained from jej�; x:W; this:C<T> by some
ombination ofrepla
ements of some syntheti

asts (D)s with (C)s where D <:FJ C, or removals of some syntheti

asts. ByTheorem 4.5.1,jx : S; this : C<X>j�0 `FJ je0j�0; x:S;this:C<X> 2 jS0j�0 :Now, let mtypemax (m; C) = D!D andei = � xi if Di = jSij�0(jSij�0)sxi otherwisefor i = 1; : : : ;#(x). Sin
e e0 = [e=x℄je0j�0;� and jWj� <:FJ j[V=Y℄Uj� <:FJ jSj�0 by Lemmas 4.5.6 and 4.5.7,ea
h ei is either a variable or a variable with an up
ast under the environment jx : W; this : C<T>j�. Then,we havejx : W; this : C<T>j� `FJ e0 2 Dfor some D su
h that D <:FJ jS0j�0 by Lemma 2.4.3. Therefore, we havejx : W; this : C<T>j� ` jej�; x:W;this:C<T> exp=) e0�nishing the
ase.Case MB-Super: CT (C) =
lass C<X /N> /D<S> { ...}m is not de�ned in CT (C).By the indu
tion hypothesis,jx : W; this : [T=X℄D<S>j� ` jej�; x:W; this:D<[T=X℄S> exp=) e0:By Lemma 4.5.15,jx : W; this : C<T>j� ` jej�; x:W; this:D<[T=X℄> exp=) e0Then, by Lemma 4.5.16, jej�; x:W; this:D<[T=X℄> is obtained from jej�; x:W; this:C<T> by some
ombination of re-pla
ements of some syntheti

asts (D)s with (C)s where D <:FJ C, or removals of some syntheti

asts. Onthe other hand, by Lemma 2.4.3,jx : W; this : C<T>j� `FJ e0 2 Efor some E. Therefore,jx : W; this : C<T>j� ` jej�; x:W; this:C<T> exp=) e0;�nishing the
ase. �4.5.18 Lemma: If �; � `FGJ e 2 T and e �!FGJ e0, then there exists some FJ expression d0 su
h thatj�j� `FJ je0j�;� exp=) d0 and jej�;� �!FJ d0. In other words, the following diagram
ommutes.e redu
e (FGJ)
//erase

��

e0erase
��je0j
��jej redu
e (FJ) // d0

37Proof: By indu
tion on the derivation of e �!FGJ e0 with a
ase analysis on the last redu
tion rule used.We show the main base
ases.Case GR-Field: e = new N(e).fi �eldsFGJ(N) = T f e0 = eiWe have two sub
ases depending on the last erasure rule used.Sub
ase E-Field-Cast: jej�;� = (D)s(new C(jej�;�).fi)We have jNj� = C by de�nition of erasure. Sin
e �eldsFJ(C) = C f for some C, we have jej�;� �!FJ(D)sjeij�;�. On the other hand, by Theorem 3.4.13, �; � `FGJ ei 2 Ti su
h that � ` Ti <:FGJ T. ByTheorem 4.5.1, jTj� = D and j�j� `FJ jeij�;� 2 jTij�. Sin
e jTij� <:FJ D by Lemma 4.5.6, (D)sjeij�;� isobtained by adding an up
ast to jeij�;�.Sub
ase E-Field: jej�;� = new C(jej�;�).fiFollows from the indu
tion hypothesis.Case GR-Invk: e = new C<T>(e).m<V>(d) mbodyFGJ(m<V>; C<T>) = (x; e0)e0 = [d=x; new C<T>(e)=this℄e0We have two sub
ases depending on the last erasure rule used.Sub
ase E-Invk-Cast: jej�;� = (D)s(new C(jej�;�).m(jdj�;�))Sin
e mbodyFGJ(m<V>; C<T>) is well de�ned, mbodyFJ(m; C) is also well de�ned. Let mbodyFJ(m; C) = (x; e00)and �0 = x : U; this : C<T> where U are types of d. Then, by Lemma 4.5.17,j�0j� ` je0j�;�0 exp=) e00:By Lemma 4.5.15,j�j� ` je0j�;� exp=) [jdj�;�=x; jnew C<T>(e)j�;�=this℄e00:Note that je0j�;� = [jdj�;�=x; jnew C<T>(e)j�;�=this℄je0j�;�0 . By Theorems 3.4.13 and 4.5.1,j�j� `FJ je0j�;� 2 jT0j�for some T0 su
h that � ` T0 <:FGJ T. By Lemma 4.5.6, jT0j� <:FJ D. Thus,j�j� ` je0j�;� exp=) (D)sje0j�;�:Finally,j�j� ` je0j�;� exp=) (D)s[jdj�;�=x; jnew C<T>(e)j�;�=this℄e00:Sub
ase E-Invk:Similarly to the sub
ase above.Case GR-Cast:Easy. �4.5.19 Lemma: If � `FJ e 2 C and e �!FJ e0 and � ` e exp=) d, then there exists some FJ expression d0su
h that � ` e0 exp=) d0 and d �!FJ� d0. In other words, the following diagram
ommutes.e redu
e (FJ)
//

��

e0
��d redu
e (FJ) �

// d0Proof: By indu
tion on the derivation of e �!FJ e0 with a
ase analysis on the last redu
tion rule used.

38Case R-Field: e = new C(e).fi �eldsFJ(C) = C f e0 = eiThe expansion d must have a form of ((D1)s � � � (Dn)snew C(d)).fi where � ` e exp=) d and C <:FJ Di for1 � i � n be
ause ea
h Di is introdu
ed as an up
ast. Thus, d �!FJ� new C(d).fi �!FJ di.The other base
ases are similar and the
ases for indu
tion steps are straightforward. �Proof of Theorem 4.5.11: By indu
tion on the length n of redu
tion sequen
e e �!FGJ� e0.Case: n = 0Trivial.Case: e �!FGJ e0 �!FGJ� e00We have the following
ommuting diagram.e redu
e (FGJ)
//

erase
��

(1)
e0 redu
e (FGJ)�

//erase
��

e00erase
��(2) je00j
��je0j redu
e (FJ) �

//

��

(3) d0
��jej redu
e (FJ) // d redu
e (FJ) �

// d00Commutation (1) is proved by Lemma 4.5.18, (2) by the indu
tion hypothesis and (3) by Lemma 4.5.19. �4.5.20 Lemma: Suppose �; � `FGJ e 2 T. If jej�;��!FJd, then e�!FGJe0 for some e0 and j�j� ` je0j�;� exp=)d. In other words, the following diagram
ommutes:e redu
e (FGJ)
//erase

��

e0erase
��je0j
��jej redu
e (FJ) // dProof: By indu
tion on the derivation of jej�;��!FJd with a
ase analysis by the last rule used.Case RC-Cast:We have two sub
ases a

ording to whether the
ast is syntheti
 (jej�;� = (C)se0) or not (jej�;� = (C)e0).The latter
ase follows from the indu
tion hypothesis. We show the former
ase wherejej�;� = (C)se0e0 �!FJ d0d = (C)sd0Then e0 must be either a �eld a

ess or a method invo
ation. We have another
ase analysis with the last re-du
tion rule for the derivation of e0 �!FJ d0. The
ases for RC-Field, RC-Invk-Re
v and RC-Invk-Argare omitted sin
e they follow from the indu
tion hypothesis.

39Sub
ase R-Field: e0 = new D(e).fid0 = ei�eldsFJ(D) = C fBy inspe
ting the derivation of jej�;�, it must be the
ase thate = new D<T>(e0).fije0j�;� = e�eldsmax (D) = C fjTj� = C 6= Ci:By Theorems 3.4.14 and 3.4.13, we have e �!FGJ ei0 and �; � `FGJ ei0 2 S and � ` S <:FGJ T. ByTheorem 4.5.1, j�j� `FJ jei0j�;� 2 jSj�. By Lemma 4.5.6, jSj� <:FJ jTj�. Then, j�j� ` ei exp=) (jTj�)ei,�nishing the
ase.Sub
ase R-Invk: e0 = new D(d).m(e)d0 = [e=x; new D(d)=this℄emmbodyFJ(m; D) = (x; em)By inspe
ting the derivation of jej�;�, it must be the
ase thate = new D<T>(d0).m<V>(e0)jd0j�;� = dje0j�;� = emtypeFGJ(m; D<T>) = <Y /P>U!U0[V=Y℄U0 = Tmtypemax (m; D) = C!C0jTj� = C 6= C0:By Theorems 3.4.14 and 3.4.13, e �!FGJ [e0=x; new D<T>(d0)=this℄em0 where mbodyFGJ(m<V>; D<T>) =(x; em0) and �; � `FGJ [e0=x; new D<T>(d0)=this℄em0 2 S for some S su
h that � ` S <: T. By Theorem 4.5.1and the fa
t thatj[e0=x; new D<T>(d0)=this℄em0j�;� = [e=x; new D(d)=this℄jem0j�; x:W; this:D<T>where W are the types of e0, we havej�j� `FJ [e=x; new D(d)=this℄jem0j�; x:W; this:D<T> 2 jSj�:Sin
e jSj� <:FJ jTj� by Lemma 4.5.6,j�j� ` [e=x; new D(d)=this℄jem0j�; x:W; this:D<T>exp=) (jTj�)s[e=x; new D(d)=this℄jem0j�; x:W; this:D<T>:On the other hand, by Lemma 4.5.17,jx : W; this : D<T>j� ` jem0j�; x:W; this:D<T> exp=) em:By Lemma 4.5.15,j�j� ` [e=x; new D(d)=this℄jem0j�; x:W; this:D<T> exp=) [e=x; new D(d)=this℄em:Then,j�j� ` (jTj�)s[e=x; new D(d)=this℄jem0j�; x:W; this:D<T> exp=) (jTj�)s[e=x; new D(d)=this℄em:Finally, we have, by the fa
t that C = jTj� and transitivity of the expansion relation,j�j� ` j[e0=x; new D<T>(d0)=this℄em0j�;� exp=) (C)[e=x; new D(d)=this℄em0:Case R-Field:Similar to the sub
ase for R-Field in the
ase for RC-Cast above.

40Case R-Invk:Similar to the sub
ase for R-Invk in the
ase for RC-Cast above.The other
ases for indu
tion steps are straightforward. �4.5.21 Lemma: Suppose �; � `FGJ e 2 T and j�j� ` jej�;� exp=) d. If d redu
es to d0 with zero or moresteps by redu
ing syntheti

asts, followed by one step by other kinds of redu
tion, then jej�;��!FJe0 andj�j� ` e0 exp=) d0. In other words, the following diagram
ommutes:jej redu
e (FJ)
//

��

e0
��d R-Cast �

// redu
e (FJ) // d0Proof: By indu
tion on the derivation of the last redu
tion step with a
ase analysis by the last rule used.Case R-Field: d �!FJ� new C(e).fi �eldsFJ(C) = C f d0 = eiThe expression d must be of the form ((D1)s : : : (Dn)snew C(e0)).fi where C <: Di for any i and ea
h ei0redu
es to ei by redu
ing up
asts (in several steps). In other words, j�j� ` e0 exp=) e. Moreover, sin
ej�j� ` jej�;� exp=) d, the expression jej�;� must be of the form, either new C(e00).fi or (D)snew C(e00).fi,where j�j� ` e00 exp=) e0. Therefore, jej�;� �!FJ ei00 or jej�;� �!FJ (D)sei00. It is easy to seej�j� ` (D)sei00 exp=) eiand j�j� ` ei00 exp=) ei:Other base
ases are similar; indu
tion steps are straightforward. �Proof of Theorem 4.5.12: Follows from Lemmas 4.5.20 and 4.5.21. �Proof of Corollary 4.5.13: Theorem 4.5.11, we have an FJ expression d su
h that jej�;��!FJ�d andj�j� ` jwj�;� exp=)d. Sin
e the FJ value jwj�;� does not in
lude any type
asts, d is obtained only by addingsome (syntheti
) up
asts. Therefore, d redu
es to jwj�;�.The se
ond part follows from a similar argument using Theorem 4.5.12. �Proof of Corollary 4.5.14: Similar to the proof of Corollary 4.5.13. �5 Related WorkCore
al
uli for Java. There are several known proofs in the literature of type soundness for subsetsof Java. In the earliest, Drossopoulou and Eisenba
h [11℄ (using a te
hnique later me
hani
ally
he
kedby Syme [23℄) prove soundness for a fairly large subset of sequential Java. Like us, they use a small-stepoperational semanti
s, but they avoid the subtleties of \stupid
asts" by omitting
asting entirely. Nipkowand Oheimb [20℄ give a me
hani
ally
he
ked proof of soundness for a somewhat larger
ore language. Theirlanguage does in
lude
asts, but it is formulated using a \big-step" operational semanti
s, whi
h sidestepsthe stupid
ast problem. Flatt, Krishnamurthi, and Felleisen [15, 16℄ use a small-step semanti
s andformalize a language with both assignment and
asting. Their system is somewhat larger than ours (thesyntax, typing, and operational semanti
s rules take perhaps three times the spa
e), and the soundness proof,though
orrespondingly longer, is of similar
omplexity. Their published proof of subje
t redu
tion in theearlier version is slightly
awed | the
ase that motivated our introdu
tion of stupid
asts is not handledproperly | but the problem
an be repaired by applying the same re�nement we have used here.Of these three studies, that of Flatt, Krishnamurthi, and Felleisen is
losest to ours in an importantsense: the goal there, as here, is to
hoose a
ore
al
ulus that is as small as possible,
apturing just thefeatures of Java that are relevant to some parti
ular task. In their
ase, the task is analyzing an extension ofJava with Common Lisp style mixins { in ours, extensions of the
ore type system. The goal of the other twosystems, on the other hand, is to in
lude as large a subset of Java as possible, sin
e their primary interest isproving the soundness of Java itself.

41Other
lass-based obje
t
al
uli. The literature on foundations of obje
t-oriented languages
ontainsmany papers formalizing
lass-based obje
t-oriented languages, either taking
lasses as primitive (e.g., [24,8, 6, 5℄) or translating
lasses into lower-level me
hanisms (e.g., [14, 4, 1, 22℄). Some of these systems(e.g. [22, 8℄) in
lude generi

lasses and methods, but only in fairly simple forms.Generi
 extensions of Java. A number of extensions of Java with generi

lasses and methods havebeen proposed by various groups, in
luding the language of Agesen, Freund, and Mit
hell [2℄; PolyJ, byMyers, Bank, and Liskov [19℄; Pizza, by Odersky and Wadler [21℄; GJ, by Bra
ha, Odersky, Stoutamire,and Wadler [7℄; and NextGen, by Cartwright and Steele [10℄. While all these languages are believed to betypesafe, our study of FGJ is the �rst to give rigorous proof of soundness for a generi
 extension of Java.We have used GJ as the basis for our generi
 extension, but similar te
hniques should apply to the forms ofgeneri
ity found in the rest of these languages.Re
ently, Duggan [12℄ has proposed a te
hnique to translate monomorphi

lasses to parametri

lassesby inferring type argument information. He has also de�ned a polymorphi
 extension of Java, slightly lessexpressive than GJ (for example, polymorphi
 methods are not allowed and a sub
lass must have the samenumber of type arguments as its super
lass). Type soundness theorem of the language is mentioned butstupid
ast problem is not taken into a

ount.6 Dis
ussionWe have presented Featherweight Java, a
ore language for Java modeled
losely on the lambda-
al
ulusand embodying many of the key features of Java's type system. FJ's de�nition and proof of soundness areboth
on
ise and straightforward, making it a suitable arena for the study of ambitious extensions to thetype system, su
h as the generi
 types of GJ. We have developed this extension in detail, stated some of itsfundamental properties, and given their proofs.It was pleasing to dis
over that FGJ
ould be formulated as a straightforward extension of FJ, givingus additional
on�den
e that the design of GJ was on the right tra
k. Our investigation of FGJ led usto un
over one bug in the
ompiler, involving a subtle relation between subtyping and raw types. Mostimportantly, however, FGJ has given us useful vo
abulary and notation for thinking about the design of GJ.FJ itself is not quite
omplete enough to model some of the interesting subtleties found in GJ. Inparti
ular, the full GJ language allows some parameters to be instantiated by a spe
ial \bottom type"*, using a deli
ate rule to avoid unsoundness in the presen
e of assignment. Capturing the relevant issues inFGJ requires extending it with assignment and null values (both of these extensions seem straightforward,but
ost us some of the pleasing
ompa
tness of FJ as it stands). Another subtle aspe
t of GJ that is nota

urately modeled in FGJ is the use of bridge methods in the
ompilation from GJ to JVM byte
odes. Totreat this
ompilation exa
tly as GJ does, we would need to extend FJ with overloading.Our formalization of GJ also does not in
lude raw types, a unique aspe
t of the GJ design that supports
ompatibility between old, unparameterized
ode and new, parameterized
ode. We are
urrently experi-menting with an extension of FGJ with raw types. A preliminary result [17, Chap. 5℄ has already un
overedthat, unfortunately, the
urrently implemented typing system of raw types is unsound; the �xed type systemis proved to be sound.Formalizing generi
s has proven to be a useful appli
ation domain for FJ, but there are other areas whereits extreme simpli
ity may yield signi�
ant leverage. For example, work is under way on formalizing Java1.1's inner
lasses using FJ [18℄.A
knowledgmentsThis work was supported by the University of Pennsylvania and the National S
ien
e Foundation undergrant CCR-9701826, Prin
ipled Foundations for Programming with Obje
ts. We thank Robert Harper forhis valuable
omments. Also,
omments from the anonymous referees of OOPSLA'99 helped us improve thepresentation.

42Referen
es[1℄ Mart��n Abadi and Lu
a Cardelli. A Theory of Obje
ts. Springer-Verlag, 1996.[2℄ Ole Agesen, Stephen N. Freund, and John C. Mit
hell. Adding type parameterization to the Java language.In Pro
eedings of the ACM Conferen
e on Obje
t Oriented Programming, Systems, Languages, and Appli
ations(OOPSLA), pages 49{65, Atlanta, GA, O
tober 1997.[3℄ H. P. Barendregt. The Lambda Cal
ulus. North Holland, revised edition, 1984.[4℄ Viviana Bono and Kathleen Fisher. An imperative �rst-order
al
ulus with obje
t extension. In Pro
eedings ofthe European Conferen
e on Obje
t-Oriented Programming (ECOOP), 1998.[5℄ Viviana Bono, Amit J. Patel, and Vitaly Shmatikov. A
ore
al
ulus of
lasses and mixins. In Pro
eedings of theEuropean Conferen
e on Obje
t-Oriented Programming (ECOOP), volume 1628 of Le
ture Notes in ComputerS
ien
e, pages 43{66. Springer-Verlag, June 1999.[6℄ Viviana Bono, Amit J. Patel, Vitaly Shmatikov, and John C. Mit
hell. A
ore
al
ulus of
lasses and obje
ts. InPro
eedings of the the Fifteenth Conferen
e on the Mathemati
al Foundations of Programming Semanti
s (MFPSXV), volume 20 of Ele
troni
 Notes in Theoreti
al Computer S
ien
e, New Orleans, LA, April 1999. Elsevier.Available through http://www.elsevier.nl/lo
ate/ent
s/volume20.html.[7℄ Gilad Bra
ha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future safe for the past:Adding generi
ity to the Java programming language. In Craig Chambers, editor, ACM Conferen
e on Obje
tOriented Programming, Systems, Languages, and Appli
ations (OOPSLA), ACM SIGPLAN Noti
es volume 33number 10, pages 183{200, Van
ouver, BC, O
tober 1998.[8℄ Kim B. Bru
e. A paradigmati
 obje
t-oriented programming language: Design, stati
 typing and semanti
s.Journal of Fun
tional Programming, 4(2), April 1994. Preliminary version in POPL 1993, under the title \Safetype
he
king in a stati
ally typed obje
t-oriented programming language".[9℄ Lu
a Cardelli, Simone Martini, John C. Mit
hell, and Andre S
edrov. An extension of system F with subtyping.Information and Computation, 109(1{2):4{56, 1994. Preliminary version in TACS '91 (Sendai, Japan, pp. 750{770).[10℄ Robert Cartwright and Guy L. Steele Jr. Compatible generi
ity with run-time types for the Java programminglanguage. In Craig Chambers, editor, Pro
eedings of the ACM Conferen
e on Obje
t Oriented Programming,Systems, Languages, and Appli
ations (OOPSLA), SIGPLAN Noti
es volume 33 number 10, pages 201{215,Van
ouver, BC, O
tober 1998. ACM.[11℄ S. Drossopoulou, S. Eisenba
h, and S. Khurshid. Is the Java Type System Sound? Theory and Pra
ti
e of Obje
tSystems, 7(1):3{24, 1999. Preliminary version in ECOOP '97.[12℄ Domini
 Duggan. Modular type-based reverse engineering of parameterized types in Java
ode. In Linda M.Northrop, editor, Pro
eedings of the ACM Conferen
e on Obje
t-Oriented Programming, Systems, Languages,and Appli
ations, ACM SIGPLAN Noti
es, volume 34, number 10, pages 97{113, Denver, CO, O
tober 1999.[13℄ Matthias Felleisen and Daniel P. Friedman. A little Java, A few Patterns. The MIT Press, Cambridge, Mas-sa
husetts, 1998.[14℄ Kathleen Fisher and John C. Mit
hell. On the relationship between
lasses, obje
ts, and data abstra
tion.Theory and Pra
ti
e of Obje
t Systems, 4(1):3{25, 1998.[15℄ Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In Pro
eedings of the ACMSymposium on Prin
iples of Programming Languages (POPL), pages 171{183, San Diego, CA, January 1998.[16℄ Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A programmer's redu
tion semanti
s for
lassesand mixins. Te
hni
al Report TR97-293, Computer S
ien
e Department, Ri
e University, February 1998. Cor-re
ted version appeared in June, 1999.[17℄ Atsushi Igarashi. Formalizaing Advan
ed Class Me
hanisms. PhD thesis, University of Tokyo, Tokyo, Japan,Mar
h 2000.[18℄ Atsushi Igarashi and Benjamin C. Pier
e. On inner
lasses. In Elisa Bertino, editor, Pro
eedings of the 14th Eu-ropean Conferen
e on Obje
t-Oriented Programming (ECOOP2000), volume 1850 of Le
ture Notes in ComputerS
ien
e, pages 129{153, Cannes, Fran
e, June 2000. Springer-Verlag.[19℄ Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized types for Java. In Pro
eedings of theACM Symposium on Prin
iples of Programming Languages (POPL), pages 132{145, Paris, Fran
e, January1997.

43[20℄ Tobias Nipkow and David von Oheimb. Javalight is type-safe | de�nitely. In Pro
eedings of the ACM Symposiumon Prin
iples of Programming Languages (POPL), pages 161{170, San Diego, CA, January 1998.[21℄ Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into pra
ti
e. In Pro
eedings of the ACMSymposium on Prin
iples of Programming Languages (POPL), pages 146{159, Paris, Fran
e, January 1997.[22℄ Benjamin C. Pier
e and David N. Turner. Simple type-theoreti
 foundations for obje
t-oriented programming.Journal of Fun
tional Programming, 4(2):207{247, April 1994. Preliminary version in Prin
iples of ProgrammingLanguages (POPL), 1993.[23℄ Don Syme. Proving Java type soundness. Te
hni
al Report 427, Computer Laboratory, University of Cambridge,June 1997.[24℄ Mit
hell Wand. Type inferen
e for obje
ts with instan
e variables and inheritan
e. Te
hni
al Report NU-CCS-89-2, College of Computer S
ien
e, Northeastern University, February 1989. Also in Carl A. Gunter and John C.Mit
hell, editors, Theoreti
al Aspe
ts of Obje
t-Oriented Programming: Types, Semanti
s, and Language Design(MIT Press, 1994).[25℄ Andrew K. Wright and Matthias Felleisen. A synta
ti
 approa
h to type soundness. Information and Compu-tation, 115(1):38{94, 15 November 1994.

