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ABSTRACT expertise to learn from large datasets are not the same as those who
administer the datasets, what is to be done? In order to study this

We demonstrate that, ignoring computational constraints, it is pos- = T .
it is important to quantify what exactly we

sible to release privacy-preserving databases that are usefll for a problem Eheprethglly,
queries over a discretized domain from any given concept class mean bY privacy. . .
with polynomial VC-dimension. We show a new lower bound for A series Of. recent papers [11, 2 1.6] f_ormallzes the notion of
releasing databases that are useful for halfspace queries ower a co dlfferentla! privacy A Qatabase pr_lvatlzat!on me(_:h"?m'sm (Wh'c.h

tinuous domain. Despite this, we give a privacy-preserving poly- M&Y be.elther interactive or non-lnteract!ve) satisfies differential
nomial time algorithm that releases information useful for all half- privacy if the addition or rem_o"a' of a single database e_Iem_ent
space queries, for a slightly relaxed definition of usefulness. In- d.oes not chgnge the probability of any outcome of the prlv.atllz_a-
spired by learning theory, we introduce a new notion of data pri- tion mechanism by more tha'? some fmall_am_ount._The def_lnltl_on
vacy, which we caltiistributional privacy and show that itis strictly 'S intended to capture the notion that “distributional information is

stronger than the prevailing privacy notion, differential privacy. ESE ﬁg\t/?kt]:t‘;r\:;eir?&?%drﬁ\éleﬁggiﬁns;coakrzggf?gdeiﬁisatlg l.;g?, Z‘Zgiﬂ

their personal information to the database secure in the knowledge

Categones and SUbJeCt Descriptors that (almost) nothing can be discovered from the database with their

F.2 [Theory of Computation]: Analysis of Algorithms and Prob- information that could not have been discovered without their in-
lem Complexity formation.

There has been a series of lower bound results [6, 9, 10] that sug-
General Terms gests that non-interactive databases (or interactive databases that

can be queried a linear number of times) cannot accurately answer
all queries, or an adversary will be able to reconstruct all but a
1 —o(1) fraction of the original database exactly (obviously a very

Algorithms, Security, Theory

Keywords strong violation of privacy). As a result, most recent work has fo-
non-interactive database privacy, learning theory cused on the design of interactive mechanisms that answer only

a sublinear number of queries. However, since these mechanisms
1. INTRODUCTION may only answer a sublinear number of queiiesotal (not per

] ] ) user), after which point they must be destroyed, this limits their
_ As large-scale collection of personal information becomes eas- practicality in situations where the number of queries that might be
ier, the problem of database privacy is increasingly important. In 5sked is comparable to or larger than the number of entries in the
many cases, we might hope to learn useful information from sensi- yatabase.
tive data (for example, we might learn a correlation between smok- |y this paper, motivated by learning theory, we propose the study

ing and lung cancer from a collection of medical records). How- of privacy-preserving mechanisms that are useful for all queries
ever, for legal, f_lnanC|aI, or moral reasons, _admlnlstrators of Sensi- jn a particular class (such as all conjunctive queries or all halfs-
tive datasets might not want to release their data. If those with the pace queries). In particular, we focus on predicate queries of the

* : : : . form, “what fraction of the database entries satisfy prediggte
CS(:ulg%%rltigzlgpart by the National Science Foundation under grant and say that a sanitized output is useful for a cl@s# the an-

TSupported in part by an AT&T Labs Graduate Research Fellow- SWers to all queries I ha\{e _changed by at most sorﬁ_ﬁ. In .

ship and an NSF Graduate Research Fellowship. doing so, we circumvent existing lower bounds for non-interactive
databases that only hold for particular types of queries, such as
subset sum queries [6, 9, 10]. Building on the techniques of Ka-
siviswanathan et al. [14], we show that for discretized domains, for
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Unfortunately, we show that for non-discretized domains, under sized dataset accessed through an interactive differential-privacy-
the above definition of usefulness, it is impossible to publish a dif- preserving mechanism. We note that such mechanisms still may
ferentially private non-interactive database that is useful for even only answer a fixed number of queries in total.
quite simple classes such as interval queries. We next show how, Most similar to this paper is the recent work of Kasiviswanathan
under a natural relaxation of the usefulness criterion, one can re-et al. [14]. Kasiviswanathan et al. study what can be learned pri-
lease information that can be used to usefully answer (arbitrarily vately when what is desired is that the hypothesis output by the
many) halfspace queries while satisfying privacy. In particular, in- learning algorithm satisfies differential privacy. They show that in
stead of requiring that useful mechanisms answer each query ap-a PAC learning model in which the learner has access to the pri-
proximately correctly, we allow our algorithm to produce an an- vate database, ignoring computational constraints, anything that is
swer that is approximately correfiir some nearby query This PAC learnable is also privately PAC learnable. We build upon the
relaxation is motivated by the notion of large-margin separators technique in their paper to show that in fact, it is possible to pri-
in learning theory [1, 19, 18]; in particular, queries with no data vately release a dataset that is simultaneously useful for any func-
points close to the separating hyperplane must be answered accution in a concept class of polynomial VC-dimension. This resolves
rately, and the allowable error more generally is a function of the an open question posed by [14] about whether a VC-dimension
fraction of points close to the hyperplane. analogue of Occam’s razor holds in their private learning model.

We also introduce a new concegpitstributional privacy which Kasiviswanathan et al. also study several restrictions on learning
makes explicit the notion that when run on a database drawn from algorithms, show separation between these learning models, and
a distribution, privacy-preserving mechanisms should reveal only give efficient algorithms for learning particular concept classes.
information about the underlying distribution, and nothing else.  In this work, we study non-interactive database release mech-
Given a distributiorD over database points, a database privatiza- anisms, which may be used to answer an unlimited number of
tion mechanism satisfies distributional privacy if with high proba- queries. We circumvent the existing lower bounds by only guar-
bility, drawing an entirely new database frafhdoes not change  anteeing usefulness for queries in restricted classes. Blum et al. [4]
the probability of any outcome of the privatization mechanism by consider running machine learning algorithms on datasets that are
more than some small amount. We show that distributional privacy accessed through interactive privacy-preserving mechanisms. In
is a strictly stronger guarantee than differential privacy by showing contrast, we show how to release data sets from which one can use-
that any mechanism that satisfies distributional privacy also satis- fully learn the values of all functions in restricted concept classes.
fies differential privacy, but that there are some functions that can
be answered accurately while satisfying differential privacy, and 1.2 Motivation from Learning Theory
yet reveal information about the particular database (although not  prom a machine learning perspective, one of the medrsons
about any particular database element) that is not “distributional.” - one would want to perform statistical analysis of a database in the

We also show, in Appendix A, a small separation between inter- first place is to gain information about the population from which
active and non-interactive privacy-preserving mechanisms &-pr - that database was drawn. In particular, a fundamental result in
icate queries. learning theory is that if one views a database as a collection of ran-

dom draws from some distributidn, and one is interested in a par-
1.1 Related Work ticular clasg"' of boolean predicates over examples, then a database

Recent work on theoretical guarantees for data privacy was initi- D of sizeO(VCDIM (C)/€?) is sufficient so that with high proba-
ated by [6]. The notion of differential privacy, developed in a series bility, for everyqueryq € C, the proportion of examples if sat-
of papers [4, 7, 8, 9, 10, 11, 12, 16, 15, 3, 17], separates issuesiSfying ¢ is within +¢ of the true probability mass und@r[1, 19].
of privacy from issues of outside information by defining privacy Our main result can be viewed as asking how much larger does a
as indistinguishability of neighboring databases. This captures the databaseD have to be in order to do this in a privacy-preserving
notion that (nearly) anything that can be learned if your data is in- manner: that s, to allow one to (probabilistically) construct an out-
cluded in the database can also be learned without your data. ThisPut D that accurately approximaté? with respect to all queries
notion of privacy ensures that users have very little incentive to in C, and yet that reveals no extra information about datatiase
withhold their information from the database. The connection be- In fact, our notion of distributional privacy (Section 7) is motivated
tween data privacy and incentive-compatibility was recently for- by this view. Note that sincenteractiveprivacy mechanisms can
malized by McSherry and Talwar [15]. handle arbitrary queries of this form so long as onfy.) are re-

Prior work on interactive mechanisms has implied a number of quested, our objective is interesting only for clasSethat contain
impossibility results for non-interactive mechanisms. Dinur and €2(n), or even exponentially im many queries. We will indeed
Nissim [6] show that if a database answers all subset sum with lessachieve this (Theorem 3.1), sin| > 2"°°™©.
thano(y/n) noise, this would allow an adversary to reconstruct a
1 — o(1) fraction of the database. Dwork et al. [10] show that even
if the privacy-preserving mechanism is allowed to answer a small
constant fraction of queries arbitrarily, if the remaining queries still  Usually, this kind of uniform convergence is stated as empirical

are perturbed witly(1/n) noise, an adversary can still reconstruct error approximating true error. In our setting, we have no notion of
the database. an “intrinsic label” of database elements. Rather, we imagine that

Dwork et al. [9] define a notion calleglobal sensitivityand show different users may be interested in learning different things. For

that releasing a database perturbed with noise proportional to thefer)é?n”}gl:t'u?g;luser rg?hf.vgﬁgttggrlﬁénhfvcgﬁ ttg Ssrg%cé ;ﬁgtﬂfl;e”

global sensitivity of the query functions can preserve privacy, with f the features to predict a certain boolean function over the second
the caveat that such mechanisms can only answer a sublinear numpalf.

ber of queries in total, and then no further information about the 2Fgrmally, we only care aboub approximatingD with respect
database can ever be released. Blum et al. [4] consider a model ofto C, and want this to be true no matter hdwwas constructed.
learning and show that concept classes that are learnable in the staHowever, if D wasa random sample from a distributidn, thenD

tistical query (SQ) model are also learnable from a polynomially will approximateD and thereforeD will as well.




1.3 Organization THEOREM2.5 (DWORK ET AL. [9]). PRIVATE, (D, Q) pre-

We present essential definitions in Section 2. In Section 3, we Servesx-differential privacy.
show that, ignoring computational constraints, one can release san-
itized databases over discretized domains that are usefanfpr
concept class with polynomial VC-dimension. We then, in Sec-
tion 4, give an efficient algorithm for privately releasing a database
useful for the class of interval queries. We next turn to the study of
halfspace queries ov&¢ and show in Section 5 that, without relax-
ing the definition of usefulness, one cannot release a database thaéu
is privacy-preserving and useful for halfspace queries ovema co
tinuous domain. Relaxing our definition of usefulness, in Section
6, we give an algorithm that in polynomial time, creates a sanitized
database that usefully and privately answers all halfspace queries
We present an alternative definition of privacy and discuss its re-
lationship to differential privacy in Section 7. In Appendix A, we
give a separation of interactive and non-interactive databases for

However, lower bounds of Dinur and Nissim [6] and Dwork et

al. [9] imply that such mechanisms can only answer a sublinear
number of queries on any database. Note that these mechanisms
can only answer a sublinear number of queiiesotal, not per

user.

We propose to construct database access mechanisms whose re-
Its can be released to the public, and so can necessarily be used
to answer an arbitrarily large number of queries. We seek to do
this while simultaneously preserving privacy. However, in order to
circumvent the lower bounds of Dinur and Nissim [6] and Dwork

et al. [9], we cannot hope to be able to usefully answer arbitrary
queries. We instead seek to answer restricted classes of queries
while preserving “usefulness,” which we define as follows:

predicate queries. DEFINITION 2.6 (USEFULNESS DEFINITION1). A database
mechanismi is (¢, §)-usefulfor queries in clas€’ if with probabil-
2. DEFINITIONS ity 1 — 4, for every@ € C and every databasb, for D = A(D),

For a databas®, let A be a database access mechanism. For an QD) —Q(D)| < e
interactive mechanism, we will say thd{ D, @) induces a distri-

bution over outputs for each quey. For a non-interactive mech- 3. GENERAL RELEASE MECHANISM

anism, we will say thati(D) induces a distribution over outputs. In this section we show that (ignoring computational considera-
We say that an interactive database access mechahgatisfies tions) it is possible to release a non-interactive database useful for
a-differential privacyif for all neighboring database®, and D any concept class with polynomial VC-dimension, while preserv-
(differing in only a single element), for all queri€g, and for all ing a-differential privacy, given an initial database of polynomial
outputse, size. Our use of the exponential mechanism is inspired by its use

Pr{A(Ds1, Q) = 2] < ¢® Pr[A(Ds, Q) = 4. by Kasiviswanathan et al. [14].
THEOREM 3.1. For any class of function€’, and any database

We say that a non-interactive database sanitization mechafiism #
D c {0,1}¢ such that

satisfiesa-differential privacyif for all neighboring databasel

andD-, and for all sanitized output®,
N . DI>0 dVCDIM(C)log(1/e)  log(1/0)
Pr[A(Dy) = D] < e® Pr[A(D2) = D). D] 2 Far +t—

In Section 7, we propose an alternate definition of privacy, dis- \ve can output an( 6)-useful databas® that preserves-differential
tributional privacy, and show that it is strictly stronger than differ- privacy. Note that the algorithm is not necessarily efficient.
ential privacy. For simplicity, however, in the main body of the
paper, we use the standard definition, differential privacy. All of  We give an (inefficient) algorithm that outputs a sanitized database
these proofs can be adapted to the distributional privacy notion. D of sizeO(VCDIM (C)/€?). We note that the size of the output
database is independent of the size of our initial database. This
DEFINITION 2.1. Theglobal sensitivityof a queryf is its max- is sufficient for ¢, 6)-usefulness because the set of all databases of
imum difference when evaluated on two neighboring databases:  this size forms ae-cover with respect t@” of the set of all possible
GS; = b o, I£(D1) — f(Ds)]. databases.
B LEMMA 3.2 ([1, 19]). Given any databas® there exists a
In this paper, we consider the private release of information use- databaseD of sizem = O(VCDIM(C)log(1/¢)/€?) such that
ful for classes opredicate queries maxpec |h(D) — h(D)| < /2.

DEFINITION 2.2. A predicate query),, for any predicatey is PrROOF This follows from standard sample complexity boundE.]

defined to be McSherry and Talwar [15] define the exponential mechanism as
Q. (D) = Hz € D: p(@)} follows:
1Dl DEFINITION 3.3. For any functiony : (({0,1}%)"x ({0,1}*)™) —
R and input databas®, the exponential mechanism outputs each
databaseD with probability proportional tae?(P:2)en/2,

Previous work shows how one can construct database access
mechanisms that can answer any low-sensitivity query while pre-
serving differential privacy:

OBSERVATION 2.3. For any predicatep, GSq,, < 1/n.

THEOREM 3.4 ([15]). The exponential mechanism preserves
(anGS,)-differential privacy.

PROOF OFTHEOREM 3.1. We use the exponential mechanism
DEFINITION 2.4. Letthe interactive mechanism PRIVATE, Q) and define our quality functiopto be:
respond to querie§) by returningQ (D) + Z whereZ is a random N R
variable drawn from the Laplace distributiorz ~ Lap(GSg /). q(D,D) = — max h(D) — h(D)



Note thatG'S; = 1/n. In order to show that this mechanism satis- DEFINITION 4.1. Aninterval queryQ|q, ., is defined to be
fies (e, §)-usefulness, we must show that it outputs some database
D with (D, D) > —e¢ except with probability. Qlay,as](D) = Z %
Any output databas® with ¢(D, D) < —e will be output with z€D
probability at most proportional to~<"/2. There are at mog*™ ) ,
possible output databases, and so by a union bound, the probability NOte thaGSQ[al,?fhz 1/n, and we may answer interval queries
that we output any databaga with q(D,f)) < —cis at most v_vhlle preservinga-differential privacy by adding noise propor-
. dm . —aen/2 tional to Lag(1/(an)).
proportional ta2“"e .

. ~ Given a databasP, we will usec’-differential privacy preserv-
Conversely, we know by Lemma 3.2 that there exists séme ing interval queries to perform a binary search on the intelfual]

({0,1}%)™) such thag(D, D) > —¢/2, and therefore that such a  and partition it into sub-intervals containing probability mass in
database is output with probability at least proportionafte<"/4. the rangefe1 /2 — e2,€1/2 + €2]. Because of the discretization,
Let A be the event that the exponential mechanism outputs somethe depth of this search is at mdstWe will then output a dataset
database) such thay(D, D) > —¢/2. Let B be the eventthatthe  that has(e;/2) - n points in each of these intervals. Because we
exponential mechanism outputs some datahasech thay(D, ﬁ) have constructed this dataset using only a small number of privacy
< —e. We must show thaPr[A]/ Pr[B] > (1 — §)/4. preserving queries, its release will also preserve privacy, and it will
be (¢, 6)-useful for the class of interval queries with an appropri-
ate choice of parameters. Finally, this simple mechanism is clearly

—aen/4
Pr{A] > © computationally efficient.

PI‘[B} - 2d'me—aen/2
een/4 THEOREM 4.2. With o/ = (ea)/4b, e1 = (¢/2) and ez =
= Tgam (€2/8), the above mechanism preservedifferential privacy while
) . . i -useful for the cl fi I ies gi
Setting this quantity to be at leastd > (1 — §)/4, we see that l;felsr?gé.e, 9)-useful for the class of interval queries given a database
it is sufficient to take '
b(log b + log(1/e€d))
4 1 D| >
n > a(dm+ln5) | |_O< P
dVCDIM (C)log(1/e)  log(1/4) PrROOF We first bound the number of privacy preserving queries
> 0 ( P + P ) . our algorithm makes. It finally producége; intervals. SinceD

. ) . is defined over a discretized space, we can identify each interval
This result extends in a straightforward manner to the case of any with the at mosb gueries on its path through the binary search pro-

discretized database domain, not just a boolean space. cedure, and so we will make a total of at maéye; = 4b/(e)
~ ) o/ -differential privacy preserving queries. Since the differential-
Theorem 3.1 shows that a database of €#6“51(<)) is suf- privacy parameter composes, with = (ea)/4b, our algorithm
ficientin order to output a set of points thatisiseful fora concept  jndeed preserves differential privacy.
classC, while simultaneously preserving-differential privacy. If Suppose that the binary search procedure indeed returns intervals

we were to view our database as having been drawn from someeach containing probability mass in the range’2—es, e1 /2+€a).
distributionD, this is only an extra) (%) factor larger than what  Any query will intersect at most two of these intervals only par-

€EQ

would be required to achieweusefulness with respect @, even tially. In the worst case, this introduces = ¢/2 error to the
without any privacy guarantee! In fact, as we will show in Theorem query €, /2 error from each interval that partially overlaps with the
A.6, it is impossible to release a database that(iy \/n)-useful query). Since each query can only overlap at nst intervals,
for the class of parity functions while preserving privacy, and so & and each interval contains a probability mass that deviates from
dependence onof at least2(1/€*) is necessary. the true probability mass i by at moste,, this introduces an

The results in this section only apply for discretized database additional2es/e; = ¢/2 error, for a total error rate e. There-
domains, and may not be computationally efficient. We explore fore, to complete the proof, we only need to bound the siz® of
these two issues further in the remaining sections of the paper. necessary such that the probability that any of 2hge; privacy

preserving queries returns an answer that deviates from the true an-

4. INTERVAL QUERIES swer (inD) by more thare; is less thar. Let us call this event

In this section we give aefficientalgorithm for privately releas- FAILURE. Since the event that any single query has errorXaig

ing a database useful for the class of interval queries over a dis-iS Pr[Lap(1/(a'n)) > €] < e ", this follows from a simple
cretized domain, given a database of size only polynomial in our union bound:

privacy and usefulness parameters. We note that our algorithm is
easily extended to the class of axis-aligned rectangle@sdimen-
sional space fotl a constant; we present the casedof 1 for

Pr[FAILURE] < 2 (~casamyean 4
€1

Solving, we find

clarity.
Consider a databage of n points in[0, 1] in which the entries 4b(log 2b) + log(1/e18 b(log b + log(1/ed
are discretized té bits of precision; our bounds will be polynomial n > (log )ae@ HOLU) = O( (log ae3g( / )))

in b (in Corollary 5.2 we show some discretization is necessary).
Givena; < ag, bothin[0, 1], let I, .4, be the indicator function is sufficient. [
corresponding to the intervad:, a2]. Thatis:
] We note that although the class of intervals (and more generally,
Ia; ay(z) = { 1, a1 <7< a low dimensional axis-aligned rectangles) is a simple class of func-
0, otherwise. tions, it nevertheless contains exponentially §)nmany queries,



and so it is not feasible to simply ask all possible interval queries domain, as we do in Sections 3 and 4. Another approach, which we

using an interactive mechanism. take in Section 6, is to relax our definition of usefulness:
While it is true that intervals (and low dimensional axis-aligned
rectangles) have constant VC-dimension and polynomizdver DEFINITION 5.3 (USEFULNESS DEFINITION2). A database

size, we can trivially extend the above results to the class of unions Mechanismi is (e, 6, v)-usefulfor queries in class according to
of ¢ intervals by dividinge by ¢ and answering each interval sepa- SOme metriel if with probability 1 — 4, for everyQ € C' and every
rately. This class has VC-dimensial(t) and exponentially large ~ databaseD, |Q(A(D)) — Q'(D)| < e for someQ’ € C such that
e-Cover size. d@Q,Q) <.

5. LOWER BOUNDS 6. ANSWERING HALFSPACE QUERIES

Could we possibly modify the results of Sections 4 and 3to hold _ Here, we consider databases that contaielements irR”. In
for non-discretized databases? Suppose we could usefully answetniS section, we show how to efficiently release information useful
an arbitrary number of queries in some simple concept diass  (according to definition 5.3) for the class of halfspace queries for
representing interval queries on the real line (for example, “How @ny constanty > 0. Throughout this section, we assume with-
many points are contained within the following interval?”) while ~Out loss of generality that the database points are scaled into the
still preserving privacy. Then, for any database containing single- Unit sphere. Additionally, when we project the points into a lower-
dimensional real valued points, we would be able to answer me- dimensional space, we rescale them to the unit sphere. A halfspace

dian queries with values that fall between th& — 5,1/2 + & query specifies a hyperplanetf and asks how many points fall
percentile of database points by performing a binary search on ~ above it:
using A (whered = §(e) is some small constant depending on DEFINITION 6.1. Given a databasé® C R? and unit length

_the use_fulness_ parameter I_-lowe_ver, ar_lswer_ing such queries is y € R%, a halfspace queryl,, is
impossible while guaranteeing differential privacy. Unfortunately,
this would seem to rule out usefully answering queries in simple
concept classes such as halfspaces and axis-aligned rectangles, tha
are generalizations of intervals.

{x € D: Z?:l x; -y > 0}
|D]

The assumption that halfspaces pass through the origin is with-
THEOREM 5.1. No mechanismi can answer median queries ~ Out loss of generality since we can view translated halfspaces as
M with outputs that fall between the’2 — k, 1/2 + k percentile passing through the origin in a space of dimension 1.
with positive probability on any real valued databaBewhile still In this section, we give an algorithm that(is 4, v)-useful for

preservingn-differential privacy, fork < 1/2 and anye. the class of halfspace queries. For a painte will write z for the
_ o _normalizationz/||z||2. We define the distance between a paint
PrROOF. Consider real valued databases containing elements in 54 4 halfspacél, by d(z, H,) = |2 - y|. For convenience, we

the interval[0, 1]. Let Do = (0,...,0) be the database contain-  gefine the distance between two halfspables and H,, to be the

Hy(D) =

ing npoints with value 0. Then we must ha¥e[A(Do, M) = sin of the angle between, andy,; by a slight abuse of notation,
0] > 0. Since[0, 1] is a continuous interval, there must be some e will denote this byd(y1,y2). In particular, for a point: and
valuev € [0, 1] such thatPr[A(Dq,M) = ] = 0. LetD, = two halfpaces,, andH,,, d(z, H,,) < d(z, Hy,) + d(y1, y2).
(v,...,v) be the database containimgpoints wlth valuev. We If d(y1,y2) < 7 we saj/ thatf,, and H,, are~y-close Given
must havePr[A(Dy, M) = v] > 0. Forl <i <mn,letD; = a halfspaceH,,, our goal is to output a value such thatjv —
(0,...,0,v,...,v). Then we must have for somePr[A(Di, M) = p (D)| < ¢ for someH,, that isy-close tof,, . Equivalently,
n—i i we may arbitrarily count or not count any pointe D such that
v] = 0 butPr[A(D;+1, M) = v] > 0. But sinceD; and D; 44 d(z,Hy,) < ~. We note thaty is similar to the notion of margin
differ only in a single element, this violates differential privacy.] in machine learning, and that everf,, andH,, arevy-close, this
does not imply thatf,, (D) andH,, (D) are close, unless most of
COROLLARY 5.2. No mechanism can b&, 5)-usefu| for the the data points are Outsideya'nargin Onyl andHyz_
class of interval queries, nor for any clagsthat generalizes in- We circumvent the halfspace-lower bound of Corollary 5.2 by

terval queries to higher dimensions (for example, halfspaces, axis- considering a class afiscretizechalfspaces:

aligned rectangles, or spheres), while preservindifferential pri-

vacy, for anye = o(n) and anyc. DEFINITION 6.2. A halfspace queryd, is b-discretizedif for
eachi € [d], y; can be specified with-bits. LetC}, be the set of all

PROOF Consider any real valued database containing elements b-discretized halfspaces i,

in the interval]0, 1]. If A is (e, 0)-useful for interval queries and

preserves differential privacy, then we can construct a mechanism e first summarize the algorithm, with the parameters to be
A’ that can answer median queries with outputs that fall between specified later. Our use of random projections is similar to that
the 1/2 — k,1/2 + k percentile with positive probability while iy the work of Indyk and Motwani [13] on approximate nearest
preserving differential privacy. By Theorem 5.1, this is impossible. neighbor queries.

A’ simply computesD = A(D), and performs binary search énh Our algorithm performsn random projectionsPy, . . ., P, of

to find some interval0, a] that contains:/2 + ¢ points. Privacyis  the data ontd®”. A random projection of: points fromR? to R*
preserved since we only accd3shroughA, which by assumption is defined as follows:

preserves differential privacy. With positive probability, all interval

. . d k .
queries orD are correct to withinte, and so the binary searchcan _ DEFINITION 6.3. Arandom projection?; fromR” to R™ is de-
proceed. Since = o(n), the result follows. [ fined by ad x k random matrix}M; with entries chosen indepen-

dently and uniformly at random frofn1, 1}. We write the projec-
We may get around the impossibility result of Corollary 5.2 by tion of pointz € R? as P;(z) = (1/vk)z - M;. We write the pro-
relaxing our definitions. One approach is to discretize the databasejection of a databas® ¢ (R?)" asP;(D) = {Pi(z) : € D}.



For each projected databaBg D) we askO(1/~y*~!) privacy-
preserving canonical halfspace queries. To answer a halfspace qu
H,, for each projectiorP;, we considetf p, ,,, and associate with
it the answer of the closest canonical halfspace in that projection.
Finally, we return the median value of these queries over.gito-
jections.

THEOREM6.4 (JOHNSONLINDENSTRAUSS[5, 2]). Consider
a random projectiorP of a pointz and a halfspacéf, onto a ran-
domk-dimensional subspace. Then

Pr(|d(z, Hy)—d(P(x), Hpy))| > 7/4] < 2¢~ (/107 =G/10Mk/4

That is, projectingr and H,, significantly changes the distance be-
tween the point and the halfspace with only a small probability.

We choosek: such that the probability that projecting a point and a
halfspace changes their distance by more théhis at most; /4.
Solving, this yields
41n(8/e1)
~ (7/16)% = (v/16)*

Given a halfspacdéd, and a pointz, we say that a projection
P makes a mistake relative toand Hy, if d(x, Hy) > ~/4, but
sign(z - y) # sign(P(z) - P(y)). We have choseh such that the
expected fraction of mistakes relative to any halfspAgein any
projectionP is at mosk; /4. By Markov’s inequality, therefore, the
probability that a projection makes more tham mistakes relative
to a particular halfspace is at mast4.

The probabilityd; that more thann /2 projections make more
thane;n mistakes relative tany discretized halfspace is at most
2bde=m/12 by a Chernoff bound and a union bound. Solving for

m, this gives
m > 12 <ln ((51 ) + ln(2)bd> .

1
For each projectio®;, we select 43/4)~-net of halfspacesV;,
such that for every vectan, € R” corresponding to halfspadé,, ,
there exists a halfspadé,, € N; such thatd(y:,y2) < (3/4)7.
We note thaiN;| = O(1/4"). For each projectior?; and for
eachH, € N;, we record the value of

vy, = PRIVATE,, (|, ) (Pi (D), Hy).

We note that since we make|N;| queries in total, these queries
preservex-differential privacy.

Taking a union bound over the halfspaces in eAghwe find
that the probabilitys, that any of thev, differ from H, (P;(D))
by more than; is at mostm - O(1 /) ~Le~(c2ne)/(mO/+*=h)
Solving forn, we find that

n> log(1/62) + logm + (k — 1) log(1/7) + mO(1/~)**

= O(ela <log(1/62) +loglog1/61 + log bd + log(1/€1)
2

+ (log 1/, + bd)(l/el)(“l°g“””/“”/16>2Wm)s))).

To respond to a queryd,, for each projectiorP; we first com-
pute

H,, = argmind(P(y), vi)-

i

Hy(_ EN;
We recall that by constructionj(P(y),y;) < (3/4)y. We then
return the median value from the det), : i € [m]}.

THEOREM 6.5. The above algorithm ige, v, §)-useful while
maintaining «-differential privacy for a database of size
poly(log(1/§),1/€e,1/c, b, d) and running in time polflog(1/4),
1/e,1/a, b, d), for constanty.

PrROOF Above, we set the value aofi such that for any half-
space quenyd,, with probability at most;, no more than am;
fraction of the points have the property that they are outsideof a
margin of H, but yet their projections are within@/4)~ margin
of Hp,(,), wherei is the index of the median projection. There-
fore, answering a querfd,,, wherey’ is (3/4)v-close toP;(y),
only introduces; error. Moreover, we have chosersuch that ex-
cept with probabilityd-, the privacy-preserving queries introduce
no more than an additionaj error. The theorem follows by setting
€1 = €2 = ¢/2 andd; = d2 = §/2, and settingr, m, andk as
above. [

7. DISTRIBUTIONAL PRIVACY

We say that an interactive database mechanisatisfie «, 3)-
distributional privacyif for any distribution over database elements
D, with probabilityl — 3, two database®, and D, consisting of
n elements drawnvithout replacementrom D, for any queryQ
and outputr satisfies

Pr[A(D1,Q) = z] < e” Pr[A(D-2, Q) = z].

Similarly, for non-interactive mechanisms, a mechanitsatisfies
(a, B)-distributional privacyif for any distribution over database
elementsD, with probability 1 — 3, two database®; and D,
consisting ofn elements drawmvithout replacemenfrom D, and
for all sanitized outputs‘T),

Pr[A(D:) = D] < e* Pr[A(Ds) = D).

For example, suppose that a collection of hospitals in a region each
treats a random sample of patients with dise&seDistributional
privacy means that a hospital can release its data anonymously,
without necessarily revealing which hospital the data came from.
Actually, our main motivation is that this definition is particularly
natural from the perspective of learning theory: given a sample of
points drawn from some distributidl, one would like to reveal no
more information about the sample than is inhereriitself.

We will typically think of 5 as being exponentially small, whereas
a must beQ2(1/n) for A to be useful.

7.1 Relationship Between Definitions

It is not a priori clear whether either differential privacy or dis-
tributional privacy is a stronger notion than the other, or if the two
are equivalent, or distinct. On the one hand, differential privacy
only provides a guarantee whén, and D, differ in a single ele-
ment® whereas distributional privacy can provide a guarantee for
two database®; and D, that differ in all of their elements. On
the other hand, distributional privacy makes the strong assumption
that the elements iD; and D, are drawn from some distribu-
tion D, and allows for privacy violations with some exponentially
small probability (necessarily: with some small probability, two
databases drawn from the same distribution might nevertheless be
completely different). However, as we show, distributional privacy
is a strictly stronger guarantee than differential privacy. For clarity,
we prove this for interactive mechanisms only, but the results hold
for non-interactive mechanisms as well, and the proofs require little
modification.

SWe getta-differential privacy forD; and D, that differ int ele-
ments.



THEOREM 7.1. If A satisfies(«, 3)-distributional privacy for
any3 = o(1/n?), thenA satisfiesa-differential privacy.

PROOF Consider any databade, drawn from domaink, and
any neighboring databage, that differs fromD; in only a single
elementr € R. LetD be the uniform distribution over the set of
n + 1 elementsD; U {z}. If we draw two databased;, D5 from
D, then with probability2/n* we have{D{, D3} = {D1, D>},
and so if3 = o(1/n?), we have with certainty that for all outputs
D and for all queries),

Pr[A(D1,Q) = D] < ¢* Pr[A(D, Q) = D).
Therefore,A satisfiesx-differential privacy. [

DEFINITION 7.2. Define themirrored modm function as fol-
lows:

Fo(z) = x mod m, if z mod 2m < m,
m) =Y —2—1 modm, otherwise.

For a databas® C {0, 1}", define the query

Qm(D) = w

Note that the global sensitivity of any quey,, satisfies57Sg,, <
1/n. Therefore, the mechanism that answers querie®.,, by
A(D,Qm) = Qm(D)+Z whereZ is drawn from Lagl/(an)) =
Lap(GSg,, /«) satisfiesy-differential privacy, which follows from
the results of Dwork et al. [9].

THEOREM 7.3. There exist mechanism$ with o-differential
privacy, but without(«, 5)-distributional privacy for anyn < 1,

B = o(1) (that is, for any meaningful values of 3).

PrROOF Consider databases with elements drawn frBm=
{0,1}™ and the queryy,,.. As observed above, a mechanisim
such thatA(D, Q;) = Q:(D) + Z for Z ~ Lap(1/(an)) hasa-
differential privacy for any. Note however that with constant prob-
ability, two database®;, D, drawn fromD have|Q;,q(D1) —
Q2/0(D2)| > 1/(an). Therefore, for any output, we have that
with constant probability,

PrlA(D1, Qo/a) =] _  —al@a)a(D1)~Qa/a (Do)
Pr[A(D27Q2/a) = ‘T]

=e
1
-

—an()

O

Although there are simpler functions for which preserving dis-
tributional privacy requires more added noise than preserving dif-
ferential privacy, the mirrored-mod function above is an example
of a function for which it is possible to preserve differential privacy
usefully, but yet impossible to reveal any useful information while
preserving distributional privacy.

We note that in order for distributional privacy to imply differen-
tial privacy, it is important that in the definition of distributional pri-
vacy, database elements are drawn from some distrib@iwsith-
out replacementOtherwise, for any non-trivial distribution, there
is some databasP. that is drawn with probability at mogt/2™,
and we may modify any distributional-privacy preserving mecha-
nism A such that for every quer@, A(D., Q) = D., and for any
D; # D., A(D;, Q) behaves as before. Since this new behavior
occurs with probability< 8 over draws fromD for 5 = O(1/2"),

A still preserves distributional privacy, but no longer preserves dif-
ferential privacy (which requires that the privacy guarantee hald fo
everypair of neighboring databases).

8. CONCLUSIONS AND OPEN PROBLEMS

In this work, we view the problem of database privacy through
the lens of learning theory. This suggests both a new definition of
privacy, distributional privacy (which we show is strictly stronger
than differential privacy), and the idea that we can study usefulness
relative to particular classes of functions. Restricting our notion of
usefulness to particular classes of functions allows us to circum-
vent the lower bounds of [6, 9, 10] which show that non-interactive
privacy preserving database access mechanisms can not inlgenera
be as useful as interactive mechanisms. In fact, we are able to show
that it is possible to release privacy-preserving databases that are
useful for all queries over a discretized domain in a concept class
with polynomial VC-dimension. We show that this discretization
is necessary by proving that it is impossible to privately release a
database that is useful for halfspace queries without relaxing our
definition of usefulness, but we demonstrate an algorithm that does
so efficiently under a small relaxation of this definition.

This work demonstrates that the existing very strong lower bounds
for useful, privacy-preserving, non-interactive mechanismsate
insurmountable, but can be circumvented by a number of reason-
able relaxations to the standard definitions. However, our paper
leaves a number of important questions open. Prime among them
is the question offficientprivate data release—we have shown that
information theoretically it is possible to release a database that is
useful for any concept class with polynomial VC-dimension (under
our original, strong definition of usefulness) while preserving dif-
ferential privacy, but we know how to do thégficientlyonly for the
simplest classes of functions. Is it possibleeficientlyprivately
and usefully release a database for every concept class with poly-
nomial VC-Dimension? Is it possible for the class of conjunctions?
For the class of parity functions?

One approach to efficient database release is to efficiently sample
from the distribution defined by the exponential mechanismin The-
orem 3.1. In order to do so, it might be necessary to relax our qual-
ity function, since even computing the quality function on a partic-
ular input/output database pair is as hard as agnostically learning,
over arbitrary distributions, the concept class for which we want
to guarantee usefulness. (To see this, consider labeling the points
in the input database as positive examples and those in the output
database as negative.) Additionally, we note that the ability to ag-
nostically learn a concept class is not by itself enough to efficiently
samplefrom the desired distribution; one approach to sampling is
to design a random Markov process that converges quickly to the
desired stationary distribution.
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APPENDIX
A. PARITY: ASMALL SEPARATION

Dwork et al. [9] provide a separation between interactive and
non-interactive differential-privacy preserving mechanisms for a

class of queries that are not predicate queries. They also provide
a separation between interactive and non-interactive “randomized-
response” mechanisms for parity queries (defined below), which
are predicate queries. “Randomized-response” mechanisms are a
class of non-interactive mechanisms that independently perturb each
point in D and release the independently perturbed points. Here,
we provide a small separation between interactive mechanisms and
arbitrary non-interactive mechanisms that output datasets useful for
parity queries. We prove this separation for mechanisms that pre-
serve differential privacy—our separation therefore also holds for
distributionalprivacy preserving mechanisms.

DEFINITION A.1l. Given a databasé containingn points in
{—1,1}¢,and forS C {1, ..., d}, aparity queryis given by

_ ‘{a: €D [[ics®i = 1}|
|D| '

PQs

We show that for any non-interactive mechaniginthat pre-
servesa-differential privacy fora. = Q(1/poly(n)) and outputs
a databasd) = A(D), there exists som& C {1,...,d} such
that|PQs(D) — PQs(D)| = Q(1/+/n). This provides a sep-
aration, since for anys, GSpqgs = 1/n, and so for for anys,
with high probability, the interactive mechanisA(D, Q) of [9]
satisfies| A(D, PQs) — PQs(D)| = o(1/+/n) while satisfying
a-differential privacy. This also shows that our bound from Theo-
rem 3.1 cannot be improved to have(d /¢*) dependence on

We begin with the claim that given some databaseonsisting
of n distinct points in{—1, 1}¢, any non-interactiver-differential
privacy preserving mechanism that outputs a sanitized database
must with high probability output a databagkthat differs from
D on at least half of its points.

CLaim  A.2. If the non-interactive mechanisrv preservesy-
differential privacy fora = Q(1/poly(n)), Pr[|[D N D| > n/2] <
1/2.

We next present a few facts from discrete Fourier analysis.

PROPERTY A.3. For any functionh : {—1,1} — R, we may
expressh as a linear combination of parity functionsh(z) =
Sscqr..ay MS)xs(x), wherexs(x) = [[,c5x:. Moreover,
the coefficients(S) take values

IOEEEDY

ze{-1,1}4

9(x)xs ().

PROPERTYA.4
h:{-1,1} = R,

1
ST

ze{—1,1}4

(PARSEVAL' S IDENTITY). For any function

LEMMA A5. For D1, Dy € ({=1,1})", if [D1 N Do| <
n/2, then there exist§ € {1,...,d} such that|PQs(D1) —
PQs(D2)| = Q(1/v/n)".

PROOF. Let f(z) : {—1,1}* — {0,1} be the indicator func-
tionof D1: f(z) = 1 < = € D;. Similarly, letg(z) : {—1,1}¢ —
{0, 1} be the indicator function aD.. By our hypothesis,

S 1f@) - g(@) = /2.

ze{-1,1}m

“Note that we are implicitly assuming thét= Q(log n)



Therefore,

n/2

where the first

range{0, 1}, and the second follows from Parseval’s identity and
Fourier coefficients. Therefore, there exists some

the linearity of

< D If(@) - g(@)
z€{—1,1}4

= > (fl@)-g@)?
ze{—1,1}d

=2 3 (f(9)-a)?
SC{1,...,d}

equality follows from the fact thgtand g have

S C {1,...,d} such that(f(S) — §(S))* > n/22¢*', and so
1£(S) — 4(S)| > vn/(27V/2)). We also have

[S
n
T 9d-1

2d

>

ze{-1,1}4

g9(@)xs(x)

2% > xs(x) - 2—1d > xs(@)

Dy x€ Do

(PQs(D1) — PQs(D2)).

Therefore,|(PQs(D1) — PQs(D2)| > Q(1/4/n), which com-
pletes the proof. (]

Combining the

THEOREM A

Claim A.2 and Lemma A.5, we get our result:

.6. For any non-interactive mechanismthat out-

puts a databasé); = A(D,) and preserves-differential privacy
for a = Q(1/poly(n)), with probability > 1/2 there exists some

Sc{1,....d

such thal PQs (D1) — PQs(D1)| = Q(1/y/n).



