
15-859(B) Machine Learning Theory

Avrim Blum Lecture 1: January 15, 2002

1 Administrivia

The course web page is http://www.cs.cmu.edu/~avrim/ML02/. There will be 6-7 home-

work assignments, a take-home �nal, and a presentation or project. You will also be asked

to help grade one of the homeworks. The plan is for lecture notes to be posted the night

before class, in case you want to print them out and bring them with you. The book for this

course is Kearns and Vazirani An Introduction to Computational Learning Theory. It's not

100% crucial but good to have. It covers about 1=2 of the course material. The �rst few

lectures (on learning in the \mistake-bound" model) will be on material not in the book, so

you have a couple weeks to get it. See the course information guide on the web page for

more details.

2 What is machine learning theory about?

The goal of creating programs or machines that learn with experience is one of the oldest

in computer science. It's a key component of \strong AI". But also as a practical matter

we want programs that can adapt to change, that can learn to do things that are hard

to program explicitly, that can adapt to the needs of their users, and that can �nd useful

information in large gobs of data.

Unfortunately, by its nature, machine learning is a little fuzzy. After all, the goal is to learn

something we don't know. Nonetheless, we would like provide a mathematical framework

and foundation for machine learning to aid in our understanding and improve our ability to

make progress. The goals of computational learning theory include:

� To create mathematical models that capture key aspects of machine learning.

� To prove guarantees for algorithms (when will they succeed, how long will they take?),

and to develop algorithms that provably meet desired criteria; to provide guidance

about which algorithms to use when.

� To analyze the inherent ease or di�culty of learning problems.

� To mathematically analyze general issues, such as: \why is Occam's Razor a good

idea?"

1



2.1 Models of Learning

A mathematical model of machine learning needs to specify a number of things: the kind

of task we are considering (learning a concept from data? learning to play a game?), the

kind of data we have (are we passively shown examples? do we actively get to ask questions

or play the game?), the kind of feedback we get (right away? only after the game is over?

depends on the action we take?), and what is our criteria for success.

What is it that makes a model a good one? Sometimes a model is good because it accurately

re
ects common learning settings. The real test of a model, though, is whether one can gain

important insights through it. We will see, for instance, that the main models used in

computational learning theory are robust to variations in their de�nitions, and allow us to

focus on fundamental issues.

For most of this course we will focus on the problem of concept learning. We are given data

(say documents classi�ed into topics) and we want to be able to learn from this data to

classify future examples well. This seems like a very restricted form of learning, but it turns

out that most methods for other kinds of learning end up solving this sort of problem at

their core. For example, in Pomerleau's ALVINN system for learning how to drive a car, the

basic learning algorithm used is given picture images as input and steering directions as the

label.

What is the best we could hope to guarantee for a learning algorithm? If we are extremely

optimistic, we could hope to make a guarantee of the form: \If there exists a polynomial-

time program that (approximately) explains the data, then our algorithm will do so too."

Unfortunately, cryptography tells us that this is too much to expect: the existence of hard

cryptographic functions means that it's possible for simple functions to produce data that

looks completely random. However, we will be able to make guarantees of this form for more

reasonable goals.

3 Some de�nitions to get us started

� Examples are typically described by their values on some set of features or variables

(we will use these words interchangeably). For instance, if we are trying to predict if

it will rain, the �rst feature might be whether or not it was cloudy in the morning,

the second feature might be whether the weather channel said it would rain, the third

feature might be whether Channel 11 said it would rain, etc. If there are n boolean

features, then we can think of examples as elements of f0; 1g

n

. If there are n real-

valued features, then examples are points in R

n

. The space that examples live in is

called the instance space X.

� A labeled example is an example together with a labeling (e.g., positive or negative).

� A concept is a boolean function over an instance space. For instance, the concept

x

1

^ x

2

over f0; 1g

n

is the boolean function that outputs 1 on any example whose �rst

two features are set to 1.

2



� A concept class is a set of concepts, typically with an associated representation. For

instance, the class of \monotone conjunctions" consists of all concepts that can be

expressed as a conjunction of variables.

Some concept classes contain both simpler and more complicated concepts. For in-

stance, decision trees can be small or large. In these cases, we will need to talk about

the size of a concept which will be some approximation of the number of bits in its

representation (e.g., the number of nodes in the decision tree).

4 The Consistency Model

The consistency model is not a particularly great model of learning, but it's simple and is a

good place to start.

De�nition 1 We say that algorithm A learns class C in the consistency model if given any

set of labeled examples S, the algorithm produces a concept c 2 C consistent with S if one

exists, and outputs \there is no consistent concept" otherwise.

We'd also like our algorithm to run in polynomial time (time polynomial in the descrip-

tion length of S). So, this should seem like very natural de�nition if you're an algo-

rithms/complexity/optimization person.

Let's now consider the learnability of several simple classes in the consistency model.

AND functions (monotone conjunctions). This is the class of functions like x

1

x

4

x

7

,

which is positive whenever the 1st, 4th, and 7th features are on. For example, the

following set of data has a consistent monotone conjunction:

1 0 1 1 0 0 1 1 +

1 1 1 1 1 0 1 0 +

0 1 1 1 0 0 1 1 +

0 0 0 1 1 1 1 1 -

1 1 1 1 1 0 0 0 -

We can learn this class in the consistency model by the following method:

1. Throw out any feature that is set to 0 in any positive example. Notice that these

cannot possibly be in the target function. Take the AND of all that are left.

2. If the resulting conjunction is also consistent with the negative examples, produce

it as output. Otherwise halt with failure.

Since we only threw out features when absolutely necessary, if the conjunction after

step 1 is not consistent with the negatives, then no conjunction will be.

3



OR functions (monotone disjunctions) We can do the same as above except swapping

positive/negative and 1/0. We throw out all variables set to 1 by some negative example

and check to see if the OR of the remainder is consistent with the positive examples.

Non-monotone conjunctions, disjunctions, k-CNF, k-DNF. What about functions like

x

1

�x

4

x

7

? Instead of thinking about this from scratch, we can just perform a reduction

to the monotone case. If we de�ne y

i

= �x

i

then we can think of the target function as a

monotone conjunction over this space of 2n variables and use our previous algorithm.

k-CNF is the class of Conjunctive Normal Form formulas in which each clause has size

at most k. E.g., x

4

(x

1

_x

2

)(x

2

_ �x

3

) is a 2-CNF. So, the 3-CNF learning problem is like

the inverse of the 3-SAT problem: instead of being given a formula and being asked to

come up with a satisfying assignment, we are given assignments (some satisfying and

some not) and are asked to come up with a formula. k-DNF is the class of Disjunctive

Normal Form formulas in which each term has size at most k. We can learn these

too by reduction: e.g., we can think of k-CNFs as conjunctions over a space of O(n

k

)

variables, one for each possible clause.

Decision lists. A Decision List is a list of if-then rules where each condition is a literal (a

variable or its negation). For example, say I like to go for a walk if it's warm or if it's

snowing and I have a jacket, so long as it's not raining. We could describe this as a

decision list like this:

if rainy then no

else if warm then yes

else if not(have-jacket) then no

else if snowy then yes

else no.

If you like, you can think of this as a decision tree with just one long path. Let's �nd an

algorithm to learn DLs in the consistency model. Extending this to the Mistake-bound

model (which we'll talk about next time) is on the homework. Here's an algorithm:

1. Find some rule consistent with the current set of examples that applies to at least

one of them. If no such rule exists, halt with failure.

2. Put the rule at the bottom of the hypothesis.

3. Throw out those examples classi�ed by the hypothesis so far.

4. If there are any examples left, repeat from the beginning.

E.g.,

1 0 0 1 1 +

0 1 1 0 0 �

1 1 1 0 0 +

0 0 0 1 0 �

1 1 0 1 1 +

1 0 0 0 1 �

4



It is clear that this algorithm runs in polynomial time, since each iteration removes at

least one example, and each iteration can be performed in polynomial time. What we

now need to show is that if there exists a consistent list, this algorithm will �nd one.

Proof: If there is a decision list L consistent with remaining data, then there is at

least one choice for step 1 (the highest rule in L satis�ed by at least one example).

Furthermore, if there was a consistent DL at the beginning, then there must exist a

DL consistent with the remaining data | namely, the original one. ta da. (qed)

Linear separators. Here we can think of examples as being from f0; 1g

n

or from R

n

. The

goal is to �nd a hyperplane w � x = w

0

such that all positive examples are on one side

and all negative examples are on other. I.e., w � x > w

0

for positive x's and w � x < w

0

for negative x's. We can solve this using linear programming. In practice, people tend

to use incremental algorithms like perceptron or winnow or maximum entropy for this

problem, because of tolerance to noise (and good speed in practice).

2-term DNF, 2-term CNF. A 2-term DNF is an OR of two conjunctions. A 2-term CNF

is an AND of two disjunctions. An intersection of 2 halfspaces is a formula like \x is

positive if w � x > w

0

and v � x > v

0

". These learning problems are all NP-hard in the

consistency model.

General DNF formulas. Warning: this is misleading!!! These are easy since you can just

create one term for every positive example.

5 Problems with the consistency model

Let's think about some problems with the consistency model. One big problem just came

up in the last example: the DNF learner doesn't really seem like it's learning. You wouldn't

especially have any con�dence in its ability to predict on new data. In a sense, the problem is

that the size of its hypothesis grows linearly with the amount of training data. In fact, we'll

see later a converse to this: being able to get a hypothesis of size sublinear in the amount of

data does imply being able to predict on new examples, in the PAC model (this is a model

in which examples come from a distribution, but we'll get back to that later).

A second problem is that it seems strange that k-term DNF aren't learnable but k-CNF

are, even though the latter can express any function that the former can. In a sense, this

is saying more about the hypothesis representation of the algorithm than the fundamental

hardness of predicting. Sometimes this is what you want: for example, if you are designing

a neural net algorithm (so you are committing to a speci�c hypothesis representation) it

would be nice to know how hard the consistency problem is so you know what is reasonable

to expect. (As it turns out, even for really simple neural nets, the consistency problem is

NP-complete.)

Yet a third problem with the consistency model is often there isn't any consistent rule in the

class, but you still would like to �nd a pretty good one if possible. The problem of simply

�nding the best rule in some class (i.e., that has the fewest disagreements with the data)

5



is sometimes called agnostic learning, Unfortunately, this is NP-hard even for the class of

conjunctions. So it may be hard to say much algorithmically. But we'll get back to this later

when we get into models of noise in data.

6 Open problems

Let me end with two (very hard) open problems:

� Weak agnostic learning of conjunctions: Is there a polynomial time algorithm

that given a set S of labeled examples over f0; 1g

n

will produce a conjunction consistent

with at least 51% whenever there exists a conjunction consistent with at least 99% of

them?

� Learning an intersection of halfspaces via some other representation: We

saw that we can learn 2-term CNF via the class of 2-DNF. Is there an analogous way to

learn the class of \ANDs of two halfspaces" via some other class (where the hypothesis

size does not grow linearly with the number of examples)?

6


