Hidden Markov Models

Process for generating string of characters.

- Set S of states, one marked as initial. (Sometimes also one marked as final)
- Transition probabilities: $a_{i j}=$ prob go to state j given that in state i.
(For each $i, \sum_{j} a_{i j}=1$.)
- Output probabilities: $b_{i j}(X)=$ prob of outputting X given that on arc from i to j.

Typical uses:

- model the result of taking an action in an environment.
- model a phoneme, word, or sentence.

Examples

HMM for 'did'

Typical HMM questions

- "Evaluation Problem": Find P(string | model).
E.g., say you have HMMs for each of 50 words. You hear some sounds and want the most likely word.
$P($ word \mid sounds $) \propto P($ sounds \mid word $) \times P($ word $)$.
- "Decoding problem": Find most likely path given string, model.
- "Learning Problem": Given a model without the probabilities and an observation, what is the best setting of the probabilities to maximize the likelinood of the observation: P(observation | model).

Evaluation problem: how to calculate $\mathbf{P}($ observation | model)?

One way: for a given model,
$P(o b s)=\sum_{\text {paths } S \text { of length }|o b s|} P(S) \cdot P(o b s \mid S)$
E.g., "BBA" for model:

One path is $S=$ stay, stay, stay.

$$
P(S)=(0.5)^{3}, P(o b s \mid S)=(1 / 3)(1 / 3)(2 / 3)
$$

Another?

Problem: Could be exponentially many paths.

Evaluation problem: how to calculate \mathbf{P} (observation | model)?

Idea: Use dynamic programming approach.

- Calculate P (at time t we're in state i and have produced first t characters of observation | model).
- called $\alpha_{i}(t)$.
- $\alpha_{i}(0)$ is initial distribution.
- $\alpha_{j}(t)=\sum_{i}[\mathrm{P}($ in state i at time $t-1$ and have produced first $t-1$ chars $) \times \mathrm{P}$ (then go from i to j and output t th char)]

$$
=\sum_{i} \alpha_{i}(t-1) a_{i j} b_{i j}\left(o b s_{t}\right)
$$

- Example: "BBA" for

- Final prob $=\sum_{i} \alpha_{i}(|o b s|)$.

Learning problem (parameter estimation)

Goal: Try to find probabilities that maximize likelihood of observation.
(Could be lots of independent runs, or one big run, or combination)

Method 1: Gradient descent. (Not used much for HMMs)

- Start with some guess and compute P (obs | model).
- Try tweaking values to see if increases or decreases, and hill-climb.
- Problem: slow convergence. Hard to get exact derivatives.

Learning problem contd.

Goal: Try to find probabilities that maximize likelihood of observation.

Method 2: Baum-Welsh/Forward-backward/EM

- Start with some guess of model.

E: Use model \& observation to calculate expected number of traversals across each arc.
(and expected \# traversals across each arc while producing a given character)

M: Use calculation to update model to model most likely to produce these ratios.

Baum-Welsh, more detail

E: Want to calculate for given model:

* $E_{i j}=\mathrm{E}[\#$ times cross $i \rightarrow j \mid \mathrm{obs}]$.
* $E_{i j}(X)=\mathrm{E}[\#$ times cross $i \rightarrow j$ while producing letter $X \mid$ obs].

Idea: calculate P [cross $i \rightarrow j$ at time $t \mid$ obs] and add.
(Add over all t for $E_{i j}$. Add over t such that $o b s_{t}=X$ to get $E_{i j}(X)$.)

Details on next slide...

M: Find what $a_{i j}, b_{i j}(X)$ are most likely to produce these expectations.

$$
\begin{aligned}
& * \bar{a}_{i j}=E_{i j} / \sum_{k} E_{i k} . \\
& * \bar{b}_{i j}(X)=E_{i j}(X) / E_{i j} .
\end{aligned}
$$

Details of E step: (high level idea more important than details)

To calculate P [cross $i \rightarrow j$ at time $t \mid$ obs],

- Rewrite as: $\frac{P \text { [cross } i \rightarrow j \text { at time } t \& \text { produce obs] }}{P \text { [produce obs] }}$
- Numerator $=\mathrm{P}$ [at state i at time t and output first t chars] $\times a_{i j} \times b_{i j}\left(o b s_{t}\right) \times \mathrm{P}$ [output remaining chars \mid at state j at time $t+1$.

Theorem: This algorithm will converge to local optimum.

