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ABSTRACT
We demonstrate that, ignoring computational constraints, it is pos-
sible to release privacy-preserving databases that are useful for all
queries over a discretized domain from any given concept class
with polynomial VC-dimension. We show a new lower bound for
releasing databases that are useful for halfspace queries over a con-
tinuous domain. Despite this, we give a privacy-preserving poly-
nomial time algorithm that releases information useful for all half-
space queries, for a slightly relaxed definition of usefulness. In-
spired by learning theory, we introduce a new notion of data pri-
vacy, which we calldistributional privacy, and show that it is strictly
stronger than the prevailing privacy notion, differential privacy.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Algorithms, Security, Theory

Keywords
non-interactive database privacy, learning theory

1. INTRODUCTION
As large-scale collection of personal information becomes eas-

ier, the problem of database privacy is increasingly important. In
many cases, we might hope to learn useful information from sensi-
tive data (for example, we might learn a correlation between smok-
ing and lung cancer from a collection of medical records). How-
ever, for legal, financial, or moral reasons, administrators of sensi-
tive datasets might not want to release their data. If those with the
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expertise to learn from large datasets are not the same as those who
administer the datasets, what is to be done? In order to study this
problem theoretically, it is important to quantify what exactly we
mean by “privacy.”

A series of recent papers [11, 9, 16] formalizes the notion of
differential privacy. A database privatization mechanism (which
may be either interactive or non-interactive) satisfies differential
privacy if the addition or removal of a single database element
does not change the probability of any outcome of the privatiza-
tion mechanism by more than some small amount. The definition
is intended to capture the notion that “distributional information is
not private”—we may reveal that smoking correlates to lung cancer,
but not that any individual has lung cancer. Individuals may submit
their personal information to the database secure in the knowledge
that (almost) nothing can be discovered from the database with their
information that could not have been discovered without their in-
formation.

There has been a series of lower bound results [6, 9, 10] that sug-
gests that non-interactive databases (or interactive databases that
can be queried a linear number of times) cannot accurately answer
all queries, or an adversary will be able to reconstruct all but a
1− o(1) fraction of the original database exactly (obviously a very
strong violation of privacy). As a result, most recent work has fo-
cused on the design of interactive mechanisms that answer only
a sublinear number of queries. However, since these mechanisms
may only answer a sublinear number of queriesin total (not per
user), after which point they must be destroyed, this limits their
practicality in situations where the number of queries that might be
asked is comparable to or larger than the number of entries in the
database.

In this paper, motivated by learning theory, we propose the study
of privacy-preserving mechanisms that are useful for all queries
in a particular class (such as all conjunctive queries or all halfs-
pace queries). In particular, we focus on predicate queries of the
form, “what fraction of the database entries satisfy predicateϕ?”
and say that a sanitized output is useful for a classC if the an-
swers to all queries inC have changed by at most some±ε. In
doing so, we circumvent existing lower bounds for non-interactive
databases that only hold for particular types of queries, such as
subset sum queries [6, 9, 10]. Building on the techniques of Ka-
siviswanathan et al. [14], we show that for discretized domains, for
any concept class with polynomial VC-dimension, it is possible to
release differential-privacy-preserving databases that are simulta-
neously useful for all queries in the concept class. The algorithm
may not be computationally efficient in general, though we do have
a computationally efficient method for range queries over a finite
interval with bounded precision.



Unfortunately, we show that for non-discretized domains, under
the above definition of usefulness, it is impossible to publish a dif-
ferentially private non-interactive database that is useful for even
quite simple classes such as interval queries. We next show how,
under a natural relaxation of the usefulness criterion, one can re-
lease information that can be used to usefully answer (arbitrarily
many) halfspace queries while satisfying privacy. In particular, in-
stead of requiring that useful mechanisms answer each query ap-
proximately correctly, we allow our algorithm to produce an an-
swer that is approximately correctfor some nearby query. This
relaxation is motivated by the notion of large-margin separators
in learning theory [1, 19, 18]; in particular, queries with no data
points close to the separating hyperplane must be answered accu-
rately, and the allowable error more generally is a function of the
fraction of points close to the hyperplane.

We also introduce a new concept,distributional privacy, which
makes explicit the notion that when run on a database drawn from
a distribution, privacy-preserving mechanisms should reveal only
information about the underlying distribution, and nothing else.
Given a distributionD over database points, a database privatiza-
tion mechanism satisfies distributional privacy if with high proba-
bility, drawing an entirely new database fromD does not change
the probability of any outcome of the privatization mechanism by
more than some small amount. We show that distributional privacy
is a strictly stronger guarantee than differential privacy by showing
that any mechanism that satisfies distributional privacy also satis-
fies differential privacy, but that there are some functions that can
be answered accurately while satisfying differential privacy, and
yet reveal information about the particular database (although not
about any particular database element) that is not “distributional.”

We also show, in Appendix A, a small separation between inter-
active and non-interactive privacy-preserving mechanisms for pred-
icate queries.

1.1 Related Work
Recent work on theoretical guarantees for data privacy was initi-

ated by [6]. The notion of differential privacy, developed in a series
of papers [4, 7, 8, 9, 10, 11, 12, 16, 15, 3, 17], separates issues
of privacy from issues of outside information by defining privacy
as indistinguishability of neighboring databases. This captures the
notion that (nearly) anything that can be learned if your data is in-
cluded in the database can also be learned without your data. This
notion of privacy ensures that users have very little incentive to
withhold their information from the database. The connection be-
tween data privacy and incentive-compatibility was recently for-
malized by McSherry and Talwar [15].

Prior work on interactive mechanisms has implied a number of
impossibility results for non-interactive mechanisms. Dinur and
Nissim [6] show that if a database answers all subset sum with less
thano(

√
n) noise, this would allow an adversary to reconstruct a

1− o(1) fraction of the database. Dwork et al. [10] show that even
if the privacy-preserving mechanism is allowed to answer a small
constant fraction of queries arbitrarily, if the remaining queries still
are perturbed witho(

√
n) noise, an adversary can still reconstruct

the database.
Dwork et al. [9] define a notion calledglobal sensitivityand show

that releasing a database perturbed with noise proportional to the
global sensitivity of the query functions can preserve privacy, with
the caveat that such mechanisms can only answer a sublinear num-
ber of queries in total, and then no further information about the
database can ever be released. Blum et al. [4] consider a model of
learning and show that concept classes that are learnable in the sta-
tistical query (SQ) model are also learnable from a polynomially

sized dataset accessed through an interactive differential-privacy-
preserving mechanism. We note that such mechanisms still may
only answer a fixed number of queries in total.

Most similar to this paper is the recent work of Kasiviswanathan
et al. [14]. Kasiviswanathan et al. study what can be learned pri-
vately when what is desired is that the hypothesis output by the
learning algorithm satisfies differential privacy. They show that in
a PAC learning model in which the learner has access to the pri-
vate database, ignoring computational constraints, anything that is
PAC learnable is also privately PAC learnable. We build upon the
technique in their paper to show that in fact, it is possible to pri-
vately release a dataset that is simultaneously useful for any func-
tion in a concept class of polynomial VC-dimension. This resolves
an open question posed by [14] about whether a VC-dimension
analogue of Occam’s razor holds in their private learning model.
Kasiviswanathan et al. also study several restrictions on learning
algorithms, show separation between these learning models, and
give efficient algorithms for learning particular concept classes.

In this work, we study non-interactive database release mech-
anisms, which may be used to answer an unlimited number of
queries. We circumvent the existing lower bounds by only guar-
anteeing usefulness for queries in restricted classes. Blum et al. [4]
consider running machine learning algorithms on datasets that are
accessed through interactive privacy-preserving mechanisms. In
contrast, we show how to release data sets from which one can use-
fully learn the values of all functions in restricted concept classes.

1.2 Motivation from Learning Theory
From a machine learning perspective, one of the mainreasons

one would want to perform statistical analysis of a database in the
first place is to gain information about the population from which
that database was drawn. In particular, a fundamental result in
learning theory is that if one views a database as a collection of ran-
dom draws from some distributionD, and one is interested in a par-
ticular classC of boolean predicates over examples, then a database
D of sizeÕ(VCDIM(C)/ε2) is sufficient so that with high proba-
bility, for everyqueryq ∈ C, the proportion of examples inD sat-
isfying q is within±ε of the true probability mass underD [1, 19].1

Our main result can be viewed as asking how much larger does a
databaseD have to be in order to do this in a privacy-preserving
manner: that is, to allow one to (probabilistically) construct an out-
put D̂ that accurately approximatesD with respect to all queries
in C, and yet that reveals no extra information about databaseD.2

In fact, our notion of distributional privacy (Section 7) is motivated
by this view. Note that sinceinteractiveprivacy mechanisms can
handle arbitrary queries of this form so long as onlyo(n) are re-
quested, our objective is interesting only for classesC that contain
Ω(n), or even exponentially inn many queries. We will indeed
achieve this (Theorem 3.1), since|C| ≥ 2VCDIM(C) .

1Usually, this kind of uniform convergence is stated as empirical
error approximating true error. In our setting, we have no notion of
an “intrinsic label” of database elements. Rather, we imagine that
different users may be interested in learning different things. For
example, one user might want to learn a rule to predict featurexd

from featuresx1, . . . , xd−1; another might want to use the first half
of the features to predict a certain boolean function over the second
half.
2Formally, we only care about̂D approximatingD with respect
to C, and want this to be true no matter howD was constructed.
However, ifD wasa random sample from a distributionD, thenD

will approximateD and thereforêD will as well.



1.3 Organization
We present essential definitions in Section 2. In Section 3, we

show that, ignoring computational constraints, one can release san-
itized databases over discretized domains that are useful forany
concept class with polynomial VC-dimension. We then, in Sec-
tion 4, give an efficient algorithm for privately releasing a database
useful for the class of interval queries. We next turn to the study of
halfspace queries overR

d and show in Section 5 that, without relax-
ing the definition of usefulness, one cannot release a database that
is privacy-preserving and useful for halfspace queries over a con-
tinuous domain. Relaxing our definition of usefulness, in Section
6, we give an algorithm that in polynomial time, creates a sanitized
database that usefully and privately answers all halfspace queries.
We present an alternative definition of privacy and discuss its re-
lationship to differential privacy in Section 7. In Appendix A, we
give a separation of interactive and non-interactive databases for
predicate queries.

2. DEFINITIONS
For a databaseD, let A be a database access mechanism. For an

interactive mechanism, we will say thatA(D, Q) induces a distri-
bution over outputs for each queryQ. For a non-interactive mech-
anism, we will say thatA(D) induces a distribution over outputs.

We say that an interactive database access mechanismA satisfies
α-differential privacyif for all neighboring databasesD1 andD2

(differing in only a single element), for all queriesQ, and for all
outputsx,

Pr[A(D1, Q) = x] ≤ eα Pr[A(D2, Q) = x].

We say that a non-interactive database sanitization mechanismA
satisfiesα-differential privacyif for all neighboring databasesD1

andD2, and for all sanitized outputsbD,

Pr[A(D1) = bD] ≤ eα Pr[A(D2) = bD].

In Section 7, we propose an alternate definition of privacy, dis-
tributional privacy, and show that it is strictly stronger than differ-
ential privacy. For simplicity, however, in the main body of the
paper, we use the standard definition, differential privacy. All of
these proofs can be adapted to the distributional privacy notion.

DEFINITION 2.1. Theglobal sensitivityof a queryf is its max-
imum difference when evaluated on two neighboring databases:

GSf = max
D1,D2:d(D1,D2)=1

|f(D1) − f(D2)|.

In this paper, we consider the private release of information use-
ful for classes ofpredicate queries.

DEFINITION 2.2. A predicate queryQϕ for any predicateϕ is
defined to be

Qϕ(D) =
|{x ∈ D : ϕ(x)}|

|D| .

OBSERVATION 2.3. For any predicateϕ, GSQϕ ≤ 1/n.

Previous work shows how one can construct database access
mechanisms that can answer any low-sensitivity query while pre-
serving differential privacy:

DEFINITION 2.4. Let the interactive mechanism PRIVATEα(D, Q)
respond to queriesQ by returningQ(D)+Z whereZ is a random
variable drawn from the Laplace distribution:Z ∼ Lap(GSQ/α).

THEOREM 2.5 (DWORK ET AL. [9]). PRIVATEα(D, Q) pre-
servesα-differential privacy.

However, lower bounds of Dinur and Nissim [6] and Dwork et
al. [9] imply that such mechanisms can only answer a sublinear
number of queries on any database. Note that these mechanisms
can only answer a sublinear number of queriesin total, not per
user.

We propose to construct database access mechanisms whose re-
sults can be released to the public, and so can necessarily be used
to answer an arbitrarily large number of queries. We seek to do
this while simultaneously preserving privacy. However, in order to
circumvent the lower bounds of Dinur and Nissim [6] and Dwork
et al. [9], we cannot hope to be able to usefully answer arbitrary
queries. We instead seek to answer restricted classes of queries
while preserving “usefulness,” which we define as follows:

DEFINITION 2.6 (USEFULNESS DEFINITION1). A database
mechanismA is (ε, δ)-usefulfor queries in classC if with probabil-
ity 1 − δ, for everyQ ∈ C and every databaseD, for bD = A(D),
|Q( bD) − Q(D)| ≤ ε.

3. GENERAL RELEASE MECHANISM
In this section we show that (ignoring computational considera-

tions) it is possible to release a non-interactive database useful for
any concept class with polynomial VC-dimension, while preserv-
ing α-differential privacy, given an initial database of polynomial
size. Our use of the exponential mechanism is inspired by its use
by Kasiviswanathan et al. [14].

THEOREM 3.1. For any class of functionsC, and any database
D ⊂ {0, 1}d such that

|D| ≥ O

„
dVCDIM(C)log(1/ε)

ε3α
+

log(1/δ)

αε

«

we can output an (ε, δ)-useful databasebD that preservesα-differential
privacy. Note that the algorithm is not necessarily efficient.

We give an (inefficient) algorithm that outputs a sanitized database
bD of size eO(VCDIM(C)/ε2). We note that the size of the output
database is independent of the size of our initial database. This
is sufficient for (ε, δ)-usefulness because the set of all databases of
this size forms anε-cover with respect toC of the set of all possible
databases.

LEMMA 3.2 ([1, 19]). Given any databaseD there exists a
databasebD of sizem = O(VCDIM(C)log(1/ε)/ε2) such that
maxh∈C |h(D) − h( bD)| < ε/2.

PROOF. This follows from standard sample complexity bounds.

McSherry and Talwar [15] define the exponential mechanism as
follows:

DEFINITION 3.3. For any functionq : (({0, 1}d)n×({0, 1}d)m) →
R and input databaseD, the exponential mechanism outputs each

databasebD with probability proportional toeq(D, bD)αn/2.

THEOREM 3.4 ([15]). The exponential mechanism preserves
(αnGSq)-differential privacy.

PROOF OFTHEOREM 3.1. We use the exponential mechanism
and define our quality functionq to be:

q(D, bD) = −max
h∈C

˛̨
˛h(D) − h( bD)

˛̨
˛



Note thatGSq = 1/n. In order to show that this mechanism satis-
fies (ε, δ)-usefulness, we must show that it outputs some database
bD with q(D, bD) ≥ −ε except with probabilityδ.

Any output databasebD with q(D, bD) ≤ −ε will be output with
probability at most proportional toe−αεn/2. There are at most2dm

possible output databases, and so by a union bound, the probability
that we output any databasebD with q(D, bD) ≤ −ε is at most
proportional to2dme−αεn/2.

Conversely, we know by Lemma 3.2 that there exists somebD ∈
({0, 1}d)m) such thatq(D, bD) ≥ −ε/2, and therefore that such a
database is output with probability at least proportional toe−αεn/4.

Let A be the event that the exponential mechanism outputs some
databasebD such thatq(D, bD) ≥ −ε/2. LetB be the event that the
exponential mechanism outputs some databasebD such thatq(D, bD)
≤ −ε. We must show thatPr[A]/ Pr[B] ≥ (1 − δ)/δ.

Pr[A]

Pr[B]
≥ e−αεn/4

2dme−αεn/2

=
eαεn/4

2dm

Setting this quantity to be at least1/δ > (1 − δ)/δ, we see that
it is sufficient to take

n ≥ 4

εα

„
dm + ln

1

δ

«

≥ O

„
dVCDIM(C)log(1/ε)

ε3α
+

log(1/δ)

αε

«
.

This result extends in a straightforward manner to the case of any
discretized database domain, not just a boolean space.

Theorem 3.1 shows that a database of sizeeO( dVCDIM(C)

ε3α
) is suf-

ficient in order to output a set of points that isε-useful for a concept
classC, while simultaneously preservingα-differential privacy. If
we were to view our database as having been drawn from some
distributionD, this is only an extraeO( d

εα
) factor larger than what

would be required to achieveε-usefulness with respect toD, even
without any privacy guarantee! In fact, as we will show in Theorem
A.6, it is impossible to release a database that iso(1/

√
n)-useful

for the class of parity functions while preserving privacy, and so a
dependence onε of at leastΩ(1/ε2) is necessary.

The results in this section only apply for discretized database
domains, and may not be computationally efficient. We explore
these two issues further in the remaining sections of the paper.

4. INTERVAL QUERIES
In this section we give anefficientalgorithm for privately releas-

ing a database useful for the class of interval queries over a dis-
cretized domain, given a database of size only polynomial in our
privacy and usefulness parameters. We note that our algorithm is
easily extended to the class of axis-aligned rectangles ind dimen-
sional space ford a constant; we present the case ofd = 1 for
clarity.

Consider a databaseD of n points in[0, 1] in which the entries
are discretized tob bits of precision; our bounds will be polynomial
in b (in Corollary 5.2 we show some discretization is necessary).
Givena1 ≤ a2, both in [0, 1], let Ia1,a2 be the indicator function
corresponding to the interval[a1, a2]. That is:

Ia1,a2(x) =


1, a1 ≤ x ≤ a2;
0, otherwise.

DEFINITION 4.1. An interval queryQ[a1,a2] is defined to be

Q[a1,a2](D) =
X

x∈D

Ia1,a2(x)

|D| .

Note thatGSQ[a1,a2]
= 1/n, and we may answer interval queries

while preservingα-differential privacy by adding noise propor-
tional to Lap(1/(αn)).

Given a databaseD, we will useα′-differential privacy preserv-
ing interval queries to perform a binary search on the interval[0, 1]
and partition it into sub-intervals containing probability mass in
the range[ε1/2 − ε2, ε1/2 + ε2]. Because of the discretization,
the depth of this search is at mostb. We will then output a dataset
that has(ε1/2) · n points in each of these intervals. Because we
have constructed this dataset using only a small number of privacy
preserving queries, its release will also preserve privacy, and it will
be (ε, δ)-useful for the class of interval queries with an appropri-
ate choice of parameters. Finally, this simple mechanism is clearly
computationally efficient.

THEOREM 4.2. With α′ = (εα)/4b, ε1 = (ε/2) and ε2 =
(ε2/8), the above mechanism preservesα-differential privacy while
being(ε, δ)-useful for the class of interval queries given a database
of size:

|D| ≥ O

„
b(log b + log(1/εδ))

αε3

«

PROOF. We first bound the number of privacy preserving queries
our algorithm makes. It finally produces2/ε1 intervals. SinceD
is defined over a discretized space, we can identify each interval
with the at mostb queries on its path through the binary search pro-
cedure, and so we will make a total of at most2b/ε1 = 4b/(ε)
α′-differential privacy preserving queries. Since the differential-
privacy parameter composes, withα′ = (εα)/4b, our algorithm
indeed preservesα differential privacy.

Suppose that the binary search procedure indeed returns intervals
each containing probability mass in the range[ε1/2−ε2, ε1/2+ε2].
Any query will intersect at most two of these intervals only par-
tially. In the worst case, this introducesε1 = ε/2 error to the
query (ε1/2 error from each interval that partially overlaps with the
query). Since each query can only overlap at most2/ε1 intervals,
and each interval contains a probability mass that deviates from
the true probability mass inD by at mostε2, this introduces an
additional2ε2/ε1 = ε/2 error, for a total error rate≤ ε. There-
fore, to complete the proof, we only need to bound the size ofD
necessary such that the probability that any of the2b/ε1 privacy
preserving queries returns an answer that deviates from the true an-
swer (inD) by more thanε2 is less thanδ. Let us call this event
FAILURE. Since the event that any single query has error rate≥ ε2
is Pr[Lap(1/(α′n)) ≥ ε2] ≤ eα′ε2n, this follows from a simple
union bound:

Pr[FAILURE] ≤ 2b

ε1
e(−εα/4b)ε2n ≤ δ.

Solving, we find

n ≥ 4b(log 2b) + log(1/ε1δ)

αεε2
= O

„
b(log b + log(1/εδ))

αε3

«

is sufficient.

We note that although the class of intervals (and more generally,
low dimensional axis-aligned rectangles) is a simple class of func-
tions, it nevertheless contains exponentially (inb) many queries,



and so it is not feasible to simply ask all possible interval queries
using an interactive mechanism.

While it is true that intervals (and low dimensional axis-aligned
rectangles) have constant VC-dimension and polynomialε-cover
size, we can trivially extend the above results to the class of unions
of t intervals by dividingε by t and answering each interval sepa-
rately. This class has VC-dimensionO(t) and exponentially large
ε-cover size.

5. LOWER BOUNDS
Could we possibly modify the results of Sections 4 and 3 to hold

for non-discretized databases? Suppose we could usefully answer
an arbitrary number of queries in some simple concept classC
representing interval queries on the real line (for example, “How
many points are contained within the following interval?”) while
still preserving privacy. Then, for any database containing single-
dimensional real valued points, we would be able to answer me-
dian queries with values that fall between the1/2 − δ, 1/2 + δ
percentile of database points by performing a binary search onD
using A (whereδ = δ(ε) is some small constant depending on
the usefulness parameterε). However, answering such queries is
impossible while guaranteeing differential privacy. Unfortunately,
this would seem to rule out usefully answering queries in simple
concept classes such as halfspaces and axis-aligned rectangles, that
are generalizations of intervals.

THEOREM 5.1. No mechanismA can answer median queries
M with outputs that fall between the1/2 − k, 1/2 + k percentile
with positive probability on any real valued databaseD, while still
preservingα-differential privacy, fork < 1/2 and anyα.

PROOF. Consider real valued databases containing elements in
the interval[0, 1]. Let D0 = (0, . . . , 0) be the database contain-
ing n points with value 0. Then we must havePr[A(D0, M) =
0] > 0. Since[0, 1] is a continuous interval, there must be some
valuev ∈ [0, 1] such thatPr[A(D0, M) = v] = 0. Let Dn =
(v, . . . , v) be the database containingn points with valuev. We
must havePr[A(Dn, M) = v] > 0. For 1 < i < n, let Di =
(0, . . . , 0| {z }

n−i

, v, . . . , v| {z }
i

). Then we must have for somei, Pr[A(Di, M) =

v] = 0 but Pr[A(Di+1, M) = v] > 0. But sinceDi andDi+1

differ only in a single element, this violates differential privacy.

COROLLARY 5.2. No mechanism can be(ε, δ)-useful for the
class of interval queries, nor for any classC that generalizes in-
terval queries to higher dimensions (for example, halfspaces, axis-
aligned rectangles, or spheres), while preservingα-differential pri-
vacy, for anyε = o(n) and anyα.

PROOF. Consider any real valued database containing elements
in the interval[0, 1]. If A is (ε, δ)-useful for interval queries and
preserves differential privacy, then we can construct a mechanism
A′ that can answer median queries with outputs that fall between
the 1/2 − k, 1/2 + k percentile with positive probability while
preserving differential privacy. By Theorem 5.1, this is impossible.
A′ simply computesbD = A(D), and performs binary search onbD
to find some interval[0, a] that containsn/2 ± ε points. Privacy is
preserved since we only accessD throughA, which by assumption
preserves differential privacy. With positive probability, all interval
queries onbD are correct to within±ε, and so the binary search can
proceed. Sinceε = o(n), the result follows.

We may get around the impossibility result of Corollary 5.2 by
relaxing our definitions. One approach is to discretize the database

domain, as we do in Sections 3 and 4. Another approach, which we
take in Section 6, is to relax our definition of usefulness:

DEFINITION 5.3 (USEFULNESS DEFINITION2). A database
mechanismA is (ε, δ, γ)-usefulfor queries in classC according to
some metricd if with probability1− δ, for everyQ ∈ C and every
databaseD, |Q(A(D)) − Q′(D)| ≤ ε for someQ′ ∈ C such that
d(Q, Q′) ≤ γ.

6. ANSWERING HALFSPACE QUERIES
Here, we consider databases that containn elements inRd. In

this section, we show how to efficiently release information useful
(according to definition 5.3) for the class of halfspace queries for
any constantγ > 0. Throughout this section, we assume with-
out loss of generality that the database points are scaled into the
unit sphere. Additionally, when we project the points into a lower-
dimensional space, we rescale them to the unit sphere. A halfspace
query specifies a hyperplane inRd and asks how many points fall
above it:

DEFINITION 6.1. Given a databaseD ⊂ R
d and unit length

y ∈ R
d, a halfspace queryHy is

Hy(D) =
|{x ∈ D :

Pd
i=1 xi · yi ≥ 0}|
|D| .

The assumption that halfspaces pass through the origin is with-
out loss of generality since we can view translated halfspaces as
passing through the origin in a space of dimensiond + 1.

In this section, we give an algorithm that is(ε, δ, γ)-useful for
the class of halfspace queries. For a pointx we will write x̂ for the
normalizationx/||x||2. We define the distance between a pointx
and a halfspaceHy by d(x, Hy) = |x̂ · y|. For convenience, we
define the distance between two halfspacesHy1 andHy2 to be the
sin of the angle betweeny1 andy2; by a slight abuse of notation,
we will denote this byd(y1, y2). In particular, for a pointx and
two halfpacesHy1 andHy2 , d(x, Hy1) ≤ d(x, Hy2) + d(y1, y2).
If d(y1, y2) ≤ γ we say thatHy1 andHy2 areγ-close. Given
a halfspaceHy1 , our goal is to output a valuev such that|v −
Hy2(D)| < ε for someHy2 that isγ-close toHy1 . Equivalently,
we may arbitrarily count or not count any pointx ∈ D such that
d(x, Hy1) ≤ γ. We note thatγ is similar to the notion of margin
in machine learning, and that even ifHy1 andHy2 areγ-close, this
does not imply thatHy1(D) andHy2(D) are close, unless most of
the data points are outside aγ margin ofHy1 andHy2 .

We circumvent the halfspace-lower bound of Corollary 5.2 by
considering a class ofdiscretizedhalfspaces:

DEFINITION 6.2. A halfspace queryHy is b-discretizedif for
eachi ∈ [d], yi can be specified withb-bits. LetCb be the set of all
b-discretized halfspaces inRd.

We first summarize the algorithm, with the parameters to be
specified later. Our use of random projections is similar to that
in the work of Indyk and Motwani [13] on approximate nearest
neighbor queries.

Our algorithm performsm random projectionsP1, . . . , Pm of
the data ontoRk. A random projection ofn points fromR

d to R
k

is defined as follows:

DEFINITION 6.3. A random projectionPi fromR
d to R

k is de-
fined by ad × k random matrixMi with entries chosen indepen-
dently and uniformly at random from{−1, 1}. We write the projec-
tion of pointx ∈ R

d asPi(x) = (1/
√

k)x · Mi. We write the pro-
jection of a databaseD ∈ (Rd)n asPi(D) = {Pi(x) : x ∈ D}.



For each projected databasePi(D) we askO(1/γk−1) privacy-
preserving canonical halfspace queries. To answer a halfspace query
Hy, for each projectionPi, we considerHPi(y) and associate with
it the answer of the closest canonical halfspace in that projection.
Finally, we return the median value of these queries over allm pro-
jections.

THEOREM 6.4 (JOHNSON-L INDENSTRAUSS[5, 2]). Consider
a random projectionP of a pointx and a halfspaceHy onto a ran-
domk-dimensional subspace. Then

Pr[|d(x, Hy)−d(P (x), HP (y))| ≥ γ/4] ≤ 2e−((γ/16)2−(γ/16)3)k/4.

That is, projectingx andHy significantly changes the distance be-
tween the point and the halfspace with only a small probability.

We choosek such that the probability that projecting a point and a
halfspace changes their distance by more thanγ/4 is at mostε1/4.
Solving, this yields

k ≥ 4 ln(8/ε1)

(γ/16)2 − (γ/16)3
.

Given a halfspaceHy and a pointx, we say that a projection
P makes a mistake relative tox andHy if d(x, Hy) ≥ γ/4, but
sign(x · y) 6= sign(P (x) · P (y)). We have chosenk such that the
expected fraction of mistakes relative to any halfspaceHy in any
projectionP is at mostε1/4. By Markov’s inequality, therefore, the
probability that a projection makes more thanε1n mistakes relative
to a particular halfspace is at most1/4.

The probabilityδ1 that more thanm/2 projections make more
thanε1n mistakes relative toany discretized halfspace is at most
2bde−m/12 by a Chernoff bound and a union bound. Solving for
m, this gives

m ≥ 12

„
ln

„
1

δ1

«
+ ln(2)bd

«
.

For each projectionPi, we select a(3/4)γ-net of halfspacesNi,
such that for every vectory1 ∈ R

k corresponding to halfspaceHy1 ,
there exists a halfspaceHy2 ∈ Ni such thatd(y1, y2) ≤ (3/4)γ.
We note that|Ni| = O(1/γk−1). For each projectionPi and for
eachHy ∈ Ni, we record the value of

vi
y = PRIVATEα/(m|Ni|)(Pi(D), Hy).

We note that since we makem|Ni| queries in total, these queries
preserveα-differential privacy.

Taking a union bound over the halfspaces in eachNi, we find
that the probabilityδ2 that any of thevi

y differ from Hy(Pi(D))

by more thanε2 is at mostm ·O(1/γ)k−1e−(ε2nα)/(mO(1/γk−1)).
Solving forn, we find that

n ≥ log(1/δ2) + log m + (k − 1) log(1/γ) + mO(1/γ)k−1

ε2α

= O

 
1

ε2α

„
log(1/δ2) + log log 1/δ1 + log bd + log(1/ε1)

+ (log 1/δ1 + bd)(1/ε1)
(4 log(1/γ))/((γ/16)2−(γ/16)3)

«!
.

To respond to a queryHy, for each projectionPi we first com-
pute

Hy′

i
= argmin

Hy′

i
∈Ni

d(P (y), y′
i).

We recall that by construction,d(P (y), y′
i) ≤ (3/4)γ. We then

return the median value from the set{vi
y′

i
: i ∈ [m]}.

THEOREM 6.5. The above algorithm is(ε, γ, δ)-useful while
maintaining α-differential privacy for a database of size
poly(log(1/δ), 1/ε, 1/α, b, d) and running in time poly(log(1/δ),
1/ε, 1/α, b, d), for constantγ.

PROOF. Above, we set the value ofm such that for any half-
space queryHy, with probability at mostδ1, no more than anε1
fraction of the points have the property that they are outside of aγ
margin ofHy but yet their projections are within a(3/4)γ margin
of HPi(y), wherei is the index of the median projection. There-
fore, answering a queryHy′ , wherey′ is (3/4)γ-close toPi(y),
only introducesε1 error. Moreover, we have chosenn such that ex-
cept with probabilityδ2, the privacy-preserving queries introduce
no more than an additionalε2 error. The theorem follows by setting
ε1 = ε2 = ε/2 andδ1 = δ2 = δ/2, and settingn, m, andk as
above.

7. DISTRIBUTIONAL PRIVACY
We say that an interactive database mechanismA satisfies(α, β)-

distributional privacyif for any distribution over database elements
D, with probability1 − β, two databasesD1 andD2 consisting of
n elements drawnwithout replacementfrom D, for any queryQ
and outputx satisfies

Pr[A(D1, Q) = x] ≤ eα Pr[A(D2, Q) = x].

Similarly, for non-interactive mechanisms, a mechanismA satisfies
(α, β)-distributional privacyif for any distribution over database
elementsD, with probability 1 − β, two databasesD1 and D2

consisting ofn elements drawnwithout replacementfrom D, and
for all sanitized outputsbD,

Pr[A(D1) = bD] ≤ eα Pr[A(D2) = bD].

For example, suppose that a collection of hospitals in a region each
treats a random sample of patients with diseaseX. Distributional
privacy means that a hospital can release its data anonymously,
without necessarily revealing which hospital the data came from.
Actually, our main motivation is that this definition is particularly
natural from the perspective of learning theory: given a sample of
points drawn from some distributionD, one would like to reveal no
more information about the sample than is inherent inD itself.

We will typically think ofβ as being exponentially small, whereas
α must beΩ(1/n) for A to be useful.

7.1 Relationship Between Definitions
It is not a priori clear whether either differential privacy or dis-

tributional privacy is a stronger notion than the other, or if the two
are equivalent, or distinct. On the one hand, differential privacy
only provides a guarantee whenD1 andD2 differ in a single ele-
ment,3 whereas distributional privacy can provide a guarantee for
two databasesD1 andD2 that differ in all of their elements. On
the other hand, distributional privacy makes the strong assumption
that the elements inD1 and D2 are drawn from some distribu-
tion D, and allows for privacy violations with some exponentially
small probabilityβ (necessarily: with some small probability, two
databases drawn from the same distribution might nevertheless be
completely different). However, as we show, distributional privacy
is a strictly stronger guarantee than differential privacy. For clarity,
we prove this for interactive mechanisms only, but the results hold
for non-interactive mechanisms as well, and the proofs require little
modification.

3We gettα-differential privacy forD1 andD2 that differ int ele-
ments.



THEOREM 7.1. If A satisfies(α, β)-distributional privacy for
anyβ = o(1/n2), thenA satisfiesα-differential privacy.

PROOF. Consider any databaseD1 drawn from domainR, and
any neighboring databaseD2 that differs fromD1 in only a single
elementx ∈ R. Let D be the uniform distribution over the set of
n + 1 elementsD1 ∪ {x}. If we draw two databasesD′

1, D
′
2 from

D, then with probability2/n2 we have{D′
1, D

′
2} = {D1, D2},

and so ifβ = o(1/n2), we have with certainty that for all outputs
bD and for all queriesQ,

Pr[A(D1, Q) = bD] ≤ eα Pr[A(D2, Q) = bD].

Therefore,A satisfiesα-differential privacy.

DEFINITION 7.2. Define themirrored modm function as fol-
lows:

Fm(x) =


x mod m, if x mod 2m < m;
−x − 1 mod m, otherwise.

For a databaseD ⊂ {0, 1}n, define the query

Qm(D) =
Fm(

Pn−1
i=0 D[i])

|D| .

Note that the global sensitivity of any queryQm satisfiesGSQm ≤
1/n. Therefore, the mechanismA that answers queriesQn by
A(D, Qm) = Qm(D)+Z whereZ is drawn from Lap(1/(αn)) =
Lap(GSQm/α) satisfiesα-differential privacy, which follows from
the results of Dwork et al. [9].

THEOREM 7.3. There exist mechanismsA with α-differential
privacy, but without(α, β)-distributional privacy for anyα < 1,
β = o(1) (that is, for any meaningful values ofα, β).

PROOF. Consider databases with elements drawn fromD =
{0, 1}n and the queryQ2/α. As observed above, a mechanismA
such thatA(D, Qi) = Qi(D) + Z for Z ∼ Lap(1/(αn)) hasα-
differential privacy for anyi. Note however that with constant prob-
ability, two databasesD1, D2 drawn fromD have|Q2/α(D1) −
Q2/α(D2)| ≥ 1/(αn). Therefore, for any outputx, we have that
with constant probability,

Pr[A(D1, Q2/α) = x]

Pr[A(D2, Q2/α) = x]
= e−α|Q2/α(D1)−Q2/α(D2)|

= e−αn( 1
αn

)

=
1

e
.

Although there are simpler functions for which preserving dis-
tributional privacy requires more added noise than preserving dif-
ferential privacy, the mirrored-mod function above is an example
of a function for which it is possible to preserve differential privacy
usefully, but yet impossible to reveal any useful information while
preserving distributional privacy.

We note that in order for distributional privacy to imply differen-
tial privacy, it is important that in the definition of distributional pri-
vacy, database elements are drawn from some distributionD with-
out replacement. Otherwise, for any non-trivial distribution, there
is some databaseD∗ that is drawn with probability at most1/2n,
and we may modify any distributional-privacy preserving mecha-
nismA such that for every queryQ, A(D∗, Q) = D∗, and for any
Di 6= D∗, A(Di, Q) behaves as before. Since this new behavior
occurs with probability≤ β over draws fromD for β = O(1/2n),
A still preserves distributional privacy, but no longer preserves dif-
ferential privacy (which requires that the privacy guarantee hold for
everypair of neighboring databases).

8. CONCLUSIONS AND OPEN PROBLEMS
In this work, we view the problem of database privacy through

the lens of learning theory. This suggests both a new definition of
privacy, distributional privacy (which we show is strictly stronger
than differential privacy), and the idea that we can study usefulness
relative to particular classes of functions. Restricting our notion of
usefulness to particular classes of functions allows us to circum-
vent the lower bounds of [6, 9, 10] which show that non-interactive
privacy preserving database access mechanisms can not in general
be as useful as interactive mechanisms. In fact, we are able to show
that it is possible to release privacy-preserving databases that are
useful for all queries over a discretized domain in a concept class
with polynomial VC-dimension. We show that this discretization
is necessary by proving that it is impossible to privately release a
database that is useful for halfspace queries without relaxing our
definition of usefulness, but we demonstrate an algorithm that does
so efficiently under a small relaxation of this definition.

This work demonstrates that the existing very strong lower bounds
for useful, privacy-preserving, non-interactive mechanisms arenot
insurmountable, but can be circumvented by a number of reason-
able relaxations to the standard definitions. However, our paper
leaves a number of important questions open. Prime among them
is the question ofefficientprivate data release—we have shown that
information theoretically it is possible to release a database that is
useful for any concept class with polynomial VC-dimension (under
our original, strong definition of usefulness) while preserving dif-
ferential privacy, but we know how to do thisefficientlyonly for the
simplest classes of functions. Is it possible toefficientlyprivately
and usefully release a database for every concept class with poly-
nomial VC-Dimension? Is it possible for the class of conjunctions?
For the class of parity functions?

One approach to efficient database release is to efficiently sample
from the distribution defined by the exponential mechanism in The-
orem 3.1. In order to do so, it might be necessary to relax our qual-
ity function, since even computing the quality function on a partic-
ular input/output database pair is as hard as agnostically learning,
over arbitrary distributions, the concept class for which we want
to guarantee usefulness. (To see this, consider labeling the points
in the input database as positive examples and those in the output
database as negative.) Additionally, we note that the ability to ag-
nostically learn a concept class is not by itself enough to efficiently
samplefrom the desired distribution; one approach to sampling is
to design a random Markov process that converges quickly to the
desired stationary distribution.
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APPENDIX

A. PARITY: A SMALL SEPARATION
Dwork et al. [9] provide a separation between interactive and

non-interactive differential-privacy preserving mechanisms for a

class of queries that are not predicate queries. They also provide
a separation between interactive and non-interactive “randomized-
response” mechanisms for parity queries (defined below), which
are predicate queries. “Randomized-response” mechanisms are a
class of non-interactive mechanisms that independently perturb each
point in D and release the independently perturbed points. Here,
we provide a small separation between interactive mechanisms and
arbitrary non-interactive mechanisms that output datasets useful for
parity queries. We prove this separation for mechanisms that pre-
serve differential privacy—our separation therefore also holds for
distributional-privacy preserving mechanisms.

DEFINITION A.1. Given a databaseD containingn points in
{−1, 1}d, and forS ⊆ {1, . . . , d}, a parity queryis given by

PQS =

˛̨
{x ∈ D :

Q
i∈S xi = 1}

˛̨

|D| .

We show that for any non-interactive mechanismA that pre-
servesα-differential privacy forα = Ω(1/poly(n)) and outputs
a databasebD = A(D), there exists someS ⊆ {1, . . . , d} such
that |PQS( bD) − PQS(D)| = Ω(1/

√
n). This provides a sep-

aration, since for anyS, GSPQS = 1/n, and so for for anyS,
with high probability, the interactive mechanismA(D, Q) of [9]
satisfies|A(D, PQS) − PQS(D)| = o(1/

√
n) while satisfying

α-differential privacy. This also shows that our bound from Theo-
rem 3.1 cannot be improved to have ao(1/ε2) dependence onε.

We begin with the claim that given some databaseD consisting
of n distinct points in{−1, 1}d, any non-interactiveα-differential
privacy preserving mechanism that outputs a sanitized database
must with high probability output a databasebD that differs from
D on at least half of its points.

CLAIM A.2. If the non-interactive mechanismA preservesα-
differential privacy forα = Ω(1/poly(n)), Pr[| bD ∩D| ≥ n/2] <
1/2.

We next present a few facts from discrete Fourier analysis.

PROPERTY A.3. For any functionh : {−1, 1} → R, we may
expressh as a linear combination of parity functions:h(x) =P

S⊆{1,...,d} ĥ(S)χS(x), whereχS(x) =
Q

i∈S xi. Moreover,

the coefficientŝh(S) take values

ĥ(S) =
1

2d

X

x∈{−1,1}d

g(x)χS(x).

PROPERTYA.4 (PARSEVAL’ S IDENTITY). For any function
h : {−1, 1} → R,

1

2d

X

x∈{−1,1}d

h(x)2 =
X

S⊆{1,...,d}

ĥ(S)2.

LEMMA A.5. For D1, D2 ∈ ({−1, 1}d)n, if |D1 ∩ D2| ≤
n/2, then there existsS ∈ {1, . . . , d} such that|PQS(D1) −
PQS(D2)| = Ω(1/

√
n)4.

PROOF. Let f(x) : {−1, 1}d → {0, 1} be the indicator func-
tion ofD1: f(x) = 1 ⇔ x ∈ D1. Similarly, letg(x) : {−1, 1}d →
{0, 1} be the indicator function ofD2. By our hypothesis,

X

x∈{−1,1}n

|f(x) − g(x)| ≥ n/2.

4Note that we are implicitly assuming thatd = Ω(log n)



Therefore,

n/2 ≤
X

x∈{−1,1}d

|f(x) − g(x)|

=
X

x∈{−1,1}d

(f(x) − g(x))2

= 2d
X

S⊆{1,...,d}

(f̂(S) − ĝ(S))2,

where the first equality follows from the fact thatf and g have
range{0, 1}, and the second follows from Parseval’s identity and
the linearity of Fourier coefficients. Therefore, there exists some
S ⊆ {1, . . . , d} such that(f̂(S) − ĝ(S))2 ≥ n/22d+1, and so
|f̂(S) − ĝ(S)| ≥ √

n/(2d
√

2)). We also have

f̂(S) − ĝ(S)

=
1

2d

X

x∈{−1,1}d

f(x)χS(x) − 1

2d

X

x∈{−1,1}d

g(x)χS(x)

=
1

2d

X

x∈D1

χS(x) − 1

2d

X

x∈D2

χS(x)

=
n

2d−1
(PQS(D1) − PQS(D2)).

Therefore,|(PQS(D1) − PQS(D2)| ≥ Ω(1/
√

n), which com-
pletes the proof.

Combining the Claim A.2 and Lemma A.5, we get our result:

THEOREM A.6. For any non-interactive mechanismA that out-
puts a databasêD1 = A(D1) and preservesα-differential privacy
for α = Ω(1/poly(n)), with probability> 1/2 there exists some
S ⊆ {1, . . . , d} such that|PQS(D1) − PQS(D̂1)| = Ω(1/

√
n).


