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Abstract. There has been substantial work developing simple, efficient no-regret algorithms for a
wide class of repeated decision-making problems including online routing. These are adaptive strate-
gies an individual can use that give strong guarantees on performance even in adversarially-changing
environments. There has also been substantial work on analyzing properties of Nash equilibria in
routing games. In this paper, we consider the question: if each player in a routing game uses a no-
regret strategy, will behavior converge to a Nash equilibrium? In general games the answer to this
question is known to be no in a strong sense, but routing games have substantially more structure.

In this paper we show that in the Wardrop setting of multicommodity flow and infinitesimal
agents, behavior will approach Nash equilibrium (formally, on most days, the cost of the flow will be
close to the cost of the cheapest paths possible given that flow) at a rate that depends polynomially
on the players’ regret bounds and the maximum slope of any latency function. We also show that
price-of-anarchy results may be applied to these approximate equilibria, and also consider the finite-
size (non-infinitesimal) load-balancing model of Azar [2]. Our nonatomic results also apply to a more
general class of games known as congestion games.

1. Introduction. There has been substantial work in learning theory and game
theory on adaptive no-regret algorithms for problems of repeated decision-making.
These algorithms have the property that in any online, repeated game setting, their
average loss per time step approaches that of the best fixed strategy in hindsight
(or better) over time. Moreover, the convergence rates are quite good: in Hannan’s
original algorithm [19], the number of time steps needed to achieve a gap of ε with
respect to the best fixed strategy in hindsight—the “per time step regret”—is linear
in the size of the game N . This was reduced to O(log N) in more recent exponential-
weighting algorithms for this problem [23, 6, 16] (also called the problem of “combining
expert advice”). Most recently, a number of algorithms have been developed for
achieving such guarantees efficiently in many settings where the number of choices N
is exponential in the natural description-length of the problem [21, 30, 31].

One specific setting where these efficient algorithms apply is online routing. Given
a graph G = (V,E) and two distinguished nodes vstart and vend, the game for an
individual player is defined as follows. At each time step t, the player’s algorithm
chooses a path Pt from vstart to vend, and simultaneously an adversary (or nature)
chooses a set of edge costs {ct

e}e∈E . The edge costs are then revealed and the player
pays the cost of its path. Even though the number of possible paths can be exponential
in the size of the graph, no-regret algorithms exist (e.g., [21, 31]) that achieve running
time and convergence rates (to the cost of the best fixed path in hindsight) which
are polynomial in the size of the graph and the maximum edge cost. Moreover, a
number of extensions [1, 24] have shown how these algorithms can be applied even to

2A preliminary version of these results appeared in the Proceedings of the 25th Annual ACM
Symposium on Principles of Distributed Computing, July 2006.
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the “bandit” setting where only the cost of edges actually traversed (or even just the
total cost of Pt) is revealed to the algorithm at the end of each time step t.

Along a very different line of inquiry, there has also been much recent work on
the price of anarchy in games. Koutsoupias and Papadimitriou [22] defined the price
of anarchy, which is the ratio of the cost of an optimal global objective function to
the cost of the worst Nash equilibrium. Many subsequent results have studied the
price of anarchy in a wide range of computational problems from job scheduling to
facility location to network creation games, and especially to problems of routing in
the Wardrop model, where the cost of an edge is a function of the amount of traffic
using that edge [7, 8, 22, 27, 11]. Such work implicitly assumes that selfish individual
behavior results in Nash equilibria.

In this work we consider the question: if all players in a routing game use no-
regret algorithms to choose their paths each day, what can we say about the overall
behavior of the system? In particular, the no-regret property (also called Hannan
Consistency) can be viewed as a natural definition of well-reasoned self-interested
behavior over time. Thus, if all players are adapting their behavior in such a way, can
we say that the system as a whole will approach Nash equilibrium? Our main result
is that in the Wardrop setting of multicommodity flow and infinitesimal agents, the
flows will approach equilibrium in the sense that a 1− ε fraction of the daily flows will
have the property that at most an ε fraction of the agents in them have more than
an ε incentive to deviate from their chosen path, where ε approaches 0 at a rate that
depends polynomially on the size of the graph, the regret-bounds of the algorithms,
and the maximum slope of any latency function.1

Moreover, we show that the one new parameter—the dependence on slope—is
necessary. In addition, we give stronger results for special cases such as the case of n
parallel links and also consider the finite-size (non-infinitesimal) load-balancing model
of Azar [2]. Our results for nonatomic players also hold for a more general class of
games called congestion games, although efficient regret-minimizing algorithms need
not exist for the most general of these games.

One way our result can be viewed is as follows. No-regret algorithms are very
compelling from the point of view of individuals: if you use a no-regret algorithm to
drive to work each day, you will get a good guarantee on your performance no matter
what is causing congestion (other drivers, road construction, or unpredictable events).
But it would be a shame if, were everyone to use such an algorithm, this produced
globally unstable behavior. Our results imply that in the Wardrop routing model, so
long as edge latencies have bounded slope, we can view Nash equilibria as not just a
stable steady-state or the result of adaptive procedures specifically designed to find
them, but in fact as the inevitable result of individual selfishly adaptive behavior by
agents that do not necessarily know (or care) what policies other agents are using.
Moreover, our results do not in fact require that users follows strategies that are no-
regret in the worst-case, as long as their behavior satisfies the no-regret property over
the sequence of flows actually observed.

1A more traditional notion of approximate Nash equilibrium requires that no player will have
more than ε incentive to deviate from her strategy. However, one cannot hope to achieve such a
guarantee using arbitrary no-regret algorithms, since such algorithms allow players to occasionally
try bad paths, and in fact such experimentation is even necessary in bandit settings. For the same
reason, one cannot hope that all days will be approximate-Nash. Finally, our guarantee may make
one worry that some users could always do badly, falling in the ε minority on every day, but as we
discuss in §5, the no-regret property can be used to further show that no player experiences many
days in which her expected cost is much worse than the best path available on that day.
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1.1. Regret and Nash equilibria. At first glance, a result of this form seems
that it should be obvious given that a Nash equilibrium is precisely a set of strategies
(pure or mixed) that are all no-regret with respect to each other. Thus if the learning
algorithms settle at all, they will have to settle at a Nash equilibrium. In fact, for
zero-sum games, no-regret algorithms when played against each other will approach
a minimax optimal solution [17]. However, it is known that even in small 2-player
general-sum games, no-regret algorithms need not approach a Nash equilibrium and
can instead cycle, achieving performance substantially worse than any Nash equilib-
rium for all players. Indeed simple examples are known where standard algorithms
will have this property with arbitrarily high probability [32].

1.2. Regret and Correlated equilibria. It is known that certain algorithms
such as that of Hart and Mas-Colell [20], as well as any algorithms satisfying the
stronger property of “no internal regret” [15], have the property that the empirical
distribution of play approaches a correlated equilibrium. On the positive side, such
results are extremely general, apply to nearly any game including routing, and do
not require any bound on the slopes of edge latencies. However, such results do not
imply that the daily flows themselves (or even the time-average flow) are at all close
to equilibrium. It could well be that on each day, a substantial fraction of the players
experience latency substantially greater than the best path given the flow (and we
give a specific example of how this can happen when edge-latencies have unbounded
slope in §2.4).

1.3. Related work. Fischer and Vöcking [13] consider a specific adaptive dy-
namics (a particular functional form in which flow might naturally change over time)
in the context of selfish routing and prove results about convergence of this dynamics
to an approximately stable configuration. In more recent work, they study the con-
vergence of a class of routing policies under a specific model of stale information [14].
Most recently, Fischer, Raecke, and Vöcking [12] give a distributed procedure with es-
pecially good convergence properties. The key difference between that work and ours
is that those results consider specific adaptive strategies designed to quickly approach
equilibrium. In contrast, we are interested in showing convergence for any algorithms
satisfying the no-regret property. That is, even if the players are using many dif-
ferent strategies, without necessarily knowing or caring about what strategies others
are using, then so long as all are no-regret, we show they achieve convergence. In
addition, because efficient no-regret algorithms exist even in the bandit setting where
each agent gets feedback only about its own actions [1, 24], our results can apply to
scenarios in which agents adapt their behavior based on only very limited information
and there is no communication at all between different agents.

Convergence time to Nash equilibrium in load balancing has also been studied.
Earlier work studied convergence time using potential functions, with the limitation
that only one player is allowed to move in each time step; the convergence times
derived depended on the appropriate potential functions of the exact model [25, 9].
The work of Goldberg [18] studied a randomized model in which each user can se-
lect a random delay over continuous time. This implies that only one user tries to
reroute at each specific time; therefore the setting was similar to that mentioned
above. Even-Dar and Mansour [10] considered a model where many users are allowed
to move concurrently, and derived a logarithmic convergence rate for users following
a centrally-moderated greedy algorithm. Most recently, Berenbrink et al. [4] showed
weaker convergence results for a specific distributed protocol. To summarize, previ-
ous work studied the convergence time to pure Nash equilibria in situations with a
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centralized mechanism or specific protocol. In contrast, we present fast convergence
results for approximate Nash equilibria in a non-centralized setting, and our only
assumption about the player strategies is that they are all no-regret.

2. Preliminaries.

2.1. Nonatomic congestion games. Let E be a finite ground set of elements
(we refer to them as edges). There are k player types 1, 2, . . . , k, and each player
type i has an associated set of feasible paths Pi, where Pi is a multiset of subsets of
E. Elements of Pi are called paths or strategies. For example, player type i might
correspond to players who want to travel from node ui to node vi in some underlying
graph G, and Pi might be the set of all ui-vi paths. The continuum Ai of agents of type
i is represented by the interval [0, ai], endowed with Lebesgue measure. We restrict
∑k

i=1 ai = 1, so there is a total of one unit of flow. Each edge e ∈ E has an associated
traffic-dependent, non-negative, continuous, non-decreasing latency function `e. A
nonatomic congestion game is defined by (E, `,P, A).

A flow determines a path for each player: fi : Ai → Qi where Qi is the set of
0/1 vectors in Pi with exactly one 1. We write f = (

∫

A1

f1, . . . ,
∫

Ak

fk), where by
∫

Ai

fi we mean (
∫

Ai

(fi)
1,

∫

Ai

(fi)
2, . . . ,

∫

Ai

(fi)
|Pi|). A flow thus induces a distribution

over paths, which we write for a path P in Pi as fP = (fi)
P for P of type i. Thus,

∑

P∈Pi
fP = ai for all i, and fP is the measure of the set of players selecting path

P . Each flow induces a unique flow on edges such that the flow fe on an edge
e has the property fe =

∑

P :e∈P fP . The latency of a path P given a flow f is
`P (f) =

∑

e∈P `e(fe), i.e., the sum of the latencies of the edges in the path, given
that flow, and the cost incurred by a player is simply the latency of the path she
plays.

We define |E| = m and write n for the number of edges in the largest path in P.
We will assume all edge latency functions have range [0, 1], so the latency of a path
is always between 0 and n. Let f1, f2, . . . , fT denote a series of flows from time 1 up
to time T . We use f̂ to denote the time-average flow, i.e., f̂e = 1

T

∑T
t=1 f t

e.

Remark 2.1. Network games are a special case of nonatomic congestion games,
where there is an underlying graph G and players of type i have a start node ui and
a destination node vi, and Pi is the set of all ui-vi paths.

2.2. Equilibria and social cost. A flow f is at Nash equilibrium if no user
would prefer to reroute her traffic, given the existing flow.

Definition 2.2. A flow f on game (E, `,P, A) is at equilibrium if and only if
for every player type i, and paths P1, P2 ∈ Pi with fP1

> 0, `P1
(f) ≤ `P2

(f).

It is useful to note that in this domain, the flows at equilibrium are those for which
all flow-carrying paths for a particular player type have the same latency. In addition,
given our assumption that all latency functions are continuous and non-decreasing,
one can prove the existence of Nash equilibria:

Proposition 2.3. (Schmeidler [29], generalization of Beckman et al. [3]) Every
nonatomic congestion game admits a flow at equilibrium.

We define the social cost of a flow to be the average cost incurred by the players:

Definition 2.4. Define the cost C(f) of a flow f to be C(f) =
∑

e∈E `e(fe)fe.

In addition, for any nonatomic congestion game, there is a unique equilibrium
cost:

Proposition 2.5. (Milchtaich [26], generalization of Beckman et al. [3]) Distinct
equilibria for a nonatomic congestion game have equal social cost.
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2.3. No-Regret Algorithms. Definition 2.6. Consider a series of flows
f1, f2, . . . , fT and a user who has experienced latencies c1, c2, . . . , cT over these flows.
The per-time-step regret of the user is the difference between her average latency and
the latency of the best fixed path in hindsight for players of her type i, that is,

1

T

T
∑

t=1

ct − min
P∈Pi

1

T

T
∑

t=1

∑

e∈P

`e(f
t
e).

An online algorithm for selecting paths at each time step t is no-regret if, for any
sequence of flows, the expected regret (over internal randomness in the algorithm)
goes to 0 as T goes to infinity.

Here and in the rest of this paper, excluding §7, we consider infinitesimal users
using a finite number of different algorithms; in this setting, we can get rid of the
expectation. In particular, if each user is running a no-regret algorithm, then the
average regret over users also approaches 0. Thus, since all players have bounded per-
timestep cost, applying the strong law of large numbers, we can make the following
assumption:

Assumption 2.7. The series of flows f1, f2, . . . satisfies

1

T

T
∑

t=1

∑

e∈E

`e(f
t
e)f

t
e ≤ R(T ) +

1

T

k
∑

i=1

ai min
P∈Pi

T
∑

t=1

∑

e∈P

`e(f
t
e)

where R(T ) → 0 as T → ∞. The function R(T ) may depend on the size of the
network and its maximum possible latency. We then define Tε as the number of time
steps required to get R(T ) ≤ ε.

For example, for the case of a routing game consisting of only two nodes and
m parallel edges, exponential-weighting algorithms [23, 6, 16] give Tε = O( 1

ε2 log m).

For general graphs, results of Kalai and Vempala yield Tε = O(mn log n
ε2 ) [21]. For

general graphs where an agent can observe only its path cost, results of Awerbuch

and Kleinberg yield Tε = Õ(n7m
ε3 ) [1].

2.4. Approaching Nash Equilibria. We now need to specify in what sense
flow will be approaching a Nash equilibrium. The first notion one might consider
is the L1 distance to some true Nash flow. However, if some edges have nearly-flat
latency functions, it is possible for a flow to have regret near 0 and yet still be far in
L1 distance to a true Nash flow. A second natural notion would be to say that the
flow f has the property that no user has cost much more than the cheapest path given
f . However, notice that the no-regret property allows users to occasionally take long
paths, so long as they perform well on average (and in fact algorithms for the bandit
problem will have exploration steps that do just that [1, 24]). So, one cannot expect
that on any time step all users are taking cheap paths.

Instead, we require that most users be taking a nearly-cheapest path given f .
Specifically,

Definition 2.8. A flow f is at ε-Nash equilibrium if the average cost un-
der this flow is within ε of the minimum cost paths under this flow, i.e. C(f) −
∑k

i=1 ai minP∈Pi

∑

e∈P `e(fe) ≤ ε.
Note that Definition 2.8 implies that at most a

√
ε fraction of traffic can have

more than a
√

ε incentive to deviate from their path, and as a result is very similar
to the definition of (ε, δ)-Nash equilibria in [12].
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We also are able to show that one can apply price-of-anarchy results to ε-Nash
flows; we discuss this in §6.

We will begin by focusing on the time-average flow f̂ , showing that for no-regret
algorithms, this flow is approaching equilibrium. That is, for a given Tε we will give
bounds on the number of time steps before f̂ is ε-Nash. After analyzing f̂ , we then
extend our analysis to show that in fact for most time steps t, the flow f t itself is
ε-Nash. To achieve bounds of this form, which we show in § 5, we will however need
to lose an additional factor polynomial in the size of the graph. Again, we cannot
hope to say that f t is ε-Nash for all (sufficiently large) time-steps t, because no-
regret algorithms may occasionally take long paths, and an “adversarial” set of such
algorithms may occasionally all take long paths at the same time.

2.5. Dependence on slope. Our convergence rates will depend on the maxi-
mum slope s allowed for any latency function. To see why this is necessary, consider
the case of a routing game with two parallel links, where one edge has latency 0 up
to a load of 1/3 and then rises immediately to 1, and the other edge has latency 0
up to a load of 2/3 and then rises directly to 1. In this case the Nash cost is 0, and
moreover for any flow f ′ we have minP∈P

∑

e∈P `e(f
′
e) = 0. Thus, the only way f ′

can be ε-Nash is for it to actually have low cost, which means the algorithm must
precisely be at a 1/3-2/3 split. If players use no-regret algorithms, traffic will instead
oscillate, each edge having cost 1 on about half the days and each player incurring cost
1 on not much more than half the days (and thus not having much regret). However,
none of the daily flows will be better than 1

3 -Nash, because on each day, the cost of
the flow f is at least 1/3.

3. Infinitesimal Users: Linear Latency Functions. We begin as a warm-up
with the easiest case, infinitesimal users and linear latency functions, which simplifies
many of the arguments. In particular, for linear latency functions, the latency of any
edge under the time-average flow f̂ is guaranteed to be equal to the average latency
of that edge over time, i.e. `e(f̂e) = 1

T

∑T
t=1 `e(f

t
e) for all e.

Theorem 3.1. Suppose the latency functions are linear. Then for T ≥ Tε, the
average flow f̂ is ε-Nash, i.e.

C(f̂) ≤ ε +
∑

i

ai min
P∈Pi

∑

e∈P

`e(f̂e).

Proof. From the linearity of the latency functions, we have for all e, `e(f̂e) =
1
T

∑T
t=1 `e(f

t
e). Since `e(f

t
e)f

t
e is a convex function of the flow, this implies

`e(f̂e)f̂e ≤ 1

T

T
∑

t=1

`e(f
t
e)f

t
e.

Summing over all e, we have

C(f̂) ≤ 1
T

∑T
t=1 C(f t)

≤ ε +
∑

i ai minP∈Pi

1
T

∑T
t=1

∑

e∈P `e(f
t
e) (by Assumption 2.7)

= ε +
∑

i ai minP∈Pi

∑

e∈P `e(f̂e). (by linearity)

Corollary 3.2. Assume that all latency functions are linear. In general routing
games, if all agents use the Kalai-Vempala algorithm [21], the average flow converges
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to an ε-Nash equilibrium at Tε = O(mn log n
ε2 ). On networks consisting of two nodes and

m parallel links, if all agents use optimized “combining expert advice”-style algorithms
(with each edge an expert), the average flow converges to an ε-Nash equilibrium at
Tε = O( log m

ε2 ).
Note that we not only proved that the average flow approaches an ε-Nash equi-

librium, but as an intermediate step in our proof we showed that actual average cost
incurred by the users is at most ε worse than the best path in the average flow.

4. Infinitesimal Users: General Latency Functions. The case of general
latency functions is more complicated because the first and third transitions in the
proof above do not apply. Here, the additive term depends on the maximum slope of
any latency function.

Theorem 4.1. Let ε′ = ε + 2
√

sεn. Then for general functions with maximum
slope s, for T ≥ Tε, the time-average flow is ε′-Nash, that is,

∑

e∈E

`e(f̂e)f̂e ≤ ε + 2
√

sεn +
∑

i

ai min
P∈Pi

∑

e∈P

`e(f̂e).

Before giving the proof, we list several quantities we will need to relate:

∑

e∈E

`e(f̂e)f̂e (cost of f̂)(4.1)

1

T

T
∑

t=1

∑

e∈E

`e(f
t
e)f̂e (“cost of f̂ in hindsight”)(4.2)

1

T

T
∑

t=1

∑

e∈E

`e(f
t
e)f

t
e (avg cost of flows up to time T )(4.3)

∑

i

ai min
P∈Pi

∑

e∈P

1

T

T
∑

t=1

`e(f
t
e) (cost of best path in hindsight)(4.4)

∑

i

ai min
P∈Pi

∑

e∈P

`e(f̂e) (cost of best path given f̂)(4.5)

Our goal in proving Theorem 4.1 is to show that (4.1) is not too much greater
than (4.5). We will prove this as follows. We know that (4.3) ≤ ε + (4.4) by the
no-regret property and that (4.2) ≤ (4.3) by convexity. So, what remains to show
is that (4.4) is not much greater than (4.5) and that (4.1) is not much greater than
(4.2). We prove these in Lemmas 4.2 and 4.3 below.

Lemma 4.2. For general latency functions with maximum slope s, (4.4) ≤ √
sεn+

(4.5).
Proof. First, observe that, because our latency functions are non-decreasing, the

average latency of an edge must be less than or equal to the latency of that edge as
seen by a random user on a random day. That is, for all e,

1

T
f̂e

T
∑

t=1

`e(f
t
e) ≤

1

T

T
∑

t=1

`e(f
t
e)f

t
e.

Define εe = 1
T

∑T
t=1 `e(f

t
e)f

t
e − 1

T f̂e

∑T
t=1 `e(f

t
e) to be the gap between the above two

terms. Now, notice that the right-hand side of the above inequality, summed over all
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edges, is precisely quantity (4.3). By the no-regret property, this is at most ε larger
than the time-average cost of the best paths in hindsight, which in turn is clearly at
most the time-average cost of f̂ . Therefore, we have:

1

T
f̂e

T
∑

t=1

∑

e∈E

`e(f
t
e) ≤

1

T

T
∑

t=1

∑

e∈E

`e(f
t
e)f

t
e

≤ ε +
1

T
f̂e

T
∑

t=1

∑

e∈E

`e(f
t
e).

That is, we have “sandwiched” the flow-average latency between the time-average
latency and the time-average latency plus ε. This implies that for every edge e, its
time-average cost must be close to its flow-average cost, namely,

∑

e∈E

εe ≤ ε.

We now use this fact, together with the assumption of bounded slope, to show that
edge latencies cannot be varying wildly over time. Specifically, we can rewrite the
definition of εe as:

εe =
1

T

T
∑

t=1

(`e(f
t
e) − `e(f̂e))(f

t
e − f̂e) ≥ 0,(4.6)

where we are using the fact that f̂e = 1
T

∑T
t=1 f t

e and so 1
T

∑T
t=1 `e(f̂e)(f

t
e − f̂e) = 0.

From the bound on the maximum slope of any latency function, we know that
|f t

e − f̂e| ≥ |`e(f
t
e) − `e(f̂e)|/s and thus

|`e(f
t
e) − `e(f̂e)| ≤

√

s
(

`e(f t
e) − `e(f̂e)

) (

f t
e − f̂e

)

for all e.
We then get

1

T

T
∑

t=1

(`e(f
t
e) − `e(f̂e)) ≤

√
s

T

T
∑

t=1

√

(`e(f t
e) − `e(f̂e))(f t

e − f̂e).

Using equation (4.6) above, this yields

1

T

T
∑

t=1

(`e(f
t
e) − `e(f̂e)) ≤

√
sεe.(4.7)

Finally, let P ∗
i be the best path of type i given f̂ . Summing equation (4.7) over

the edges in P ∗
i , and using the fact that

∑

i ai

∑

e∈P∗

i

√
sεe ≤ √

sεn, we have

(4.5) +
√

sεn ≥
∑

e∈P∗

1

T

T
∑

t=1

`e(f
t
e) ≥ (4.4),

as desired.
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Lemma 4.3. For general latency functions with maximum slope s, (4.1) ≤ √
sεn+

(4.2).
Proof. Equation (4.7) above directly gives us

(4.1) ≤
∑

e∈E

√
sεef̂e + (4.2).

We then use the fact that f̂e ≤ 1 for all e to obtain the desired result.
Given the above lemmas we now present the proof of Theorem 4.1.
Proof. [of Theorem 4.1]
Since (4.3) ≤ ε + (4.4) by Assumption 2.7, and (4.2) ≤ (4.3) by convexity, we get

(4.1) ≤
√

sεn + (4.2)

≤
√

sεn + (4.3)

≤ ε +
√

sεn + (4.4)

≤ ε + 2
√

sεn + (4.5)

as desired.
Corollary 4.4. Let ε′ = ε + 2

√
sεn. Assume that all latency functions are

positive, non-decreasing, and continuous, with maximum slope s. In general routing
games, if all agents use the Kalai-Vempala algorithm [21], the average flow converges

to an ε′-Nash equilibrium at Tε = O(mn log n
ε2 ) = O(mn3s2 log n

ε′4 ). On networks con-
sisting of two nodes and m parallel links, if all agents use optimized “combining ex-
pert advice”-style algorithms, the average flow converges to an ε′-Nash equilibrium at

Tε = O( log m
ε2 ) = O(n2s2 log m

ε′4 ).
Once again we remark that not only have we proved that the average flow ap-

proaches ε′-Nash equilibrium, but as an intermediate step in our proof we showed
that actual average cost obtained by the users is at most ε′ worse than the best path
in the average flow.

5. Infinitesimal Users: Bounds on Most Timesteps. Here we present re-
sults applicable to general graphs and general functions showing that on most time
steps t, the flow f t will be at ε-Nash equilibrium.

Theorem 5.1. In general routing games with general latency functions with
maximum slope s, for all but a (ms1/4ε1/4) fraction of time steps up to time Tε, f t

is a (ε + 2
√

sεn + 2m3/4s1/4ε1/4)-Nash flow. We can rewrite this as: for all but an ε′

fraction of time steps up to Tε, f t is an ε′-Nash flow for ε = Ω
(

ε′4

sm4+s2n2

)

.

Proof. Based on equation (4.6),

√
sεe ≥ 1

T

T
∑

t=1

|`e(f
t
e) − `e(f̂e)|

for all edges. Thus, for all edges, for all but s1/4ε
1/4
e of the time steps,

s1/4ε1/4
e ≥ |`e(f

t
e) − `e(f̂e)|.

Using a union bound over edges, this implies that on all but a ms1/4ε1/4 fraction
of the time steps, all edges have

s1/4ε1/4
e ≥ |`e(f

t
e) − `e(f̂e)|.
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From this, it follows directly that on most time steps, the cost of the best path given
f t differs from the cost of the best path given f̂ by at most m3/4s1/4ε1/4. Also on
most time steps, the cost incurred by flow f t differs from the cost incurred by flow f̂
by at most m3/4s1/4ε1/4. Thus since f̂ is an (ε + 2

√
sεn)-Nash equilibrium, f t is an

(ε + 2
√

sεn + 2m3/4s1/4ε1/4)-Nash equilibrium on all but a ms1/4ε1/4 fraction of time
steps.

Corollary 5.2. In general routing games with general latency functions with
maximum slope s, for all but a (ms1/4ε1/4) fraction of time steps up to time T = Tε,

the expected average cost 1
T

∑T
t=1 ct incurred by any user is at most (ε + 2

√
sεn +

m3/4s1/4ε1/4) worse than the cost of the best path on that time step.

This demonstrates that no-regret algorithms are a reasonable, stable response in a
network setting: if a player knows that all other players are using no-regret algorithms,
there is no strategy that will significantly improve her expected cost on more than a
small fraction of days. By using a no-regret algorithm, she gets the guarantee that on
most time steps her expected cost is within some epsilon of the cost of the best path
given the flow for that day.

Proof. From the proof of Theorem 5.1 we see that on most days, the cost of the
best path given the flow for that day is within m3/4s1/4ε1/4 of the cost of the best path
given f̂ , which is at most 2

√
sεn worse than the cost of the best path in hindsight.

Combining this with the no-regret property achieved by each user gives the desired
result.

6. Regret Minimization and the Price of Anarchy. In this section, we
relate the costs incurred by regret-minimizing players in a congestion game to the cost
of the social optimum. We approach this problem in two ways: First, we show that any
ε-Nash equilibrium in a congestion game is closely related to a true Nash equilibrium
in a related congestion game. This allows us to apply Price of Anarchy results for
the congestion game to the regret-minimizing players in the original game. In our
second result in this section, we give an argument paralleling that of Roughgarden
and Tardos [28] that directly relates the costs of regret-minimizing users to the cost
of the social optimum.

Theorem 6.1. If f is an ε-Nash equilibrium flow for a nonatomic congestion
game Γ, then C(f) ≤ ρ

1−√
ε
(C(OPT ) + s

√
εn +

√
ε + ε), where OPT is the min cost

flow and ρ is the price of anarchy in a related congestion game Γ′ with the same class
of latency functions as Γ but with additive offsets.

For example, Theorem 6.1 implies that for linear latency functions, an ε-Nash

flow f will have cost at most 4/3
1−√

ε
(C(OPT ) +

√
ε(n + 1) + ε). Note that for regret

minimizing players, Theorem 6.3 below improves this to 4
3C(OPT ) + ε.

The proof idea for this theorem is as follows: For every nonatomic congestion
game Γ and flow f at ε-Nash equilibrium on Γ, there exists a nonatomic congestion
game Γ′ that approximates Γ and a flow f ′ that approximates f such that: (a) f ′ is
a Nash flow on Γ′, (b) the cost of f ′ on Γ′ is close to the cost of f on Γ, and (c) the
cost of the optimal flow on Γ′ is close to the cost of the optimal flow on Γ. These
approximations allow one to apply price-of-anarchy results from f ′ and Γ′ to f and
Γ.

Proof. Note that since f is at ε-Nash equilibrium on Γ, then at most a
√

ε
fraction of users are experiencing costs more than

√
ε worse than the cost of their

best path given f . We can modify Γ to Γ2 to embed the costs associated with these
“meandering” users such that the costs experienced by the remaining users do not
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change. Call the remaining (1 − δ) users f2.
Then C(f on Γ) ≤ C(f2 on Γ2) +

√
εC(f on Γ) + ε. We can rewrite this as

C(f on Γ) ≤ 1

1 −√
ε

(C(f2 on Γ2) + ε) .

We now construct an alternate congestion game Γ3 (not necessarily a routing
game, even if the original game was a routing game) such that f2 interpreted on Γ3 is
a Nash equilibrium. To do this, we create a new edge for each commodity, and include
that edge in every allowable path for that commodity. We can now assign costs to
these new “entry edges” to cause the minimum cost of any available path for each
commodity to be equal to the cost of the worst flow-carrying path for that commodity
in f2 on Γ2. The maximum cost we need to assign to any entry edge in order to achieve
this is

√
ε, since we already removed all users paying more than

√
ε plus the cost of

the best path available to them. Thus C(f2 on Γ2) ≤ C(f2 interpreted on Γ3), so we
have

C(f on Γ) ≤ 1

1 −√
ε

(C(f2 interpreted on Γ3) + ε) .

Define ρ to be the price of anarchy of the new congestion game Γ3 when played
with one unit of flow. The price of anarchy when played with less than one unit of
flow can only be lower. Thus, defining OPTα(H) to be the min-cost flow of size α in
game H, we have

C(f on Γ) ≤ ρ

1 −√
ε

(C(OPT1−δ(Γ3)) + ε) .

Since we added at most
√

ε to the cost of any solution in going from Γ2 to Γ3, this
gives

C(f on Γ) ≤ ρ

1 −√
ε

(

C(OPT1−δ(Γ3) interpreted on Γ2) +
√

ε + ε
)

,

and since OPT1−δ(Γ2) is the min-cost flow of size (1 − δ) on Γ2,

C(f on Γ) ≤ ρ

1 −√
ε

(

C(OPT1−δ(Γ2)) +
√

ε + ε
)

,

We now must quantify the amount by which the cost of OPT1−δ on Γ2 could
exceed the cost of OPT1 on Γ. Since the cost of any edge in Γ2 is at most s

√
ε more

than the cost of that edge in Γ, this gives

C(f on Γ) ≤ ρ

1 −√
ε

(

C(OPT ) + s
√

εn +
√

ε + ε
)

.

In particular, when all latency functions are linear, we can apply results of Rough-
garden and Tardos bounding the price of anarchy in a congestion game with linear
latency functions by 4/3 [28].

We can also directly characterize the costs incurred by regret-minimizing players
without going through the intermediate step of analyzing ε-Nash flows by arguing
from scratch paralleling the Price of Anarchy proofs of Roughgarden and Tardos [28].
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Definition 6.2. Let L be the set of cost functions used by a nonatomic congestion
game, with all `(ξ)ξ convex on [0,∞). For a nonzero cost function ` ∈ L, we define
α(`) by

α(`) = sup
n>0:`(n)>0

[λµ + (1 − λ)]−1

where the marginal social cost `∗e(ξ) = `e(ξ)+ξ ·`′e(ξ), λ ∈ [0, 1] satisfies `∗(λn) = `(n),
and µ = `(λn)/`(n) ∈ [0, 1]. We define α(L) by

α(L) = sup
0 6=`∈L

α(`).

Theorem 6.3. If Γ is a nonatomic congestion game with cost functions L with
all `(ξ)ξ convex on [0,∞), then the ratio of the costs incurred by regret-minimizing
players to the cost of the global optimum flow is asymptotically at most α(L) (which
is the Price of Anarchy bound given by Roughgarden and Tardos [28]).

Proof. Let f∗ be an optimal action distribution and f1, . . . , fT be a sequence of
action distributions obtained by regret-minimizing players. We can lower bound the
optimum social cost using a linear approximation of the function `e(ξ)ξ at the point
λt

ef
t
e, where λt

e ∈ [0, 1] solves `∗e(λ
t
ef

t
e) = `e(f

t
e):

`e(f
∗
e )f∗

e = `e(λ
t
ef

t
e)λ

t
ef

t
e +

∫ f∗

e

λt
e
ft

e

`∗e(f) dx

≥ `e(λ
t
ef

t
e)λ

t
ef

t
e + (f∗

e − λt
ef

t
e)`

∗
e(λ

t
ef

t
e)

= `e(λ
t
ef

t
e)λ

t
ef

t
e + (f∗

e − λt
ef

t
e)`e(f

t
e)

for all edges and time steps, and thus

C(f∗) ≥ 1

T

T
∑

t=1

∑

e∈E

[`e(λ
t
ef

t
e)λ

t
ef

t
e + (f∗

e − λt
ef

t
e)`e(f

t
e)].

We can rewrite this as

C(f∗) ≥ 1

T

T
∑

t=1

∑

e∈E

[µt
eλ

t
ef

t
e + (1 − λt

e)f
t
e]`e(f

t
e) +

∑

e∈E

[f∗
e − f t

e]`e(f
t
e),

where µt
e = `e(λ

t
ef

t
e)/`e(f

t
e). By the regret minimizing property,

1

T

T
∑

t=1

∑

e∈E

f t
e`e(f

t
e) ≤ ε +

∑

i

ai min
P∈Pi

1

T

T
∑

t=1

∑

e∈E

`e(f
t
e)

and thus

1

T

T
∑

t=1

∑

e∈E

f t
e`e(f

t
e) ≤ ε +

1

T

T
∑

t=1

∑

e∈E

f∗
e `e(f

t
e),

which gives us

C(f∗) + ε ≥ 1

T

T
∑

t=1

∑

e∈E

[µt
eλ

t
ef

t
e + (1 − λt

e)f
t
e]`e(f

t
e).
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By definition, µt
eλ

t
e + (1 − λt

e) ≥ 1/α(L) for each e and t, so µt
eλ

t
ef

t
e + (1 −

λt
e)f

t
e]`e(f

t
e) and `e(f

t
e)f

t
e differ by at most a multiplicative α(L) factor for every e

and t. This gives us

C(x∗) + ε ≥ 1

α(L)

1

T

T
∑

t=1

∑

e∈E

`e(f
t
e)f

t
e =

C(x)

α(L)
,

as desired.

7. Discrete Users: Parallel Paths. In contrast with the previous sections, we
now consider discrete users, where we denote the ith user weight as wi. Without loss
of generality, we assume that the weights are normalized such that

∑n
i=1 wi = 1. We

limit ourselves in this section to the single-commodity version of the parallel paths
routing game model and to functions with latency equal to the load, that is, for a path
e we have `e = fe. For each user i, we let the latency excluding her own path e at
time t be `e(f

t
e \ i) and her average latency on path e be `e(f̂e \ i) = 1

T

∑T
t=1 `e(f

t
e \ i),

where f t
e \ i = f t

e if user i is not routing on path e and f t
e \ i = f t

e −wi otherwise. We
always exclude the ith player from the latency function, since the ith player always
pays for its weight.

Next we observe that at time t, there always exists a path with load at most the
average load.

Observation 7.1. At any time step t, for every user i, there exists a path e such
that `e(f̂e \ i) ≤ 1−wi

m .
The following theorem differs from other theorems in the paper in the sense that

it is an expectation result and holds for every user.
Theorem 7.2. Consider the parallel paths model, with latency functions such

that the latency equals the load. Assume that each discrete user i uses an optimized
best expert algorithm. Then for all users, for all T ≥ O( log m

ε2 ),

1

T

T
∑

t=1

Ee∼qt
[`e(f

t
e \ i)] ≤ 1 − wi

m
+ ε,

where qt is the distribution over the m paths output by the best expert algorithm at
time t.

Proof. By Observation 7.1 we have that there exists a path with average cost at
most 1−wi

m . Since user i is using an optimized best expert algorithm and the maximal
latency is 1, we have that

1

T

T
∑

t=1

Ee∼qt
[`e(f

t
e \ i)] ≤ min

e∈E
`e(f̂e \ i) +

√

log m

T

≤ 1 − wi

m
+

√

log m

T

≤ 1 − wi

m
+ ε

where the last inequality holds for T ≥ O( log m
ε2 ).

Consider an instance of this model where every user plays uniformly at random.
The resulting flow is clearly a Nash equilibrium, and the expected latency for the
ith player is 1−wi

m excluding its own weight. We thus have shown that the expected
latency experienced by each user i is at most ε worse than this Nash latency.
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8. Conclusions. In this paper, we consider the question: if each player in a
routing game (or more general congestion game) uses a no-regret strategy, will be-
havior converge to a Nash equilibrium, and under what conditions and in what sense?
Our main result is that in the setting of multicommodity flow and infinitesimal agents,
a 1 − ε fraction of the daily flows are at ε-Nash equilibrium for ε approaching 0 at a
rate that depends polynomially on the players’ regret bounds and the maximum slope
of any latency function. Moreover, we show the dependence on slope is necessary.

Even for the case of reasonable (bounded) slopes, however, our bounds for general
nonlinear latencies are substantially worse than our bounds for the linear case. For
instance if agents are running the Kalai-Vempala algorithm [21], we get a bound of
O(mn log n

ε2 ) on the number of time steps needed for the time-average flow to reach

an ε-Nash equilibrium in the linear case, but O(mn3 log n
ε4 ) for general latencies. We

do not know if these bounds in the general case can be improved. In addition, our
bounds on the daily flows lose additional polynomial factors which we suspect are not
tight.

We also show that Price of Anarchy results can be applied to regret-minimizing
players in routing games, that is, that existing results analyzing the quality of Nash
equilibria can also be applied to the results of regret-minimizing behavior. Recent
work [5] shows that in fact Price of Anarchy results can be extended to cover regret-
minimizing behavior in a wide variety of games, including many for which this behav-
ior may not approach equilibria and where Nash equilibria may be hard to find.
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