
AMANDA - An Intelligent Dialog
Coordination Environment

Marco A. Eleuterio1
PUC-PR/UTC

marcoa@hds.utc.fr

Jean-Paul Barthès
UTC, France

barthes@utc.fr

Flávio Bortolozzi
PUC-PR, Brazil

fborto@ppgia.pucpr.br

Celso A. Kaestner
PUC-PR, Brazil

kaestner@ppgia.pucpr.br

1 Sponsored by CNPq, Brazil

Abstract
This paper describes AMANDA2 - an intelligent
system intended to coordinate collective dialog
sessions in distance learning environments. The
overall objective of AMANDA is to help tutors
achieve better results from group discussions
and improve knowledge transfer among the
participants. This is done by integrating the
collective dialog as a disciplined and well-
coordinated activity in distance learning
situations. For this purpose, the dialog is
represented as an argumentation tree, a
structured collection of questions, alternatives
and arguments which evolves along sequential
dialog cycles. The intelligent behavior of the
system is due to its coordination actions taken in
response to reasoning over the dialog. We
describe how AMANDA coordinates the dialog
process by generating a sequence of dialog
cycles based on a set of coordination
parameters. In this paper we briefly describe
AMANDA’s functional modules, internal
structures and coordination algorithms. The
knowledge models that support system
reasoning are described, as well as our practical
experience in domain modeling. We have tested
the system in actual training situations, for
which we chose a test course and modeled the
corresponding domain knowledge. Although
some modules of the system are still under
development, specially those related to semantic
reasoning, we discuss the application of
semantic parameters and identify some
techniques which may improve the coordination
algorithm.

2 AMANDA - Agent de Modélisation et ANalyse de Dialogues
Argumentés - is a joint R&D effort between the Pontifical
University of Paraná, Brazil (PUC-PR), the Technology
University of Compiègne, France (UTC) and their respective
partners Siemens Telecomunicações, Brazil and Cegos, France.

1. Introduction
Collaborative learning is about promoting
knowledge transfer among the apprentices
through a series of learning interactions. We
recall a well-known knowledge management
theory (Nonaka, 99) in which a knowledge
transfer environment is composed of four
knowledge-transfer spaces, namely the
socialization space, the dialoguing space, the
systematization space and the internalization
space. In each of these spaces, a specific
implicit↔explicit knowledge conversion
occurs. By applying this approach to a
collaborative learning environment, as detailed
in (Eleuterio, 1999a), we categorize AMANDA
as a dialoguing space in which the articulation
of knowledge is the key for knowledge transfer.
In traditional distance learning environments,
this dialoguing space is normally implemented
by discussion forums.

Our experience with discussion forums in
Eureka (Eleuterio, 1999b), a web-based
environment developed in partnership with
Siemens and extensively used in academic and
professional training contexts, shows that
traditional discussions forums often fail to
promote group learning. They either grow two
much to be efficiently followed up by the tutor
or suffer from the lack of participation and
coordination. Similar problems are described in
(Leary, 1998) when identifying common
problems in discussion groups of knowledge
management systems. From our observations,
the two main reasons why discussion forums
often fail are (i) the lack of discipline due to the
poor integration of the discussion process into
the regular activities of the course and (ii) the
lack or articulation and coordination of the
discussion.

With the purpose of overcoming the identified
problems, we propose a dialog framework that
covers both aspects, i.e. automatically
coordinates the dialog while engaging the
participants by generating dialog activities.

We identify three main differences between
AMANDA and a traditional discussion forum.
Firstly, the presence of domain models in
AMANDA’s architecture enables a certain degree
of semantic reasoning over the dialog.
Secondly, its coordination mechanism relieves
the tutor from time-consuming coordination
tasks, such as finding relations between users’
inputs, measuring the degree of commitment of
the participants, detecting disagreement topics
and measuring the coverage of discussion
topics. Thirdly, the system manages the dialog
by generating discussion cycles, in which the
participants express their supporting and
opposing ideas in relation to another
participant’s input, thus creating a suitable
context for the articulation and confrontation of
ideas and points of view.

The proposed coordination mechanism allows
various degrees of knowledge representation
without impairing dialog control. It means that,
if the system has no knowledge models, it can
coordinate the dialog as well, gracefully
degraded, by considering only structural
parameters. This is possible due to the
separation between structural and semantic
aspects in the coordination mechanism (see
section 4). This separation allows applying

AMANDA to situations where knowledge
modeling is neither feasible, e.g. open domain
discussions, nor desirable, e.g. short-term
courses.

Merging Two Complementary Approaches
Tutorial dialog has been subject of important
research efforts, such as the CoLLeGE
architecture (Ravenscroft & Pilkington, 2000)
which analyzes dialog moves, conceptual
changes and world models as the basis of the
dialog process. Such work deeply inspects the
tutor-apprentice interaction, but doesn’t give
much emphasis on the collective aspect of the
dialog. On the other hand, the argumentative
discourse environment (Karacapilidis, 1998)
describes an argumentation framework applied
to multi-agent decision making, which is fully
devoted to formalize argumentative discourses.
Our objective is to merge both approaches,
which seem to be complementary, in a single
dialog coordination system applied to
collaborative distance learning environments.

2. System Overview
AMANDA is an autonomous domain-
independent intelligent dialog coordination
system applied to collective discussions. By
domain-independent we mean that domain-
dependent behavior is achieved by providing the
corresponding domain knowledge models. By
intelligent coordination system we mean that
AMANDA takes coordination actions by
reasoning over the structure and the semantics

DIALOG

CONTROL

HTML
module

Dialog
Schedule

Session
Schedule

HTML
worksheets

WS

1

2

3

4 5

DIALOG

CONTROL

KB
MODULE

DE
GENERATOR

Dialog
Tree

Domain
models

Tutor interface

GUI

HTML
MODULE

User interface

HTML

Planning

Figure 1a: System overview Figure 1b: Dialog control – simplified

Dialog
Tree

of the dialog. The autonomous feature of
AMANDA is due to its capability of coordinating
the dialog without direct interference of the
human tutor. Figure 1a shows the main modules
of the system and the paragraphs below describe
the modules, structures and processes that take
part in the dialog coordination.

2.1. Dialog Control Module
This module is AMANDA’s central coordination
mechanism. Its principle is to organize the
dialog in sequential periods called sessions,
each one representing a time interval in which a
certain number of discussions will be carried on.
During each session, the system triggers a
number of dialog cycles in order to update the
dialog tree with input from the participants.

In the setup stage, the Dialog Control module
reads the dialog schedule �, where all sessions
are described. It then repeatedly generates
dialog cycles by producing worksheets � until
a satisfactory degree of agreement is achieved.
Each time the system receives input from the
participants �, the Dialog Control module
analyzes and updates the dialog tree � and
decides upon producing a new cycle or closing
the dialog. The items below detail the structures
handled by the Dialog Control module.

2.1.1. Dialog Planning
The dialog planning is represented by the dialog
schedule and the session schedule.

Dialog Schedule
The dialog schedule is the overall planning of
the dialog. It specifies the dialog sessions, the
corresponding start/end dates and the respective
domain of discourse (Figure 2).

Session SD ED DS (domain of discourse)

S-1 Sd Ed (c1 … cm)

S-2 Sd Ed (c1 … cn)

 :

S-n Sd Ed (c1 … cp)

S-n: the nth session of the dialog
SD: start date; ED: end date

DS: a set of concepts from
the domain ontology

Figure 2: The dialog schedule Session

Session Schedule
The session schedule, on the other hand, is a
dynamic structure automatically produced and
updated by the system during a given session
(Figure 3). Each entry of the session schedule is
a dialog cycle which specifies a dialog task to
each participant. A dialog task is the set of all
nodes from the dialog tree (see item 2.1.2)
which are assigned to the same participant at a
certain dialog cycle.

A dialog task is represented by a worksheet
assignment of the type (id, list-of-WEs), in
which a list of worksheet elements (we) is
assigned to a particular participant (id).
Worksheet elements map directly to specific
nodes of the dialog tree.

Cycle SD ED WS assignment

C-1-x Sd Ed ((id (we-y-1 … we-y-n)) …)

C-2-x Sd Ed ((id (we-y-1 … we-y-n)) …)

 :

:

C-n-x Sd Ed ((id (we-y-1 … we-y-n)) …)

C-n-x: the nth dialog cycle
of session x

SD: start date
ED: end date

WS: worksheet, a set of ordered
pairs of the type (id-x we-y)

id: the ID of the participant
we: worksheet element

Figure 3: The session schedule

2.1.2. Dialog Tree
The dialog tree, shown in Figure 4 is the
structure that represents the dialog. Its internal
nodes can be of five types: DIALOG,
SESSION, DE, ALT and ARG. Its internal
structure was adapted from the argumentation
model (Karacapilidis, 1998). The paragraphs
below describe each type of node and their
corresponding relations to the dialog process.

DIALOG node
The DIALOG node is the uppermost node of the
tree. It contains a reference to a number of
dialog sessions. When a dialog is created, this
node is initialized with the information
contained in the dialog schedule (Figure 2.a).

SESSION node
The SESSION node is the uppermost node of a
dialog session. Dialog sessions are intended to
organize the discussion into separate time
periods, each one assigned to a certain domain

of discourse. The SESSION node contains a
reference to all discussion elements (DEs)
which are scheduled for discussion within this
session.

DE node
The DE node represents a discussion element,
i.e. a natural language question that will
originate a specific discussion. Examples of
DEs are: “which are the elements of a training
budget?” or “what types of connection elements
exist in a computer network?”.

A DE can be classified as a content-expected
interrogative speech act (Porayska-Pompa,
2000), for which we expect an answer with a
certain “content” as response. According to the
argumentation model of (Karacapilidis, 1998), a
DE node is an issue to be debated.

ALT node
The ALT node is an answer to a question. It is
an alternative response to a certain DE. The
answer contained in an ALT node is the
“content” expected by its corresponding DE
node. In Karacapilidis’ model, an ALT node is a
position over an issue.

ARG node
The ARG node, or argumentation node,
represents a supporting or opposing reaction
from a given participant over a dialog element
placed by another participant. An ARG node
can either refer to an ALT node or to another
ARG node.

Argumentation nodes are key elements of the
dialog. When analyzed as a whole, they

represent the level of collective agreement over
a given position. Each ARG node conveys a
supporting or opposing intention, or polarity.
This intention is expressed by four levels: total
agreement (++), partial agreement (+), partial
disagreement (-) and total disagreement (--).

A substantial coordination effort of AMANDA is
concentrated in analyzing the effects of the
ARG nodes over the dialog tree (more details in
item 4).

2.1.3. Dialog Control Interface
The Dialog Control module has a graphical
interface which allows us to view the dialog tree
and perform editing and follow-up functions
over the dialog. This interface, primarily
designed to follow up the dialog, can also be
used to simulate dialog situations and evaluate
the coordination algorithms.

Figure 5 shows the Dialog Control interface. It
allows to (i) view the dialog tree, (ii) edit its
nodes, (iii) view the internal parameters of the
dialog and (iv) simulate a dialog by means of
control buttons.

2.2. KB Module
This module is responsible for managing the
knowledge model and providing semantic
parameters to the Dialog Control module. The
central knowledge representation is the domain
ontology, but other structures may be added,
such as the domain task structure. The KB
module evaluates the dialog from the semantic
point of view, by calculating a certain number
of parameters, such as the semantic proximity
between two text-based messages, the
conceptual distance between ontology concepts
or the conceptual coverage of a certain dialog
session.

2.2.1. Domain Models
AMANDA requires domain models to perform
semantic reasoning over the dialog. In order to
enable different types of domain models to be
“plugged” into the KB module, we decided to
use an ontology-centered approach. This allows
to build various models, such as conceptual
maps and task structures, which refer to the
ontology concepts when applicable.

DIALOG

Session-1

DE-1

Alt-1 Alt-n

DE-n

Arg-1 Arg-n

++ -

- +

Discussion
elements

Alternatives
(direct answers)

Argumentation
levels

Arg-1 Arg-n

Session-n

Figure 4: The dialog tree

Domain Ontology
The domain ontology is AMANDA’s central
knowledge representation. Its role is to organize
domain concepts so as to enable reasoning.
Apart the various definitions found in the
knowledge representation literature, it is a
consensus that ontologies are conceptual models
that explicit the nature of the concepts. The
basic type of ontology, the “terminological
ontology”, or “level 1” ontology (Mizoguchi,
2000), contains primarily is-a links. In some
cases, formal definitions are needed to
completely reason over a concept. In such cases,
more powerful ontologies, like interpretable or
executable ontologies, are required.

In our system, since the ontology is used mainly
for terminological purposes, we adopted a
simple structure which organizes concepts by
means of is-a and part-of links. We decided to
merge is-a and part-of links for practical
reasons. We were faced with situations in which
a concept would be better represented by a part-
of decomposition than by a taxonomy relation.
In fact, in certain domains, the use of part-of
links is the only way to construct ontologies, as
in the case of the PLINIUS project (Van der Vet
& Mars, 1998). However, depending on the
rigor demanded by the ontology application,
merging is-a and part-of links may result in
tangled hierarchies and confuse the reasoning

mechanisms. A formal approach
to this problem is described in
(Guarino, 2000).

Task Structure
Due to the inherent task-oriented
nature of the test course, we used
a task structure as a
complementary knowledge
model. It represents the
decomposition of a task by means
of two types of links: the
sequence link and the type link.
Sequence links decompose a
complex task in a sequence of
more detailed sequential
subtasks, while type links specify
different methods of performing a
certain task. A detailed

description of task structures can be found in
(Chandrasekaran, 1992) and (Decker, 1995).
Figure 6 shows the Task Model section of the
KB interface.

2.3. DE Generator
This module produces natural language
questions based on the available knowledge
models. Questions are generated by the system
in order to include a given domain topic to the
dialog. In practice, this is done to move the
focus of the dialog to a desired sub-domain. The
content of the questions are based on the links
and concepts available in the knowledge
models.

Figure 5: The Dialog Control interface

Figure 6: KB interface – Task Model section

Suppose an ontology in the “computer network”
domain containing an is-a link from the concept
<connection element> toward the concepts
<hub> and <router>. The semantics of this
relation is: “hubs and routers are types of
connection elements”. For the DE Generator,
this link would produce a sentence of the type
“what differs hubs from routers since
both are connection elements?”. This
sentence conveys a pre-defined intention
to find out the identity criteria, or a
distinguishing property, between two
concepts belonging to the same parent.
We could generalize this principle by
stating: “if there is a taxonomic
distinction between two concepts, there
must be a set of properties capable to
distinguish them” (Guarino, 2000). For
each type of semantic relation contained
in the knowledge models, we can define
a set of generic principles that can be
used for sentence generation.

As in the propositions of (Ravenscroft,
2000), the sentences produced by the
DE Generator carry a specific intention in the
discourse. In our case, they are meant to
investigate the domain along five different axes,
each one assigned to a specific semantic link of
the knowledge model. The ontology contributes
with two axes: (i) the nature of the concepts (is-
a links) and (ii) the elements of a composed
concept (part-of links). The task model
contributes with the remaining three axes: (i)
the use of the concepts by a certain task
(resource link); (ii) the decomposition of a
complex task into sub-tasks (sequence link); and
(iii) different ways of performing a task (type
link). Each of these axes maps to a set of
sentence structures of the type shown in the
example above. The DE Generator can thus be
considered the linguistic level of the knowledge
models.

2.4. The HTML Module
This module is responsible for the interface
between AMANDA and the participants of the
dialog. This is done by the dynamic generation
of worksheets in HTML format (see figure 7).

These worksheets are accessed by the
participants, filled in and sent back to the

system. Once the worksheets are returned, the
Dialog Control module updates the dialog tree.

The HTML module was implemented by a PHP
script running on an HTTP server. The
communication between the HTML module and
the Dialog Control module (see Figure 1.b �) is
done by intermediate files.

3. The Dialog Process
This item explains how AMANDA starts and
conducts the dialog process, as well as the
related algorithms.

3.1. Dialog Setup
The dialog starts with the creation of a session
schedule based on the available dialog schedule
(Figures 2 and 3). Once the dialog session is
established, i.e. the SESSION node and the
related DE nodes are created, the system can
trigger the first dialog cycle.

3.2. First Dialog Cycle
The first dialog cycle, identified as the ALT
level in the dialog tree, is intended to distribute
the DEs among the participants. To do so,
AMANDA takes the set of DEs, as well as the set
of participants, and executes the DE-assignment
algorithm. This algorithm generates DE
assignments of the type (DE, list-of-ids) and
can be parameterized according to the desired
load of DE/participant and the presence/absence
of the tutor(s) in the discussion (see Figure 8).

Figure 7: Worksheets in HTML format

3.3. Argumentation Cycles
As a result of the first cycle, the system receives
a number of answers to the proposed DEs, or so
called alternatives. These alternatives,
represented by ALT nodes in the dialog tree,
will be subject of analysis in the argumentation
cycles. From this moment on, AMANDA will
generate a sequence of dialog cycles in order to
expand the tree either in depth or in breadth,
until a satisfactory degree of agreement is
reached. At this point we distinguish two key
concepts: the dialog level and the dialog cycle.

Dialog level
The dialog level is the depth level of the dialog
tree, i.e. the distance from a certain node to the
root. A large number of dialog levels means that
the dialog has grown in depth, i.e. an original
answer of a given DE has been subject of many
subsequent argumentation cycles.

High dialog levels indicate that either the
answer has been repeatedly opposed or
progressively clarified, depending on the
polarity of the ARG nodes. Certain typical
behaviors in argumentative discourse, such as
belief change, can only be detected with high
dialog levels.

In practice, however, high dialog levels lead to
interpretation difficulties that must be handled
by the interface design. For example, suppose
that a participant receives a discussion element
of argumentation level 3, i.e. an Arg-3 node. It
means that he is supposed to analyze his parent
node (argument Arg-2) that refers to another
argument (Arg-1), which in turns refers to an

answer (Alt) to a given question (DE). If the
user interface is not carefully designed, it’s
likely that we misinterpret the participant’s
contribution due to the large number of previous
elements. On the other hand, we must present
the whole history of the discussion so that the
user can trace the ideas and place his
contribution. This problem opens a design issue
which must not be overlooked.

Dialog cycle
The dialog cycle, on the other hand, is a time
period in which the dialog tree expands,
possibly in depth but not necessarily. A large
number of dialog cycles means that the dialog
has evolved through a large number of
interactions, but not necessarily that it has
grown in depth. This is the distinction between
the dialog level and the dialog cycle.

To exemplify, suppose that a certain answer
(ALT node) exhibits low local support level
(typically negative values) and low participation
level (i.e. few lower level ARG nodes). This is
the case, for example, when an answer is
opposed by some counter-arguments, but has
not been broadly discussed within the group. In
this case, the system may decide to create a
specific dialog cycle to re-launch this answer to
be analyzed by other participants. This new
dialog cycle will only increase the breadth of
the tree, keeping the dialog depth unchanged.

4. Reasoning Over the Dialog
The coordination actions taken by the system
are based on a certain degree of reasoning over
the dialog tree. Two types of reasoning are
proposed: structural and semantic reasoning.

Structural reasoning concerns to the structural
aspect of dialog tree, specially the distribution
of the ARG nodes and their corresponding
polarities. Semantic reasoning, on the other
hand, analyzes the content of the textual
information in order to find semantic relations
among the nodes.

The separation between structural and semantic
reasoning allows AMANDA to coordinate the
dialog even in the absence of domain models.
The following paragraphs identify and propose
some of the parameters to be evaluated in each
type of reasoning.

Figure 8: The DE-assignment interface

4.1. Structural reasoning
Structural reasoning analyses the structure of
the dialog tree, mainly the distribution of ARG
nodes and their embedded supporting/opposing
intentions, to decide which nodes will be re-
launched and to which participants they will be
assigned. The main structural parameter is the
support level of a node in respect to its lower
level sub-tree. The items below detail the
implementation of this reasoning.

4.1.1. Evaluating the support level
Before initiating a new dialog cycle, AMANDA
evaluates the overall agreement level of each
DE and decides upon creating a new cycle or
closing the discussion tree for the corresponding
DE. This decision takes into consideration the
concepts of local and transmitted support level.

Local support level
Each “supportable” node of the dialog tree (i.e.
nodes of the type ALT or ARG) can be assigned
a local support level (LS). This level represents
the degree of consensus of this node regarding
its lower level sub-tree. The support levels are
calculated by traversing the dialog tree from the
leaves to the root and assigning support levels to
each ALT or ARG node. The local support level
is a real number ranging from –1.0 to +1.0,
respectively meaning total disagreement and
total agreement. This number is the average
level of transmitted support from all its direct
descendant nodes (see Eq. 1). If the node has no
direct child nodes, i.e. in the case of leaf nodes,
the local support level is assigned the maximum
value of +1.0.

The local support level of a node N, LS(N), is
expressed by Eq. 1 and exemplified in Figure 9.

 Σ (TS(child(N))/n if n > 0
LS(N) =
 +1.0 if n = 0

Where:

− TS is the transmitted support level (Eq. 2),

− child(N) returns the next child of node N

− “n” is the number of child nodes.

Eq. 1: The local support level (LS)

Figure 9 Local and transmitted support levels

The transmitted support level
The principle is that each descendant ARG node
transmits to its direct parent a certain level of
support – the transmitted support level. This
level depends on the type of argument (++, +, -
, --) and the local support level of the
transmitting node itself. The nominal level that
a node of type ++/+/-/-- transmits to its parent is
respectively +1.0/+0.5/-0.5/-1.0.

For example, an ARG++ transmits to its direct
parent a support level of +1.0 multiplied by its
own local support level. Analogously, an ARG-
node transmits to its direct parent a support
level of -0.5 multiplied by its own local support
level. In other words, the local support level acts
as a “damping” parameter that tends to reduce
the transmitted support level if the node does
not exhibit total support from its lower levels.
The support level TS(N) transmitted by a node
N to its direct parent is expressed by Eq.2.

 +1.0 × LS’(N) if arg-type(N) = ”++”

TS(N) = +0.5 × LS’(N) if arg-type(N) = ”+”

 -0.5 × LS’(N) if arg-type(N) = ”-”

 -1.0 × LS’(N) if arg-type(N) = ”--”

Where LS’(N) = min(0, LS(N))

Eq. 2: The transmitted support level (TS)

An important assumption of the algorithm is
that nodes with negative LS are disabled to
transmit TS level to their parent by being
excluded from the set of children in LS
calculation. This is done to prevent highly
opposed nodes from influencing their respective
ascendants. In addition, this is necessary to
avoid undesirable situations in which the
original polarity of a node (supporting or
opposing) is inverted by its negative LS.

LS(N1)
+0.25

LS(N2)
+1.0

LS(N3)
+1.0

[N1]

[N2] [N3]

TS(N2) = +1.0 TS(N3) = -0.5

TS(N1) = +0.125
(0.5 x 0.25)

(++) (-)

(+)

(leaf nodes)

The algorithm starts the evaluation by assigning
LS values of +1.0 to all leaf nodes and then
“climbs” up the tree by calculating the
corresponding LS values for all nodes up to the
DE node.

Tests performed in actual dialog situations show
that the support levels obtained by this
algorithm reflect the collective agreement of a
dialog contribution within the discussion. They
are used to compute a priority value that defines
which nodes are to be re-launched in the next
dialog cycle.

Figure 10 shows the interface for opening a new
dialog cycle. It shows the nodes to be re-
launched, their corresponding re-launch score
and support levels and the assignment proposed
by the system.

4.2. Semantic Reasoning
Due to the text-based nature of the dialog
contributions and the domain dependency of the
dialog, it seems reasonable to apply semantic
matching techniques to improve the
coordination mechanism. We identify two
semantic parameters with large potential for this
purpose.

The first parameter is the semantic proximity
between textual inputs, such as direct answers
or arguments. This may be useful to discover
hidden relations among users’ input, specially in
extensive dialog trees with large amounts of
textual information. The availability of a
domain ontology may extend the traditional

word-matching by adding concept-based
matching, as described in (Honkela, 1995).

The second parameter is the conceptual
coverage, which aims to detect missing or
insufficiently covered topics in dialog sessions.
Such topics can be identified by analyzing the
occurrence of certain words of domain in a
given dialog sub-tree. As a response, specific
DEs can be generated with the objective of
bringing such subjects back to the dialog (see
section 2.3).

Other text techniques, such as ontology-based
information retrieval, can be applied for finding
related concepts among textual information
(Guarino, 1999).

One of the difficulties to apply semantic
reasoning is the need for comprehensive and

well constructed knowledge
models, which are difficult to
achieve even by experienced
knowledge experts. In
addition, lexical diversity may
impose difficulties in relating
similar concepts from different
user inputs. This suggests that
semantic reasoning might give
better results when applied to
very specific domains with low
terminology diversity.

5. Conclusion
Our system was developed
under empirical observations
over distance learning

environments, specially over the poor results
achieved in traditional discussion forums. The
large potential in terms of knowledge transfer of
such environments encouraged us to go beyond
traditional approaches and to design an
environment that takes advantage of the
collective discussions.

The real problem that we aim to solve is that
successful distance discussion sessions require
participants to be highly committed and
represent a very time-consuming effort from the
tutors. As a result, very few discussion forums
end up satisfactorily.

Figure 10: Opening a new dialog cycle

We created a dialog framework that attempts to
keep up the commitment of the participants by
generating regular dialog activities and relieve
the tutor from the dialog coordination task. This
framework has been applied in actual distance
training situations and has been the test-bed for
various algorithms and coordination strategies.

A modular approach for the coordination
mechanism, which separates structural from
semantic parameters, allows it to be applied to
situations where domain models are not
available.

The next steps of this work are to implement the
semantic reasoning over the dialog and to
consolidate the results obtained in actual
training situations.

Acknowledgements
We are grateful to CEGOS for its financial
support and active participation in the context of
the CEGOS-UTC partnership and to Siemens
Telecomunicações Brasil for its financial
support of the LAMI laboratory in the context
of the PUCPR-Siemens partnership.

6. References
Chandrasekaran B., Johnson T., Smith J. Task-
structure analysis for knowledge modeling.
Communications of the ACM (CACM 35) no.9,
1992, pp. 1124-137.

Decker K. Environment Centered Analysis and
Design of Coordination Mechanisms; Ph.D.
thesis. Department of Computer Science;
University of Massachusetts, Amherst, 1995.

Eleuterio M., Eberspächer H. A Knowledge
Management Approach to Virtual Learning
Environments. International Workshop on
Virtual Education (WISE), 1999.

Eleuterio M., Eberspächer H.,Vasconcelos C.,
Jamur J. Eureka: um ambiente de aprendizagem
cooperativa baseado na Web para Educação à
Distância. In: Brazilian Symposium on
Informatics in Education (SBIE), 1999.

Guarino N., Masolo C., and Vetere G.,
OntoSeek: Content-Based Access to the Web,
IEEE Intelligent Systems 14(3), May/June
1999.

Guarino N., Welty, C. Ontological Analysis of
Taxonomic Relationships. In, Laender, A. and
Storey, V., eds, Proceedings of ER-2000: The
19th International Conference on Conceptual
Modeling. Springer-Verlag LNCS. 2000.

Honkela T. Self-organizing maps in natural
language processing. Ph.D. thesis. Helsinki
University of Technology, 1995.

Karacapilidis N., Papadias D. A computational
approach for argumentative discourse in multi-
agent decision making environments. AI
communications 11 (1998) 21-23.

Leary D. Using AI in Knowledge Management:
Knowledge Bases and Ontologies; IEEE
Intelligent Systems, May/June, 1998.

Mizoguchi R., Bourdeau J. Using Ontological
Engineering to Overcome Common AI-ED
Problems; International Journal of Artificial
Intelligence in Education 2000.

Nonaka I., Toyama R., Konno N. SECI, Ba, and
Leadership: A Unified Model of Dynamic
Knowledge Creation; D.J. Teece and I. Nonaka
(Eds). Oxford University Press, 1999.

Porayska-Pompa K, Pain H. Aspects of Speech
Act Categorisation: Towards Generating
Teacher’s Language. International Journal of
Artificial Intelligence in Education, 2000.

Ravenscroft A., Pilkington R. Investigation by
design: developing dialog models to support
reasoning and conceptual change. International
Journal of Artificial Intelligence in Education,
2000.

Van der Vet P., Mars N. Bottom-up
Construction of Ontologies. IEEE Transactions
on Knowledge Engineering, vol. 10 no. 4, 1998.

