
Machine Learning, 26, 5?? (1997)
c
 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Empirical Support for Winnow and Weighted-Majority
Algorithms: Results on a Calendar Scheduling DomainAVRIM BLUM avrim@cs.cmu.edu
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Editor:

Abstract. This paper describes experimental results on using Winnow and Weighted-Majority based algorithms
on a real-world calendar scheduling domain. These two algorithms have been highly studied in the theoretical
machine learning literature. We show here that these algorithms can bequite competitivepractically,outperforming
the decision-tree approachcurrently in use in the CalendarApprentice system in terms of both accuracyand speed.
One of the contributions of this paper is a new variant on the Winnow algorithm (used in the experiments) that
is especially suited to conditions with string-valued classifications, and we give a theoretical analysis of its
performance. In addition we show how Winnow can be applied toachieve a good accuracy/coverage tradeoff and
explore issues that arise such as concept drift. We also provide an analysis of a policy for discarding predictors
in Weighted-Majority that allows it to speed up as it learns.

Keywords: Winnow, Weighted-Majority, Multiplicative algorithms

1. Introduction

Multiplicativeweight updatingalgorithms such as Winnow (Littlestone,1988) and Weighted
Majority variants (DeSantis et al., 1988; Littlestoneand Warmuth,1994; Cesa-Bianchi et al.,
1993) have been studied extensively in the theoretical machine learning literature, in which
a collection of strong properties have been proven. These algorithms could be said to fall
into the category of “learning simple things really well.” In particular, when the concept
being learned is appropriately simple, they have been proven to have exceptionally good
behavior in the face of irrelevant features, noise, or a target function changing with time
(Littlestone, 1991; Littlestone and Warmuth, 1994). In this paper we add evidence of the
practical importance of these algorithms. We show that these approaches achieve excellent
performance in a natural learning task: the calendar scheduling domain of Mitchell et
al. (Dent et al., 1992; Jourdan et al., 1991; Mitchell et al.,1994). In particular, our imple-
mentations give a substantial improvement along a number oflines, including accuracy and
speed, over the results of Mitchell et al. (1994), who use a decision-tree based approach.

The main contributions of this paper are threefold. First, we describe how the Winnow
and Weighted-Majority algorithms can be naturally appliedto settings like the calendar
domain having string-valued attributes and many potentialstring-valued classifications. In
particular, we describe a new version of the Winnow algorithm especially suited to such
conditions, that can be viewed as combining the opinions of “specialists” in analogy to
the way in which the Weighted-Majority algorithm is viewed as combining the opinions of
“experts”. Second, we show that these approaches are usefulin practice, achieving a good
performance in terms of accuracy, speed, and accuracy vs. coverage tradeoffs. Finally, we

6 AVRIM BLUM
provide a theoretical analysis of a number of issues raised by the experiments, such as what
kind of performance guarantee can be placed on our Winnow variant, and when one can
discard poorly performing “experts” in the Weighted-Majority algorithm.

1.1. Summary

Mitchell et al. (1994) describe results of the Calendar APprentice (CAP) system which
uses a decision-tree based learning algorithm to predict certain aspects of a calendar event
(location, duration, start time, and day of week) based on known facts about the attendees
and the past history. We show here that Winnow and Weighted Majority achieve a good
performance both in accuracy and in speed for this task. For example, on the 1685
data points made available for one user’s (Tom Mitchell’s) calendar, our Winnow variant
achieves 75% accuracy in predicting a meeting’s location, compared with 64% for CAP
(see Table 1). Also, Winnow is quite fast due to its nature as an incremental algorithm.
Even when there are many features, it can easily perform its loop of predicting, finding
the correct answer, and then updating its internal state, inreal time. In contrast, because
the learning methods used by CAP were much slower, CAP had to restrict its learning to a
batch job each night.

We also show how Winnow can be adapted to provide a goodaccuracy vs. coverage
tradeoff, a topic not explored much in the theoretical literature, but important in practice.

One property of the Winnow and Weighted-Majority algorithms is that they are not very
sensitive to the presense of extra,possibly irrelevant attributes (Littlestone,1988; Littlestone
and Warmuth, 1994). Mitchell et al. use a special “feature selection” procedure (Caruana
and Freitag, 1994) that restricts the set of features presented to their learning algorithm.
However, our experiments show that Winnow and Weighted-Majority experience only
a very small loss in performance when a larger set is used, andin fact in some cases
performance actuallyimproves. The main performance loss is one of speed, but even this
can be lessened, especially in the case of Weighted Majority, by a pruning method.

2. The learning problem

An examplein the Calendar Apprentice domain is a calendar event to be scheduled on a
user’s calendar. It is described by a set of features such as:� What type of event is it? (meeting, seminar, course, ...)� What is the name of the seminar? (no-value, AI-seminar, ...)� What is the position of the attendees? (graduate student, faculty, funder, ...)� Are the attendees in the user’s group? (yes, no)� What are the names of the attendees in alphabetical order?

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 7
(req-event-type meeting)
(req-seminar-type nil)
(sponsor-attendees *inferred.novalue*)
(department-attendees cs)
(position-attendees faculty)
(group-attendees? no)
(req-course-name nil)
(department-speakers *inferred.novalue*)
(group-name *inferred.novalue*)
(lunchtime? no)
(single-person? yes)
(number-of-person 1)

(req-location dh4301c)

Figure 1. One of the data points for User 1. Listed are the features usedfor predicting location by CAP, along
with the correct location of this meeting.

and so forth. A specific example is given in Figure 1. The quantities we are asked to
predict are the event’s location, duration, start time, andday of week. In the current CAP
system, these quantities are then presented as default values to the user, who may decide to
override them or not. The actual decisions made by the user are then given as feedback to
the learner. The CAP project has made their data available, and in particular 1685 examples
spanning two years of Tom Mitchell’s calendar and 554 examples from a second user.1

A few aspects of this learning task worth noticing are:

1. The “target concept”2 is something that changes with time. For instance, at a semester
boundary, the times and days fora seminar or group meeting might change, the behavior
of the user might change because he is now teaching a large class, and so forth.

In fact, for this reason the CAP system each day builds a decision tree (which it then
prunes into rules in a manner similar to C4.5) based on only the most recent 180
examples, where 180 is a value determined empirically to provide good performance.

2. The features in general are string-valued, and in fact theset of possible values held by
some feature may not even be known at the start. For instance,we might not know at
the start what the set of all seminar names might be. Similarly, the quantities we are
asked to predict are also string-valued, and we also may not know what their possible
values might be at the start: for instance, this is the case with location.

As mentioned above, the CAP system uses a decision-tree based learning method. More
specifically, CAP maintains a database of rules, sorted by observed performance. Each
night, CAP builds a decision tree using the most recent 180 example, prunes this tree into

8 AVRIM BLUM
a list of rules, and merges these rules into its database, updating its statistics (Mitchell
et al., 1994). A number of design choices are involved in thisprocess, such as exactly
what features to give to the decision-tree algorithm (CAP provides the algorithm only a
restricted subset, based on the learning task), how to mergenew and old rules, what length
window to use, and so forth (see Mitchell et al. (1994) for details). In settling on their
approach, the CAP designers also tried several other learning methods, including other
decision tree variants and a neural-network algorithm, andfound these to have equal or
worse performance.

3. Description of the algorithms

Weconsider two multiplicative-weight-updating learningalgorithms: theWeighted-Majority
algorithm(Littlestoneand Warmuth, 1994) and a version of Littlestone’s Winnow algorithm
(Littlestone, 1988). These are bothincrementalalgorithms. Upon receipt of an unlabeled
example they make a prediction. When they are told the correct answer, they use that
information to adjust their hypothesis, and then are ready for the next example.

3.1. Weighted-Majority: combining experts

The simpler of the two algorithms implemented is essentially a straight Weighted-Majority
algorithm as described in Littlestone and Warmuth (1994). It is based on the supposition
that out of all the features given, perhaps there exists somesmall set of, say, two features,
that just by themselves are enough to construct a good predictor. For instance, perhaps
knowing only the event type and the seminar name is enough to predict well.

Specifically, the algorithm works as follows. For each pair of features we create a pre-
diction strategy (an “expert”) that examines only those twofeatures and makes predictions
based on their values. The global algorithm will receive predictions from all

�n
2

�
experts

and then will decide based on a weighted-majority vote of those predictions. To fully
specify this approach, we must say (1) how each individual expert works, and (2) how we
will weight the votes.

We perform (2) by using the simple multiplicative rule discussed in Littlestone and
Warmuth (1994). We begin with all experts having the same weight of 1. When we
receive the example’s correct labeling, we see which experts predicted incorrectly and cut
the weights of those experts in half. We do not modify the weights of those that predicted
correctly. The experimental results did not depend significantly on the exact constant (in
this case, 1=2) used to multiply the weights of the incorrect experts.

Weperform(1) by having each expert performasimple table lookup: given apairof values
for its two features (e.g., if its features areevent-type andposition-of-attendees ,
then it might see the pair of values<meeting, grad-student>) look at the lastk
times that that pair of values occurred and predict the outcome that occurred most often out
of thosek. We usedk = 5. If the pair of values has never occurred before, then the expert
predicts a global default (the most common outcome seen so far).

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 9
This algorithm clearly can be implemented using, say, triples of features instead of pairs.

One could also imagine doing something more intelligent than just predicting a global
default when the tuple of values seen does not exactly match anything in memory, but only
the simple rule was used in the experiments.

A natural modification to the weighted majority algorithm isto discard experts if their
weights drop too low, so that the algorithmspeeds upas it learns more, in contrast to most
learning algorithms that slow down as they learn. Discarding experts may be dangerous if
one is too aggressive because the expert that turns out to be best in the end may not appear
best near the start. However, one can provide theoretical guarantees for such strategies,
which we do in Section 5.1. Our experimental results indicate that for a wide range
of weight thresholds, one can achieve both a significant speedup and negligible loss in
performance. (See Figure 7.)

3.2. Winnow: combining specialists

The Weighted-Majorityalgorithmand its variants are oftenthoughtof as ways of combining
the opinions of “experts” that give predictions for each example. The Winnow algorithm,
and in particular the variant we describe here, can be thought of as a method for combining
the opinions of entities that each may choose toabstaininstead of giving a prediction on
any given example. We will call these entitiesspecialists, because they are allowed to
abstain when the current example does not fall into their “specialty”.

Specifically, the Winnow variant we consider proceeds as follows. For each pair of
(feature=value) conditions experienced so far, such as “event-type = meeting and
position -of -attendees = grad-student ,” there will be onespecialist. This
specialist is extremely simple: it only wakes up to make a prediction if both its conditions
are true, and in that case it predicts the most popular outcome out of the last five times it
had the chance to predict.3 (E.g., in the above case, it predicts the most popular outcome
out of the last 5 times there was a meeting with grad students.) The very first time that
the specialist appears, it abstains. The global algorithm makes a prediction based on a
weighted majority vote over all predicting specialists.

One way to view the algorithm is that we are listing the antecedents for all the possible
“rules of length 2”, and determining their consequent basedon their recent history. Each
of the specialists corresponds to one of these rules. We thenpredict based on a weighted
vote. In Section 5.2 we provide theoretical guarantees under the assumption that the target
concept consists of a list of rules of length 2. Indeed, one original motivation for trying
this approach was the fact that most of the rules created by the CAP algorithm (which runs
ID3 and then prunes the decision tree into rules) are quite short.

How are the specialists weighted? When a specialist first appears (the pair of conditions
occurs for the first time) the specialist is given weight 1 (and it abstains on this example). On
further predictions, we use the basic “Winnow II” strategy described in Littlestone (1988).
If the global algorithm predicts incorrectly, then if the specialist predicts incorrectly its
weight is halved and if it predicts correctly its weight is multiplied by 3=2. For a small
benefit in accuracy, we halve the weight of a specialist when it makes a mistakeeven ifthe
global algorithm predicted correctly. The reason we multiply by 3=2 instead of, say, by 2 is

10 AVRIM BLUM
for the benefit of our theoretical analysis (Section 5.2); however, tests reveal no significant
difference between the two policies.

The reader familiar with the analysis of the Winnow algorithm will note that increasing
the weights only when the global algorithm makes a mistake, and not when the global
algorithm predicts correctly, is necessary for the theoretical analysis to go through.In fact,
in this calendar application, it turns out to be crucial empirically as well. If one modifies
the algorithm to multiply the weights of specialists that predict correctly even when the
global algorithmpredicts correctly too, then performancedrops. Thus, one should not think
of the algorithm as simply maintaining “percentage correct” figures for each specialist and
weighting accordingly. Specialists are rewarded not so much for predicting correctly, but
for predicting correctly in times when the global algorithmshould have listened to them
more carefully.

The algorithm as described above can be viewed as a variant onthe “balanced” version
of Winnow (Littlestone, 1989). In the “balanced” algorithm, one would maintain a vector
of weights for each specialist, one weight for each possibleoutput. One would then
view the specialist as predicting all possible outputs, each with its associated weight, and
weights would be updated as if each element of the vector was aseparate (fixed) prediction
algorithm. The advantage of our approach is (A) less computational overhead, and (B)
faster adaptivity to changes. For example, if the AI-seminars are moved from Mondays
to Fridays, in our approach this changes a specialist’s behavior after 3 mistakes. In the
balanced algorithm, this might cause a much larger number ofmistakes, even if weights
are lower-bounded as in (Littlestone and Warmuth, 1994).

One point to notice is that as learning progresses, the number of specialists in existence
may becomequite large. However, on anyindividualexample, only asmall number (number
of features choose 2) actually make a prediction. Thus, thissetting can be modeled by the
infinite attribute modelof (Blum, 1992; Blum et al., 1991).

4. Experimental results

We ran Winnow and Weighted-Majority on 1685 data points fromone user and 554 data
points from a second user of the CAP system. We presented the examples to the algorithms
one by one in chronological order, recording when mistakes were made. Tables 1 and 2
compare the total percentage of correct predictions made byCAP, Winnow, and Weighted
Majority (using both pairs and triples of features). As mentioned in the introduction, CAP
filters the feature set and uses only a subset for each prediction task. For instance, 12
features are used for predicting location, 11 for duration,15 for start time, and 16 for day
of week. In the columns labeled “Winnow”, “WM”, and “WM-triples” we ran Winnow
and Weighted-Majority (pairs and triples) on those same feature sets. Notice that Winnow
achieves an average improvement over CAP of over 10 percentage points for User 1 and
an even greater improvement (nearly 20 points) for User 2. Weighted Majority performs a
bit worse than Winnow, but still does surprisingly well considering that the essence of the
algorithm is just to quickly find the two (or three) best features. A plot of accuracy versus
time for the Winnow algorithm’s performance in predicting location is given in Figure 2.

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 11
Table 1.Comparison of fraction correct on 1685 data points from User1 (Tom Mitchell). For
reference, the standard deviation for 1685 fair Bernoulli trials is 0.012.

Prediction task CAP Winnow Winnow-bigset WM WM-bigset WM-triples

location 0.64 0.75 0.76 0.70 0.74 0.72
duration 0.63 0.71 0.74 0.64 0.73 0.66

start-time 0.34 0.51 0.53 0.39 0.50 0.45
day-of-week 0.50 0.57 0.57 0.56 0.56 0.57

AVERAGE 0.53 0.63 0.65 0.57 0.63 0.60

Table 2.Comparison of fraction correct on 554 data points from a second user. For reference,
the standard deviation for 554 fair Bernoulli trials is 0.021.

Prediction task CAP Winnow Winnow-bigset WM WM-bigset WM-triples

location 0.33 0.71 0.72 0.67 0.66 0.69
duration 0.69 0.73 0.75 0.69 0.69 0.70

start-time 0.32 0.58 0.59 0.52 0.52 0.55
day-of-week 0.37 0.47 0.48 0.43 0.45 0.45

AVERAGE 0.43 0.62 0.63 0.58 0.58 0.60

In order to test the focusing abilities of these algorithms,we also ran Winnow and
Weighted-Majority using a larger set of 34 features. This larger set was constructed by
taking the entire feature set and just filtering out those whose values we could not represent
well (such as bitmaps or high-precision real values) and those that could not legally be used
for all 4 tasks (such as “day-of-week”, which is in the CAP setof features for predicting
start-time, but clearly should not be used for predicting day-of-week). We then ran our
algorithms on the larger set. These results are in the columns marked “Winnow-bigset”
and “WM-bigset” in Tables 1 and 2.

As expected, Winnow and Weighted Majority are not hurt significantly when the larger
feature set is used, but interestingly, performance oftenimproves, especially for Weighted-
Majority. The reason for the improvement is that features that had been deemed not useful
for ID3 may be quite useful for Winnow and Weighted Majority.In fact, in this larger
set, for User 1 the performance of Weighted-Majority almostreaches that of our Winnow
variant.

In addition to good predictive performance, Winnow and Weighted-Majority as imple-
mented are both quite fast. On a SPARC10, Winnow takes on average about 30 seconds
to make an entire sequence of 1685 predictions on the small feature sets, and about 90
seconds on the large feature set. Weighted-Majority is a bitslower without pruning, but a
good bit faster with pruning (discussed in Section 4.5 below). Thus, at a speed of 1=60 to
1=18 seconds per example, both algorithms can be used in real time.

Theoretical analysis (Littlestone and Warmuth, 1994; Cesa-Bianchi et al., 1993) suggests
using randomization instead of a strict weighted majority vote (weights on the outputs
are normalized to sum to 1 and are then interpreted as probabilities). This produced no
significant effect on prediction accuracy in the two datasets.

One point worth mentioning is that in these experiments, even though the total number of
specialists in the Winnow-based learner can get quite large(by the time of the final example

12 AVRIM BLUM
0.00

0.20

0.40

0.60

0.80

1.00

A
cc

u
ra

cy

0 500 1000 1500 2000

Location

Figure 2. Accuracy versus example number for predicting location using Winnow. The larger dips correspond
roughly to semester boundaries.

for User 1, there are 59731 specialists for the large featureset), on any individual example
only a relatively small number actually make a prediction (561 in the large feature set).
This smaller set of predicting specialists can be identifiedefficiently using a hash table,
so the algorithm does not actually need to poll all of the specialists in existence on each
example. In addition, the fact that only a relatively small number of specialists makes a
prediction on each example is useful for the theoretical analysis (section 5.2).

4.1. Interpreting the weights: what the algorithms learned

For the Weighted Majority algorithm used, the weights assigned to the “experts” can be
interpreted as answering the question: “if you were only allowed to look at two features,
which two you choose?” In a sense, Weighted Majority can be viewed as an algorithm
designed to answer this question while simultaneously making good predictions as it learns.
Interestingly, in this experiment the best pair of featuresfound was often not a subset of
the best triple found when the algorithm was run with one expert per triple. For instance,
for User 1, while there was a nice containment relationship for predicting location (the best
single feature was the number of people in the meeting, the best pair was the number of
people and the seminar type, and the best triple was that pairplus one more feature), for
predicting duration the best pair and best triple had no intersection.

The Winnow algorithm used can be viewed as assigning weightsto each possible “rule
of length 2”, indicating the extent to which that rule shouldbe trusted. For instance, for
predicting duration for User 1, some top-weighted rules are:

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 13
Table 3.Average fraction correct (over the
4 tasks) of predictions by CAP, Winnow,
and a “brain-damaged” Winnow (Win-
nowDay) which was only allowed to up-
date its internal state at day boundaries.

User 1 User 2

CAP 0.53 0.43
Winnow 0.63 0.62

WinnowDay 0.59 0.56
Winnow-bigset 0.65 0.63

WinnowDay-bigset 0.62 0.51

“If there is a single attendee and he/she is from the ECE department, then 30
minutes.”

“If there is more than one attendee and they are research programmers, then 60
minutes.”

“If the attendees are faculty members and not from CMU then 60minutes.”

As discussed earlier, the weight of a rule does not describe the accuracy of that rule in
isolation; rather, the method for updating weights dependson the relationship of that rule
to the others that are firing at that time.

4.2. Incremental versus Batch

The Winnow and Weighted-Majority algorithms tested in these experiments were allowed
to update their internal state after each example. In some sense, this is an unfair advantage
over CAP which only updated its hypotheses overnight. (On the other hand, this is one
of the advantages of using a fast, incremental algorithm; namely, real-time updating of
hypotheses is possible.) To factor out this advantage, we also ran Winnow in a “brain-
damaged” mode in which it was forced to make predictions using its state from the end
of the previous day. Results are presented in Table 3. Noticethat for User 1, average
performance drops by 3% on the large feature set and 4% on the smaller feature sets,
compared with the non “brain-damaged” version. For User 2, the drop is more substantial
(and interestingly, this seems to cause greater damage to performance on the large feature
set) but the improvement over CAP is more substantial as well.

4.3. How important is the weighting scheme?

The standard Winnow algorithm has the property that all of its learned information is
stored in its weights: if one does not allow it to update weights, then it learns nothing.
However, the “specialists” version of the algorithmused here learns in two ways. The global
algorithm learns which specialists to pay attention to (which is stored in the weights), but
also each individual specialist learns what output it should predict. In order to test the

14 AVRIM BLUM
Table 4.Testing the importance of the weighting scheme. Winnow-Dayrefers to the
version that only updates its state at day boundaries (see Table 3). “Winnow-1” and
“Winnow-Day-1” are the versions that force all weights to remain at 1. All of these
results are on the smaller feature sets (the ones used by CAP).

Task Winnow Winnow-Day Winnow-1 Winnow-Day-1

User 1: location 0.75 0.70 0.67 0.59
User 1: duration 0.71 0.68 0.63 0.56
User 1: start-time 0.51 0.45 0.32 0.22
User 1: day-of-week 0.57 0.53 0.47 0.37

AVERAGE 0.63 0.59 0.52 0.44

User 2: location 0.71 0.62 0.65 0.29
User 2: duration 0.73 0.70 0.66 0.44
User 2: start-time 0.58 0.49 0.51 0.18
User 2: day-of-week 0.47 0.42 0.44 0.37

AVERAGE 0.62 0.56 0.56 0.32

relative importance of the weighting scheme, we ran the algorithm in a mode in which
weights were fixed to 1. In fact, the two algorithms (Winnow and Weighted Majority)
become equivalent in this case, except for small technical differences.4

The results of this experiment are listed in Table 4. One can see that forcing all weights to
remain at 1 causes Winnow to degrade significantly: a loss of 6-11 percentage points. For
the version that is only allowed to update its internal stateat day boundaries (the internal
state includes the memory of the individual specialists) the loss is much more severe,
ranging from 15 to 24 percentage points.

4.4. Accuracy versus coverage

A desirable property for learning algorithms in settings like the calendar domain is to be
able to achieve a goodaccuracy versus coverage tradeoff. In other words, the algorithm
should have some sort of adjustable parameter that allows itto trade off reduced coverage
(the ability to not make a prediction on some examples) for increased accuracy on those
examples on which it does predict.

The Winnow algorithm has a natural parameter of this sort. Namely, since the global
algorithm is performing a vote, it can choose to predict onlyif that vote is sufficiently
lopsided. However, we found that the algorithm makes a better tradeoff by performing the
followingslightlymore detailed strategy. Each specialist’s vote is split among the outcomes
in its memory. For instance, if the last 5 times the specialist was “awake”, three of the
correct answers were Friday and two were Monday, then it gives 3=5 of its vote to Friday
and 2=5 to Monday. Then the totals are tallied and a prediction is made only if the outcome
with highest weight receives at least a specified fraction ofthe total vote. The advantage of
this approach is that it allows individualspecialists to claim differing degrees of confidence.

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 15
0.00

0.20

0.40

0.60

0.80

1.00
A

cc
u

ra
cy

0.00 0.20 0.40 0.60 0.80 1.00
Coverage

User 2
User 1

Figure 3. Location

0.00

0.20

0.40

0.60

0.80

1.00

A
cc

u
ra

cy

0.00 0.20 0.40 0.60 0.80 1.00
Coverage

User 2
User 1

Figure 4. Duration

Modifying the algorithm in this way also does not significantly affect accuracy at the 100%
coverage level.

Graphs showing the accuracy versus coverage tradeoffs achieved by Winnow are in
Figures 3–6. “Coverage” is the fraction of examples on whicha prediction is made, and
“Accuracy” is the fraction correct on those examples. Strangely, for very high cutoffs, the
performance in predicting day-of-week for User 1 decreasessomewhat: the exact cause of
this is unclear.

The performance of Winnow here compares quite well with thatof CAP (Mitchell et al.,
1994). For example, Winnow achieves 86% accuracy predicting duration for User 1 at
50% coverage, while CAP achieves a maximum of 74% accuracy inpredicting duration

16 AVRIM BLUM
0.00

0.20

0.40

0.60

0.80

1.00

A
cc

u
ra

cy

0.00 0.20 0.40 0.60 0.80 1.00
Coverage

User 2
User 1

Figure 5. Day of week

0.00

0.20

0.40

0.60

0.80

1.00

A
cc

u
ra

cy

0.00 0.20 0.40 0.60 0.80 1.00
Coverage

User 2
User 1

Figure 6. Start time

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 17
(and only about 70% accuracy at 50% coverage). In fact, Armstrong et al. (Armstrong
et al., 1995) report similarly good accuracy-coverage performance using Winnow for a Web
link-prediction task.

4.5. Pruning

The weighted-majority algorithm brings up the following exciting notion: by dropping
poorly performing experts from consideration (neither asking for their predictions nor
updating their weights), one can have an algorithm that speeds up as it learns more. This
lies in contrast to the vast majority of algorithms that slowdown as they learn.

The most natural method for pruning experts is simply to discard them when the ratio
of their weight to the highest weight drops below some given threshold. In Figure 7, we
plot for day-of-week prediction the number of experts remaining as a function of time for
several different thresholds. Also given is the accuracy resulting from each policy. (Results
for the other prediction tasks were similar.) Notice that pruning too aggressively may
reduce effectiveness, but a wide range of policies exist that both do essentially no damage
and prune quickly. As described in Section 5.1 below, the theoretical guarantees suggest
using a cutoff that decreases polynomially with the number of experts. (This is the same
as pruning when the number of mistakes made exceeds that of the current best expert by
some quantity that dependslogarithmicallyon the number of experts.)

5. Theoretical results

5.1. Pruning Weighted-Majority

In the standard worst-case analysis of weighted-majority (Littlestone and Warmuth, 1994;
Cesa-Bianchi et al., 1993), pruning experts in the manner discussed in Section 4.5 is
dangerous: an expert that currently has a low weight could potentially become important
later. However, pruningcanbe justified under less pessimistic distributional assumptions.
Specifically, suppose that examples are selected from a fixeddistributionD and classified
by some fixed target concept (as in the PAC model), and the experts are each fixed prediction
algorithms. This means that the probabilitypi that experti predicts correctly on a random
example is well-defined (though thesepi’s need not be independent). In this case, onecan
provide theoretical guarantees. Of course in the calendar setting, each predictor is not a
fixed function, but rather a learning algorithm itself. Nonetheless, the analysis in this model
illuminates the type of behavior one can hope to expect.

We first need a small amount of notation. Letn be the number of experts and letopt be
the (index of) the true optimal expert: the one with largestpi. We will say that an experti
is �-optimalif pi � popt � �. Let us define theobserved optimalexpert to be the one that
has made the fewest mistakes so far. We can now prove the following two simple theorems
(the second is the more interesting one).

The first result, which follows immediately from Hoeffding bounds, states that a timid
pruning policy is not likely to remove the true optimal expert.

18 AVRIM BLUM

0

100

200

300

400

500

600

E
xp

er
ts

 r
em

ai
n

in
g

0 200 400 600 800 1000 1200 1400 1600 1800
example number

Threshold 0.01: 51.7% correct
Threshold 0.001: 51.8% correct
Threshold 0.0001: 55.4% correct
Threshold 0.00001: 55.8% correct
Threshold 0.000001: 55.8% correct
(No pruning: 55.8% correct)

Figure 7. Pruning results for Weighted-Majority: number of unprunedexperts as a function of time for day-of-
week prediction using the large feature set (User 1).

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 19
THEOREM 1 (Timid pruning) Consider the strategy that removes an expert if it has made
at least

p
2t ln(2t2n=�) mistakes more than the observed optimal, wheret is the number

of examples seen so far. Then with high probability(1� �), the optimal expert will never
be removed.

Proof: Hoeffding bounds state that for a coin of biasp, the probability that aftert coin
flips the number of heads exceedspt by more than

p(t=2) ln(1=
) is at most
. The
probability that the number of heads fallsbelowpt by that amount is also at most
.

Notice that to removeopt requires that at some timet, eitheropt has made at least
1
2

p
2t ln(2t2n=�) moremistakes than its expectation, or some other predictor has made

that manyfewer (or both). The probability that either of these events ever happens is at
most n 1Xt=1

�=(2t2n) = �=2
1Xt=1

1=t2 < �:
One can improve the dependence ont in the above bound somewhat by arguing as in the
proof of the law of the iterated logarithm (Feller, 1968).

The second theorem states that with a more aggressive policy, even though one may
remove the optimal expert, one still can ensure that with high probability at least some
near-optimal expert remains. Notice that the number of examples t does not appear in
this bound, and the dependence on the number of expertsn is logarithmic. This motivates
using a rule that discards experts when their weight drops toless than 1=p(n) times the
maximum, for some polynomialp.

THEOREM 2 (Aggressive pruning) Let� < 1=2 and consider the strategy that removes an
expert if it has made at least(4=�) ln[16n=(�4�)] more mistakes than the observed optimal.
Then with high probability(1� �), we will never remove all�-optimal experts.

Proof: We begin by showing that with probability at least 1� �=2, opt will not be
removed at any timet � (4=�2) ln[16n�4�]. This follows directly from Theorem 1 since in this
range of timest, the quantity

p
2t ln(4t2n=�) (taken from Theorem 1 but using�=2 instead

of �) is less than(4=�) ln[16n�4�], so long as� < 1=2.
Now consider the larger timest. We show that in this range, with probability at least

1� �=2, none of the non-�-optimal experts (henceforth called “bad” experts) has fewer
mistakes thanopt. This means that ifopt is ever removed, then so are all the bad experts,
proving the theorem. This again will follow from Hoeffding bounds.

Specifically, in this range of timest, we have�t=2 � p(t=2) ln(4t2n=�). (This can be
seen by first squaring, rearranging, and exponentiating to produce the inequalitye�2t=2 �
4t2n=�, then noticing that it suffices to verify the inequality using the specific value oft = (4=�2) ln(16n�4�), and finally using the fact thatx = 16n�4� satisfiesx > 4(lnx)2 for� < 1=2.) Thus, for any fixed timet in this range, the chance that eitheropt makes�t=2
mistakesmorethan its expectation, or some other expert makes�t=2 mistakeslessthan its
expectation is at most�=4t2. Notice that the expected number of mistakes byopt differs
from the expected number of mistakes by any bad expert by at least�t, so for the procedure
to fail, one of these two events must happen. Thus, summing over all t we have that with

20 AVRIM BLUM
probability at least 1� �=2, opt never makes more mistakes than any of the bad experts.

5.2. Mistake bounds for Winnow

We describe here an analysis of our winnow variant, which forconvenience we refer to as
Winnow-Specialist, in the following “infinite-attribute model” setting.

The setting is that we have some large (possibly infinite) setof specialists: predictors
that on each example may either predict or abstain. Out of these specialists,r are infallible:
whenever one of thoser predicts it is always correct. In addition, on each example we have
the following two guarantees: (1) at mostn specialists make a prediction, and (2) at least
one of those is one of ther infallible specialists. We call ther infallible specialistsrelevant
and the othersirrelevant.

In the calendar domain, this corresponds to thinking of the classification as being given
by a list ofr rules like:

If event-type = meeting , andattendees = Joe , then my office.

If event-type = meeting , andattendees = the-dean , then dean’s office.

If attendee-type = funder ,
andsingle-attendee = yes , then my office.

...

and the proviso that each example makes at least one rule fire,and that we never will
see an example which makes two inconsistent rules fire. The quantityn is the number
of feature-pairs. Alternatively, this setting can be viewed as assuming that each output
corresponds to some disjunction of boolean variables, where the total number of relevant
boolean variables isr, and we are guaranteed that each example satisfies exactly one of the
disjunctions.

The algorithmWinnow-Specialist is as described in Section 3.2: Specialists have their
weight initialized to 1 when they first predict. After that, they have their weight cut in
half when they make a mistake, and their weight is multipliedby 3=2 when they predict
correctlyand the global algorithm makes a mistake. The analysis is essentially the same
as that for the standard Winnow algorithm, but one slight complication is that since we
initialize specialists even when the global algorithmdoes notmake a mistake, we cannot
bound the total weight. For instance, many examples might pass in which no mistake is
made, and yet a large number of initializations occur. Instead, we will bound the weight
on specialists whose weight is greater than 1. (Alternatively, we could have modified the
algorithm to only initialize new specialists when a mistakeis made.)

THEOREM 3 The Winnow-Specialist algorithm makes at most2r log3=2(3n) mistakes
under the conditions described above.

Proof: Define a specialist to have “high weight” if its weight is greater than 1. DefineWhigh�irrel to be the total weight on high-weight irrelevant specialists.

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 21
Consider what happens when the global algorithm makes a mistake. LetWa be the total

weight on high-weight specialists that predictedincorrectly. So, the total weight predicting
incorrectly is at mostWa + n. Let Wb be the total weight on the irrelevant specialists
that predictedcorrectly (whether their weight is high or not) and letWr be the weight on
the relevant specialists that predicted (and must have predicted correctly by definition).
So, the total weight predicting correctly isWb +Wr . Since the global algorithm made a
mistake, this means thatWb + Wr � Wa + n. Now, notice thatWhigh�irrel increases
by at mostWb=2�Wa=2, since the irrelevant specialists whose weights are multiplied by
3=2 are exactly those included inWb, and the specialists included inWa (which all were
high-weight) have their weights multiplied by 1=2. Thus, the increase inWhigh�irrel due
to this mistake is at mostWb=2�Wa=2� 1

2
(n�Wr): (1)

Now, consider mistakes in whichWr < 2n. There can be at mostr + r log3=2(2n) of
these, since after that many such mistakes, allr relevant specialists will have weight at
least 2n. So, by Equation 1, these mistakes together add at most1

2 [nr + nr log3=2(2n)] toWhigh�irrel .
Now consider mistakes that occur whenWr � 2n. Each of these removes at leastn=2 fromWhigh�irrel . So at mostr + r log3=2(2n) mistakes of this sort can be made as

well. Thus the total number of mistakes is at most 2r + 2r log3=2(2n) = 2r log3=2(3n).
In fact, similar reasoning to the above shows that (as for thestandard Winnow algorithm)

Winnow-Specialist is fairly robust to noise. For instance, if a relevant specialist predicts
incorrectly on an example, the result is that its weight willbe cut in half, perhaps producing
two more mistakes of the “Wr < 2n” form while its weight recoups, which in turn may
produce up to two more mistakes of the “Wr � 2n” form.

6. Summary and conclusions

Winnow and Weighted-Majority are learning algorithms whose forte is in “learning simple
things really well”. If the learning setting has the property that one can hope to predict
well by using a collection of simple rules, these algorithmshave advantages of being fast
and incremental, of being able to quickly focus on relevant features (Littlestone, 1988),
of adapting well to target concepts that change with time, and (at least in the instance
discussed here) having reasonable accuracy/coverage tradeoffs.

Several factors seemed to be influential in producing the good performance of these
algorithms on the CAP data. One is that in the Winnow and Weighted Majority algorithms
implemented, the question of how to discount old data in favor of new data is handled in a
distributed manner. Most algorithms view examples in a monolithic, centralized way. For
instance, CAP provides to its learning algorithm a fixed window of the past 180 examples.
A disadvantage with this approach is that one is likely to forget rare but useful events, and
yet not adapt quickly enough to small changes. In the algorithms used here, however, the
memory is kept at the level of the experts/specialists. For instance, the “event-type =

22 AVRIM BLUM
seminar andseminar-type = AI seminar ” specialist stores the 5 most recent
AI seminars. Storing information at this more “local” levelallows for recent events to take
precedence over previous ones, while at the same time remembering the rare cases. For a
frequent event, we benefit because only a few examples of a newoutcome are needed to
change behavior (e.g., the seminar is moved from Monday to Friday). For an infrequent
event, we benefit as well because the associated specialist will still remember where and
when that previous event occurred, no matter how long ago it was. Note that although there
is a fair amount of “concept drift”, the fact that pruning experts in the Weighted Majority
algorithm worked so well suggests that in this domain, the type of drift that occurs is not
one in which the set of “most important features” changes, but rather the change is in what
one should do with those features. For instance, seminar-name is an important feature
across semesters, but the start time and location of a given seminar may change with time.

A second factor influencing the performance of these algorithms is that the weighting
scheme allows one to quickly focus in on a good set of prediction rules. As described
in Table 4, performance drops substantially when the weighting mechanism is disabled.
Moreover, in the Winnow algorithm it is important that the weights represent not the
individual “percentage correct” figures for each specialist, but rather the extent to which
the specialist is helpful in combination with the other specialists available. As mentioned
in Section 3.2, if weights are increased for specialists even when the global algorithm is
predicting correctly, performance drops significantly (though not quite as much as when
the weights are completely disabled). Furthermore, the multiplicative weighting scheme
allows the algorithms to perform well even when a large number of features are available
without needing a separate feature-selection algorithm asin CAP. This ability to focus
should be even more useful if the learning system itself is given the ability to probe the
world for features (e.g., by fingering users, scanning the net, etc.).

In summary, this paper has demonstrated that Winnow and Weighted Majority can be
useful algorithms in practice and has discussed some of the issues involved in their im-
plementation. These are algorithms especially worth considering in situations where one
suspects that good performance can be achieved by hypotheses of a relatively simple form
but where other factors such as concept drift, noise, a need to be fast and incremental, and
an abundance of features complicate the learning task.

Acknowledgements

I would like to thank Prasad Chalasani for a great deal of help in the early stages of this
work, and the members of the CAP project, especially Rich Caruana, Dayne Freitag, Tom
Mitchell, and David Zabowski (Stork), for helpful discussions and for making their data
available.

This work was supported in part by NSF National Young Investigatorgrant CCR-9357793,
by a Sloan Foundation Research Fellowship, and by ARPA undergrant F33615-93-1-1330.
The views and conclusions in this document are those of the author and should not be
interpreted as representing official policies, either expressed or implied, of ARPA, NSF,
the Sloan Foundation, or the U.S. Government.

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 23
Data and source code

Data and source code are available via

http://www.cs.cmu.edu/afs/cs/usr/avrim/Calendar/info.html

Notes

1. Visit http://www.cs.cmu.edu/afs/cs/project/theo-5/www/cap-data.html.

2. Of course there is no true target concept — just labeled examples. Yet the notion of a target concept is always
a convenient fiction.

3. Clearly one could implement this strategy using, say, triples of conditions; experimentally, in this domain
using triples did not help much, and pairs performed much better than using just single conditions.

4. In the Weighted Majority algorithm, each expert is required to make a prediction on each example. So, if an
example is seen that does not match anything in an expert’s truth table, the expert just predicts a global default
value. In the Winnow algorithm, there is no need to predict a default unlessnoneof the specialists predict,
which neverhappens in the two data sets (except for the first example). Running both algorithms with weights
fixed to 1 on this data reveal no significant differences in performance between them.

References

Armstrong, R., Freitag, D., Joachims, T., and Mitchell, T. (1995). Webwatcher: A learning apprentice for the
world wide web. In1995 AAAI Spring Symposium on Information Gathering from Heterogeneous Distributed
Environments.

Blum, A. (1992). Learning boolean functions in an infinite attribute space.Machine Learning, 9:373–386.
Blum, A., Hellerstein, L., and Littlestone, N. (1991). Learning in the presence of finitely or infinitely many

irrelevant attributes. InProceedings of the Fourth Annual Workshop on ComputationalLearning Theory, pages
157–166, Santa Cruz, California. Morgan Kaufmann.

Caruana, R. and Freitag, D. (1994). Greedy attribute selection. In Proceedings of the Eleventh International
Conference on Machine Learning.

Cesa-Bianchi, N., Freund, Y., Helmbold, D., Haussler, D., Schapire, R., and Warmuth, M. (1993). How to use
expert advice. InProceedings of the Annual ACM Symp. on the Theory of Computing, pages 382–391.

Dent, L., Boticario, J., McDermott, J., Mitchell, T., and Zabowski, D. (1992). A personal learning apprentice. In
Proceedings of the 1992 National Conference on Artificial Intelligence.

DeSantis, A., Markowsky, G., and Wegman, M. (1988). Learning probabilistic prediction functions. In
Proceedings of the29th IEEE Symposium on Foundations of Computer Science, pages 110–119.

Feller, W. (1968). An Introduction to Probability and its Applications, volume 1. John Wiley and Sons, third
edition.

Jourdan, J., Dent, L., McDermott, J., and Zabowski, D. (1991). Interfaces that learn: A learning apprentice for
calendar management. Technical Report CMU-CS-91-135, Carnegie Mellon University.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
Machine Learning, 2:285–318.

Littlestone, N. (1989).Mistake bounds and logarithmic linear-threshold learningalgorithms. PhD thesis, U. C.
Santa Cruz.

Littlestone, N. (1991). Redundant noisy attributes, attribute errors, and linear-threshold learning using winnow.
In Proceedingsof the Fourth Annual Workshopon ComputationalLearning Theory, pages 147–156,Santa Cruz,
California. Morgan Kaufmann.

Littlestone, N. and Warmuth, M. K. (1994). The weighted majority algorithm. Information and Computation,
108(2):212–261.

Mitchell, T., Caruana, R., Freitag, D., McDermott, J., and Zabowski, D. (1994). Experience with a personal
learning assistant.CACM, 37(7):81–91.

