
15-859(B) Machine Learning

Theory

Lecture 01/21/02

Online learning contd: predicting from

expert advice

Avrim Blum

Online learning recap

� See examples one at a time.

� Need to make predictions online.

� Last time: mistake-bound model. Assume

target in some class C. Goal: minimize worst-

case number of mistakes.

Plan for today:

� Introduce \Expert Advice" problem.

� Some interesting algorithms

� Some applications.

Using \expert" advice

Say we want to predict the stock market.

� We solicit n \experts" for their advice. (Will

the market go up or down?)

� We then want to use their advice somehow to

make our prediction.

E.g. (n = 4):

Expt 1 Expt 2 Expt 3 neighbor's dog truth

down up up up up

down up up down down

...

Rough question: What's a good strategy for com-

bining their opinions, given that in advance we

don't know which is best?

[\expert" � someone with an opinion. Not neces-

sarily someone who knows anything.]

Simpler question

� We have n \experts".

� One of these is perfect (never makes a mis-

take). We just don't know which.

� Can we �nd a strategy that makes no more

than log

2

n mistakes?

Answer: Yes. Just take majority vote of all experts

that have been correct so far. Each mistake allows

us to cross o� at least half.

Expt 1 Expt 2 Expt 3 your dog truth

down up up up up

down up up down down

...

This is the \halving algorithm".

Think of \n" as \jCj" from last lecture, and \ex-

pert" as \function in C".

Back to \expert" advice

What if no expert is perfect? Our goal is just to

do nearly as well as the best one in hindsight.

Strategy #1: iterated halving algorithm. Same as

before, but once we've crossed o� all the experts,

restart from the beginning.

� Makes at most log(n) � OPT mistakes, where

OPT is # mistakes of the best expert in hind-

sight.

Seems wasteful. Constantly forgetting what we've

\learned". Can we do better? Yes.

The Weighted Majority Alg. [LW]

Intuition: Making a mistake doesn't completely

disqualify an expert. So, instead of crossing o�,

just lower its weight.

Simple algorithm: Weighted Majority

� Start with all experts having weight 1.

� Predict based on weighted majority vote.

� Penalize mistakes by cutting weight in half.

Example:

prediction correct

weights 1 1 1 1

predictions Y Y Y N Y Y

weights 1 1 1 .5

predictions Y N N Y N Y

weights 1 .5 .5 .5

predictions Y N N N N N

weights .5 .5 .5 .5

predictions N Y N Y either N

weights .5 .25 .5 .25

Analysis: do nearly as well as best

expert in hindsight

� M = # mistakes we've made so far.

� m= # mistakes best expert has made so far.

� W = total weight (starts at n).

� After each mistake, W drops by at least 25%.

So, after M mistakes, W � n(3=4)

M

.

� Weight of best expert is (1=2)

m

. So,

(1=2)

m

� n(3=4)

M

(4=3)

M

� n2

m

M � 2:4(m+ lgn)

Randomized Weighted Majority

Previous bound not so good if the best expert

makes a mistake 20% of the time. Can we do

better? Yes.

� Instead of taking majority vote, use weights

as probabilities. (e.g., if 70% on up, 30% on

down, then pick 70:30)

Idea: smooth out the worst case.

� Also, generalize 1=2 to 1� ".

Solves to: M �

�m ln(1� ") + ln(n)

"

M � 1:39m+ 2 lnn " = 1=2

M � 1:15m+ 4 lnn " = 1=4

M � 1:07m+ 8 lnn " = 1=8

As "! 0, this goes to (1+ "=2)m+

1

"

lnn.

Here, M is our expected number of mistakes.

A simpler warmup

Before analyzing, let's go back to simpler problem

where we assumed a perfect expert.

� Instead of taking majority, use votes as prob-

abilities.

� Claim: expected number of mistakes is at

most lnn. (this is better than log

2

n)

Analysis #1: (will analyze in 3 ways)

� Say at time t, the fraction of \alive" experts

that make a mistake is F

t

.

� So, our expected # mistakes M =

P

F

t

.

� Also, we know that

Q

(1� F

t

) � 1=n.

� For a �xed product, we minimize the sum

when the numbers are all equal [e.g., (12,1)

vs (6,2) vs (4,3) vs (3.46,3.46)].

� Solving (1� F)

T

= 1=n gives F � (lnn)=T .

) So, M � ln n.

A simpler warmup (# 2)

� Instead of taking majority, use votes as prob-

abilities.

� Claim: expected number of mistakes is at

most lnn. (this is better than log

2

n)

Analysis #2:

� Say at time t, the fraction of \alive" experts

that make a mistake is F

t

.

� So, our expected # mistakes M =

P

F

t

.

� Also, we know that

Q

(1� F

t

) � 1=n.

� Take logs:

P

ln(1� F

t

) � � lnn.

� Use the inequality ln(1� x) < �x:

) �

P

F

t

� � ln n) M � ln n:

A simpler warmup (# 3)

� Instead of taking majority, use votes as prob-

abilities.

� Claim: expected number of mistakes is at

most lnn. (this is better than log

2

n)

Analysis #3:

� Alg can be viewed as \pick expert at random

and follow it until it makes a mistake. Then

pick a new (alive) expert at random, and con-

tinue."

(Same as Marking Algorithm [BLS])

� Let's number experts in the order they make

their �rst mistake (break ties arbitrarily).

� The chance we were following expert 1 when

it made its �rst mistake is 1=n. For expert 2

it's at most 1=(n� 1), etc.

� So, our total expected number of mistakes is

at most

1

n

+

1

n�1

+ : : :+

1

2

+ 1 � lnn.

Randomized Weighted Majority

Analyze like in #2.

� Say at time t we have fraction F

t

of weight

on experts that made mistake.

� So, our expected # mistakes M =

P

t

F

t

.

W

final

= n(1� "F

1

)(1� "F

2

) : : : :

ln(W

final

) = ln(n) +

X

t

[

ln(1� "F

t

)

]

� ln(n)� "

X

t

F

t

(using ln(1� x) < �x)

= ln(n)� "M

� If best expert makes m mistakes, then

ln(W

final

) � ln((1� ")

m

):

� Now solve....

M �

�m ln(1� ") + ln(n)

"

� (1 + "=2)m+

1

"

log(n)

fAp,Imgplications

� If you have several strategies and don't know

which to use,

� and if you have the computational resources

to run them all,

) then can use WM to do nearly as well as the

best of them in hindsight.

From theoretical perspective: if we don't care about

running time, we can now do nearly as well as best

f 2 C.

Things to note

Note 1: Get same bounds even if losses in [0;1]

rather than just f0;1g. (Just replace F

t

with

~

P �

~

L

t

)

Note 2: RWM is in a sense more general than WM

because can apply to settings where experts can't

be combined. (e.g., viewing as in analysis # 3).

Here is an example....

A fun application

� n buckets. (Think of as startup companies.)

� You are standing in one of them.

� At each time step, a ball falls into one of the

buckets. If it's your bucket, you get $1.

� Then you can choose to move if you want.

� Game ends when fullest bucket has d balls.

In a sense this is hopeless if an opponent is tossing

the balls based on knowing where you are(n't).

E.g., what if you choose to always stand in bucket

with most money so far?

But, suppose sequence of balls is predetermined

(but unknown). Randomized WM will guarantee

you an expected gain of at least d�

p

2d logn.

[Multiply weight by 1+ " whenever ball falls in.]

..more..

Let's keep milking this for all we can.

Application to adaptive game playing and proof of

min-max theorem. [Freund & Schapire]

2-player zero-sum games

E.g., Rock-Paper-Scissors.

Payo� to row player:

R P S

R 0 �1 1

P 1 0 �1

S �1 1 0

� Minimax optimal strategy: (randomized) strat-

egy with best worst-case guarantee.

What is minimax optimal for RPS?

� What about the game below:

Payo� to row player:

N D

N �5 5

D 10 �10

Optimal strategy for row player?

Column player?

The min-max theorem

N D

N �5 5

D 10 �10

� Suppose that for any (randomized) strategy

of your opponent, there exists a deterministic

counter-strategy for you that guarantees you

an expected gain � V .

Then, there exists a randomized strategy for

you such that for any counter-strategy of the

opponent, you get an expected gain � V .

� Equivalently:

max

S

row

min

S

col

E[payo�] = min

S

col

max

S

row

E[payo�]

I.e., suppose that for all S

col

there exists S

row

such that expected gain is � V . Then there

exists a �xed S

row

such that for all S

col

the

expected gain is � V too.

(strategy � randomized strategy)

Using RWM for online play

� rows are \experts". Pick row j with probabil-

ity w

j

=W . (This time we will pick independent

from the past.)

� Penalize rows/experts based on outcome.

(Technically, let's scale matrix entries to be in

the range [0;1])

R P S

R 1=2 0 1

P 1 1=2 0

S 0 1 1=2

� For any sequence of games,

Our expected gain � d

�

1�

�

2

�

�

lnn

�

;

where d is gain of best �xed strategy in hind-

sight (which may or may not be the minimax

optimal).

We've actually just proven the Min-max theorem.

Why?

What would it mean for min-max to be false?

! If we know opponents randomized strategy,

we can get expected gain � V , but if we have

to choose our randomized strategy �rst, then

opponent can force us to get � V � �.

This contradicts our bound if we use � = �. Our

gain per game is approaching OPT(1� �=2).

In other words: If there was a gap (V versus V �

�), then for any randomized strategy we choose,

opponent who knows our strategy should be able

to force us to get no more than V � � on average

per play.

But, we are doing better.

Shifting bounds

This is nice but not fully satisfying. If opponent

plays R 100 times, alg will win a lot but...

� Ends up with w

P

= 1; w

R

= 2

�50

; w

S

= 2

�100

.

� So, if opponent switches to S, alg will lose 50

times in a row.

How to �x?

� Lower-bound weights (need to be a careful)

� Weight-sharing: if remove X from total weight,

give back �X, distributed evenly.

For all t, our expected gain is at least (approx):

d

t

(1� ")� (t+ 1)

lnn

�

where d

t

is the gain of optimal strategy in hindsight

that switches between experts t times.

