
Objects and Aspects: Ownership
Types

Neel Krishnaswami

Department of Computer Science
Carnegie Mellon University

neelk@cs.cmu.edu



Overview

• The Problem

• An Introduction to Ownership Types

• Evaluating How Ownership Resolves the Problem

• Future Directions

Objects and Aspects: Ownership Types

1



The Problem

• A central idea of OO is to encapsulate state

• But there is no strong language support for this

Objects and Aspects: Ownership Types

2



Aliasing: Threat or Menace?

This is an example from the Java 1.1 JDK:

class Class {

List signers;

List getSigners() {

return this.signers;

}

}

Objects and Aspects: Ownership Types

3



Aliasing: Threat or Menace?

This is an example from the Java 1.1 JDK:

class Class {

List signers;

List getSigners() {

return this.signers; // clients can mutate signers field!

}

}

Objects and Aspects: Ownership Types

4



Aliasing: Threat or Menace?

class JavaClass {

List signers;

List getSigners() {

return this.signers; // clients can mutate signers field!

}

}

Aliasing has caused a failure of encapsulation – the ability to

modify an internal field of an object got exposed to a client,

because the client received a reference to the object in the

instance variable.

Objects and Aspects: Ownership Types

5



An Introduction to Ownership Types

• The Problem

• An Introduction to Ownership Types

• Evaluating How Ownership Resolves the Problem

• Future Directions

Objects and Aspects: Ownership Types

6



The Basic Idea Underlying Ownership

Ownership types represent an attempt to prevent aliasing-

based failures of encapsulation.

• Every object itself exists in a domain, which is a region

of the heap.

• Every object can additionaly create one or more new do-

mains.

• Each field of an object is annotated with the domain it

belongs to.

Objects and Aspects: Ownership Types

7



A Graphical View of Ownership

world domain

customer object bank object

agent domain vault domainteller domain

Objects and Aspects: Ownership Types

8



Access Permissions

In order for domains to be useful, we need to define a set

of access permissions on domains. To “Access” a domain d

means to:

• Dereference an object field annotated with domain d

• Invoke a method on an object in d

• Receive a value from a method call that is in a domain

d.

Objects and Aspects: Ownership Types

9



What May Be Accessed?

An object o in a domain d can access:

• Other objects in the same domain d.

• Other objects in the domains that d is contained in.

• Objects in the domains e, f, g that it declares.

• Objects in domains d′ that d has permission to access.

Very important: this is not a transitive relation! If d → e and

e → f , then it does not follow that d → f .

Objects and Aspects: Ownership Types

10



Public Domains and Link Annotations

• Objects in domains d′ that d has permission to access.

This information comes from programmer annotations.

A programmer can mark a declared domain public, in which

case that domain may be accessed from any domain that can

access the declaring object.

A programmer can declare link specifications, which permit

an object to declare access links between the domains it cre-

ated and domains it can access.

Objects and Aspects: Ownership Types

11



A Code Example

class Customer {

domain agents;

}

class Bank {

public domain tellers;

private domain vault;

link tellers -> vault;

}

Objects and Aspects: Ownership Types

12



A Graphical View of Ownership

world domain

customer object bank object

agent domain vault domainteller domain

Objects and Aspects: Ownership Types

13



Link Soundness

This ownership system has a link soundness property. This

is a proof that the type system actually enforces the access

constraints – that is, if o can access o′ and o′ is in domain d,

then o has permission to access d.

Objects and Aspects: Ownership Types

14



An Introduction to Ownership Types

• The Problem

• An Introduction to Ownership Types

• Evaluating How Ownership Resolves the Problem

• Future Directions

Objects and Aspects: Ownership Types

15



JDK 1.1, revisited

class Class {

private domain internal;

internal List signers;

internal List getSigners() { return this.signers; }

void foo() {

internal List x = this.getSigners();

// do stuff using x

}

}

Clients cannot invoke getSigners, since the domain internal

is private and they cannot access it. They can only invoke

foo.
Objects and Aspects: Ownership Types

16



Making getSigners Available

class Class {

private domain internal;

internal List signers;

world List getSigners() {

world List copy = new List();

for(int i = 0; i < this.signers.size(); i++) {

copy.add(this.signers.get(i));

}

return copy;

}

}

Objects and Aspects: Ownership Types

17



Generalizing To Iterators, 0/3

Now we will look at a more complex problem – iterator ob-

jects. An iterator is an object with access to the internal

state of the collection it iterates over, but which does not

expose this to the outside world.

Objects and Aspects: Ownership Types

18



Iterators, cont. 1/3

class Cons<T> assumes owner -> T.owner {

Cons(T head, owner Cons<T> tail) {

this.head = head;

this.tail = tail;

}

T head;

owner Cons<T> tail;

}

owner is a keyword to name the owning domain of an object.

Objects and Aspects: Ownership Types

19



Iterators, cont. 2/3

class Sequence<T> assumes owner -> T.owner {

private domain internal;

link internal -> T.owner;

internal Cons<T> front;

void add(T o) { this.front = new Cons<T>(o, this.front); }

public domain iters;

link iters -> T.owner,

iters -> internal;

iters Iterator<T> getIter() {

return new SequenceIterator<T, owned>(this.front);

}

}

Objects and Aspects: Ownership Types

20



Iterators, cont. 2/3

interface Iterator<T> {
boolean hasNext();
T next();

}

class SequenceIterator<T, domain list> implements Iterator<T>
assumes list -> T.owner

{
SequenceIterator<T, domain list>(list Cons<T> head) { this.current = head; }
list Cons<T> current;

boolean hasNext() { return current != null; }

T next() {
T obj = this.current.head;
this.current = this.current.tail;
return obj;

}
}

Objects and Aspects: Ownership Types

21



What Makes This Work

• You can parameterize classes with domains as well as

types. Programmers can write code that works in any

domain.

• Public domains can safely access private ones, because of

the lack of transitivity. Stateful data can now be part of

an object’s interface without breaking its encapsulation.

• You can hide “extra” parameterization behind interfaces.

This lets the iterator implementation receive a domain

without revealing it to clients.

Objects and Aspects: Ownership Types

22



An Introduction to Ownership Types

• The Problem

• An Introduction to Ownership Types

• Evaluating How Ownership Resolves the Problem

• Future Directions

Objects and Aspects: Ownership Types

23



Weaknesses With Ownership

• Ownership transfers. How can objects move between

domains as the program evolves? (Uniqueness/linearity

helps somewhat, but is overkill.)

• Serialization. (This is probably hopeless in the general

case.)

• Theoretical complexity – the type system is quite com-

plex, and we’ve “baked in” a fairly complex set of access

rules. It would be nice to simplify this.

Objects and Aspects: Ownership Types

24



Future Work

• Transplant to a mostly-functional setting.

• Characterize what encapsulation really means via study-

ing type abstraction for stateful languages.

• More access modes? Object creation, object update, and

object read are quite different conceptually.

• What is the relation to other work? Regions, confinement

types, modal logic, etc.

Objects and Aspects: Ownership Types

25


