Machine Learning, 26, 5?7 (1997)
© 1997 Kluwer Academic Publishers, Boston. Manufacturedia Wetherlands.

Empirical Support for Winnow and Weighted-Majority
Algorithms: Results on a Calendar Scheduling Domain

AVRIM BLUM avrim@cs.cmu.edu
School of Computer Science, Carnegie Mellon UniversitysiRirgh, PA 15213

Editor:

Abstract. This paper describes experimental results on using WinmahWéeighted-Majority based algorithms
on a real-world calendar scheduling domain. These two #lgos have been highly studied in the theoretical
machine learning literature. We show here that these dlgos can be quite competitive practically, outperforming
the decision-tree approach currently in use in the CaleAgprentice systemin terms of both accuracy and speed.
One of the contributions of this paper is a hew variant on thiendiv algorithm (used in the experiments) that
is especially suited to conditions with string-valued sléisations, and we give a theoretical analysis of its
performance. In addition we show how Winnow can be applieattieve a good accuracy/coverage tradeoff and
explore issues that arise such as concept drift. We alsdge@n analysis of a policy for discarding predictors
in Weighted-Majority that allows it to speed up as it learns.

Keywords: Winnow, Weighted-Majority, Multiplicative algorithms

1. Introduction

Multiplicative weight updating algorithms such as Winnautilestone, 1988) and Weighted
Majority variants (DeSantis et al., 1988; Littlestone anarivuth, 1994; Cesa-Bianchietal.,
1993) have been studied extensively in the theoretical madbarning literature, in which
a collection of strong properties have been proven. Thegai#hms could be said to fall
into the category of “learning simple things really well i particular, when the concept
being learned is appropriately simple, they have been préwdiave exceptionally good
behavior in the face of irrelevant features, noise, or agfafgnction changing with time
(Littlestone, 1991, Littlestone and Warmuth, 1994). Irsthaper we add evidence of the
practical importance of these algorithms. We show thatlagproaches achieve excellent
performance in a natural learning task: the calendar sdimepddomain of Mitchell et
al. (Dent et al., 1992; Jourdan et al., 1991; Mitchell etE)94). In particular, our imple-
mentations give a substantial improvement along a numberexf, including accuracy and
speed, over the results of Mitchell et al. (1994), who usecistn-tree based approach.
The main contributions of this paper are threefold. First,describe how the Winnow
and Weighted-Majority algorithms can be naturally appliedsettings like the calendar
domain having string-valued attributes and many potestiaig-valued classifications. In
particular, we describe a new version of the Winnow algonigspecially suited to such
conditions, that can be viewed as combining the opinionsspétialists” in analogy to
the way in which the Weighted-Majority algorithm is viewesl@mbining the opinions of
“experts”. Second, we show that these approaches are usgiactice, achieving a good
performance in terms of accuracy, speed, and accuracy westage tradeoffs. Finally, we

6 AVRIM BLUM

provide a theoretical analysis of a number of issues raigetdexperiments, such as what
kind of performance guarantee can be placed on our Winnoianaand when one can
discard poorly performing “experts” in the Weighted-Majgralgorithm.

1.1. Summary

Mitchell et al. (1994) describe results of the Calendar ARpee (CAP) system which
uses a decision-tree based learning algorithm to preditgineaspects of a calendar event
(location, duration, start time, and day of week) based mwknfacts about the attendees
and the past history. We show here that Winnow and Weightgdrithaachieve a good
performance both in accuracy and in speed for this task. kample, on the 1685
data points made available for one user’s (Tom Mitchell&¥ndar, our Winnow variant
achieves 75% accuracy in predicting a meeting’s locatiompmared with 64% for CAP
(see Table 1). Also, Winnow is quite fast due to its natureragmaremental algorithm.
Even when there are many features, it can easily perfornodtp bf predicting, finding
the correct answer, and then updating its internal statesahtime. In contrast, because
the learning methods used by CAP were much slower, CAP hasbtaat its learning to a
batch job each night.

We also show how Winnow can be adapted to provide a gumairacy vs. coverage
tradeoff a topic not explored much in the theoretical literaturd,important in practice.

One property of the Winnow and Weighted-Majority algorithis that they are not very
sensitive to the presense of extra, possibly irrelevaribates (Littlestone, 1988; Littlestone
and Warmuth, 1994). Mitchell et al. use a special “featutectidn” procedure (Caruana
and Freitag, 1994) that restricts the set of features pteddn their learning algorithm.
However, our experiments show that Winnow and Weightedekigj experience only
a very small loss in performance when a larger set is used,irafigct in some cases
performance actuallimproves The main performance loss is one of speed, but even this
can be lessened, especially in the case of Weighted Majbsitst pruning method.

2. Thelearning problem

An exampldn the Calendar Apprentice domain is a calendar event tolbedsded on a
user’s calendar. It is described by a set of features such as:

e What type of event is it? (meeting, seminar, course, ...)

¢ What is the name of the seminar? (no-value, Al-seminar, ...)

e What is the position of the attendees? (graduate studendiyafunder, ...)
e Are the attendees in the user’s group? (yes, no)

e What are the names of the attendees in alphabetical order?

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 7

(reg-event-type meeting)
(reg-seminar-type nil)
(sponsor-attendees *inferred.novalue*
(department-attendees cs)
(position-attendees faculty)
(group-attendees? no)
(reg-course-name nil)
(department-speakers *inferred.novalug*)
(group-name *inferred.novalue*)
(lunchtime? no)
(single-person? yes)
(number-of-person 1)

(reg-location dh4301c)

Figure 1. One of the data points for User 1. Listed are the features foggatedicting location by CAP, along
with the correct location of this meeting.

and so forth. A specific example is given in Figure 1. The qiti@stwe are asked to
predict are the event's location, duration, start time, dag of week. In the current CAP
system, these quantities are then presented as defawdsualthe user, who may decide to
override them or not. The actual decisions made by the usethan given as feedback to
the learner. The CAP project has made their data availahdsingparticular 1685 examples
spanning two years of Tom Mitchell's calendar and 554 exasifiom a second user.

A few aspects of this learning task worth noticing are:

1. The “target concept’is something that changes with time. For instance, at a g¢emes
boundary, the times and days for a seminar or group meetigtrahange, the behavior
of the user might change because he is now teaching a laigg alad so forth.

In fact, for this reason the CAP system each day builds a idecieee (which it then
prunes into rules in a manner similar to C4.5) based on orgyriost recent 180
examples, where 180 is a value determined empirically teideogood performance.

2. The features in general are string-valued, and in fact¢hef possible values held by
some feature may not even be known at the start. For instareceight not know at
the start what the set of all seminar names might be. Simgjltivé quantities we are
asked to predict are also string-valued, and we also maymaw kvhat their possible
values might be at the start: for instance, this is the catielacation.

As mentioned above, the CAP system uses a decision-tred kesaing method. More
specifically, CAP maintains a database of rules, sorted Isgmid performance. Each
night, CAP builds a decision tree using the most recent 1&8éngke, prunes this tree into

& AVRIM BLUM

a list of rules, and merges these rules into its databaseatungdits statistics (Mitchell
et al., 1994). A number of design choices are involved in fiieecess, such as exactly
what features to give to the decision-tree algorithm (CA8&vjtes the algorithm only a
restricted subset, based on the learning task), how to nmergeand old rules, what length
window to use, and so forth (see Mitchell et al. (1994) forails}. In settling on their
approach, the CAP designers also tried several other lgamiethods, including other
decision tree variants and a neural-network algorithm, fanchd these to have equal or
worse performance.

3. Description of the algorithms

We consider two multiplicative-weight-updating learnadgorithms: the Weighted-Majority
algorithm (Littlestone and Warmuth, 1994) and a versionitiféstone’s Winnow algorithm
(Littlestone, 1988). These are batitrementalalgorithms. Upon receipt of an unlabeled
example they make a prediction. When they are told the coemeswer, they use that
information to adjust their hypothesis, and then are readytfe next example.

3.1. Weighted-Majority: combining experts

The simpler of the two algorithms implemented is essentambBtraight Weighted-Majority
algorithm as described in Littlestone and Warmuth (1994)s based on the supposition
that out of all the features given, perhaps there exists smadl set of, say, two features,
that just by themselves are enough to construct a good poediEor instance, perhaps
knowing only the event type and the seminar name is enougtethqgs well.

Specifically, the algorithm works as follows. For each pdifeatures we create a pre-
diction strategy (an “expert”) that examines only those teaiures and makes predictions
based on their values. The global algorithm will receivedrons from all(g) experts
and then will decide based on a weighted-majority vote oféhpredictions. To fully
specify this approach, we must say (1) how each individua¢ebworks, and (2) how we
will weight the votes.

We perform (2) by using the simple multiplicative rule dissad in Littlestone and
Warmuth (1994). We begin with all experts having the sameghteof 1. When we
receive the example’s correct labeling, we see which egperdicted incorrectly and cut
the weights of those experts in half. We do not modify the Wwisgf those that predicted
correctly. The experimental results did not depend significantly @netkact constant (in
this case, 12) used to multiply the weights of the incorrect experts.

We perform (1) by having each expert perform a simple talklp: given apair of values
foritstwo features (e.g., ifits features @eent-type andposition-of-attendees ,
then it might see the pair of valuesneeting, grad-student>) look at the last
times that that pair of values occurred and predict the ouné&cthat occurred most often out
of thosek. We used: = 5. If the pair of values has never occurred before, then thenrex
predicts a global default (the most common outcome seernrso fa

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 9

This algorithm clearly can be implemented using, say, ésgf features instead of pairs.
One could also imagine doing something more intelligenhthust predicting a global
default when the tuple of values seen does not exactly matghiag in memory, but only
the simple rule was used in the experiments.

A natural modification to the weighted majority algorithmtésdiscard experts if their
weights drop too low, so that the algorittspeeds ups it learns more, in contrast to most
learning algorithms that slow down as they learn. Discaydixperts may be dangerous if
one is too aggressive because the expert that turns out tesbélthe end may not appear
best near the start. However, one can provide theoreticalagtees for such strategies,
which we do in Section 5.1. Our experimental results indiciat for a wide range
of weight thresholds, one can achieve both a significantdsge@nd negligible loss in
performance. (See Figure 7.)

3.2. Winnow: combining specialists

The Weighted-Majority algorithm and its variants are ofteought of as ways of combining
the opinions of “experts” that give predictions for eachrapte. The Winnow algorithm,
and in particular the variant we describe here, can be thmfgs a method for combining
the opinions of entities that each may choosalistaininstead of giving a prediction on
any given example. We will call these entitisgecialists because they are allowed to
abstain when the current example does not fall into theie¢ggty”.

Specifically, the Winnow variant we consider proceeds abvid. For each pair of
(feature=value) conditions experienced so far, sucheght-type = meeting and
position -of -attendees = grad-student ," there will be onespecialist This
specialist is extremely simple: it only wakes up to make ajutéon if both its conditions
are true, and in that case it predicts the most popular outamum of the last five times it
had the chance to predi€{(E.g., in the above case, it predicts the most popular ougcom
out of the last 5 times there was a meeting with grad studefiise very first time that
the specialist appears, it abstains. The global algorittake® a prediction based on a
weighted majority vote over all predicting specialists.

One way to view the algorithm is that we are listing the andeces for all the possible
“rules of length 2”, and determining their consequent basedheir recent history. Each
of the specialists corresponds to one of these rules. Weptestict based on a weighted
vote. In Section 5.2 we provide theoretical guarantees uh@eassumption that the target
concept consists of a list of rules of length 2. Indeed, ongiral motivation for trying
this approach was the fact that most of the rules createdeb@ &P algorithm (which runs
ID3 and then prunes the decision tree into rules) are quag sh

How are the specialists weighted? When a specialist firgtaqsp(the pair of conditions
occurs forthe first time) the specialist is given weight Id@abstains on this example). On
further predictions, we use the basic “Winnow |1” strategasdribed in Littlestone (1988).
If the global algorithm predicts incorrectly, then if theesjalist predicts incorrectly its
weight is halved and if it predicts correctly its weight is Itiplied by 3/2. For a small
benefit in accuracy, we halve the weight of a specialist wherakes a mistakeven ifthe
global algorithm predicted correctly. The reason we mijtiyy 3/2 instead of, say, by 2 is

10 AVRIM BLUM

for the benefit of our theoretical analysis (Section 5.2yyéwer, tests reveal no significant
difference between the two policies.

The reader familiar with the analysis of the Winnow alganittvill note that increasing
the weights only when the global algorithm makes a mistakd,reot when the global
algorithm predicts correctly, is necessary for the theoadanalysis to go throughn fact,
in this calendar application, it turns out to be crucial empally as well. If one modifies
the algorithm to multiply the weights of specialists thaggict correctly even when the
global algorithm predicts correctly too, then performadogps. Thus, one should not think
of the algorithm as simply maintaining “percentage cofrégures for each specialist and
weighting accordingly. Specialists are rewarded not sohnfac predicting correctly, but
for predicting correctly in times when the global algoritlsmould have listened to them
more carefully.

The algorithm as described above can be viewed as a varighedibalanced” version
of Winnow (Littlestone, 1989). In the “balanced” algorithome would maintain a vector
of weights for each specialist, one weight for each possihigput. One would then
view the specialist as predicting all possible outputsheaith its associated weight, and
weights would be updated as if each element of the vector waparate (fixed) prediction
algorithm. The advantage of our approach is (A) less contjoutal overhead, and (B)
faster adaptivity to changes. For example, if the Al-semsirsae moved from Mondays
to Fridays, in our approach this changes a specialist's\wehafter 3 mistakes. In the
balanced algorithm, this might cause a much larger numberisfakes, even if weights
are lower-bounded as in (Littlestone and Warmuth, 1994).

One point to notice is that as learning progresses, the nuailspecialists in existence
may become quite large. However, on amyividualexample, only a small number (number
of features choose 2) actually make a prediction. Thussttisng can be modeled by the
infinite attribute modedbf (Blum, 1992; Blum et al., 1991).

4. Experimental results

We ran Winnow and Weighted-Majority on 1685 data points frame user and 554 data
points from a second user of the CAP system. We presentedadhgées to the algorithms
one by one in chronological order, recording when mistakesswnade. Tables 1 and 2
compare the total percentage of correct predictions madeA#®; Winnow, and Weighted
Majority (using both pairs and triples of features). As mienéd in the introduction, CAP
filters the feature set and uses only a subset for each piadietsk. For instance, 12
features are used for predicting location, 11 for duratithfor start time, and 16 for day
of week. In the columns labeled “Winnow”, “WM”, and “WM-trips” we ran Winnow
and Weighted-Majority (pairs and triples) on those sam&ufessets. Notice that Winnow
achieves an average improvement over CAP of over 10 pegemaints for User 1 and
an even greater improvement (nearly 20 points) for User 2giited Majority performs a
bit worse than Winnow, but still does surprisingly well catesing that the essence of the
algorithm is just to quickly find the two (or three) best fe@s A plot of accuracy versus
time for the Winnow algorithm’s performance in predictirogétion is given in Figure 2.

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 11

Table 1.Comparison of fraction correct on 1685 data points from Us@fom Mitchell). For
reference, the standard deviation for 1685 fair Bernotdis is 0.012.

Predictiontask| CAP Winnow Winnow-bigset WM WM-bigset WM-triples

location | 0.64 0.75 0.76 0.70 0.74 0.72
duration | 0.63 0.71 0.74 0.64 0.73 0.66
start-time | 0.34 0.51 0.53 0.39 0.50 0.45
day-of-week| 0.50 0.57 0.57 0.56 0.56 0.57
AVERAGE | 0.53 0.63 0.65 0.57 0.63 0.60

Table 2. Comparison of fraction correct on 554 data points from a sdacser. For reference,
the standard deviation for 554 fair Bernoulli trials is 0102

Predictiontask| CAP Winnow Winnow-bigset WM WM-bigset WNM-triples

location | 0.33 0.71 0.72 0.67 0.66 0.69
duration | 0.69 0.73 0.75 0.69 0.69 0.70
start-time | 0.32 0.58 0.59 0.52 0.52 0.55
day-of-week| 0.37 0.47 0.48 0.43 0.45 0.45
AVERAGE | 0.43 0.62 0.63 0.58 0.58 0.60

In order to test the focusing abilities of these algorithmg, also ran Winnow and
Weighted-Majority using a larger set of 34 features. Thigéa set was constructed by
taking the entire feature set and just filtering out thosesehalues we could not represent
well (such as bitmaps or high-precision real values) andatibat could not legally be used
for all 4 tasks (such as “day-of-week”, which is in the CAP skfeatures for predicting
start-time, but clearly should not be used for predicting-daéweek). We then ran our
algorithms on the larger set. These results are in the cadumarked “Winnow-bigset”
and “WM-bigset” in Tables 1 and 2.

As expected, Winnow and Weighted Majority are not hurt digantly when the larger
feature set is used, but interestingly, performance aftgrroves especially for Weighted-
Majority. The reason for the improvement is that featured tiad been deemed not useful
for ID3 may be quite useful for Winnow and Weighted Majoritin fact, in this larger
set, for User 1 the performance of Weighted-Majority alntesiches that of our Winnow
variant.

In addition to good predictive performance, Winnow and Viiéggl-Majority as imple-
mented are both quite fast. On a SPARC10, Winnow takes omgeeabout 30 seconds
to make an entire sequence of 1685 predictions on the snalirke sets, and about 90
seconds on the large feature set. Weighted-Majority is albier without pruning, but a
good bit faster with pruning (discussed in Section 4.5 bgloius, at a speed of/60 to
1/18 seconds per example, both algorithms can be used inmeal ti

Theoretical analysis (Littlestone and Warmuth, 1994; cRisaichi et al., 1993) suggests
using randomization instead of a strict weighted majoribyev(weights on the outputs
are normalized to sum to 1 and are then interpreted as piitied)i This produced no
significant effect on prediction accuracy in the two dataset

One point worth mentioning is that in these experimentsn ¢élreugh the total number of
specialists in the Winnow-based learner can get quite igrgthe time of the final example

12 AVRIM BLUM

1.00

0.80 +

Accuracy

0.60 4+

0.40 4+

0.20 4+

0.00 : : :
0 500 1000 1500 2000

Location

Figure 2. Accuracy versus example number for predicting locatiomgaVinnow. The larger dips correspond
roughly to semester boundaries.

for User 1, there are 59731 specialists for the large feaet) on any individual example
only a relatively small number actually make a predictio61(5n the large feature set).
This smaller set of predicting specialists can be identié#itiently using a hash table,
so the algorithm does not actually need to poll all of the Edists in existence on each
example. In addition, the fact that only a relatively smalhber of specialists makes a
prediction on each example is useful for the theoreticalysism(section 5.2).

4.1. Interpreting the weights: what the algorithms learned

For the Weighted Majority algorithm used, the weights ass@jto the “experts” can be
interpreted as answering the question: “if you were onlgva#ld to look at two features,

which two you choose?” In a sense, Weighted Majority can legved as an algorithm

designed to answer this question while simultaneously ngptgood predictions as it learns.
Interestingly, in this experiment the best pair of featuiend was often not a subset of
the best triple found when the algorithm was run with one exper triple. For instance,

for User 1, while there was a nice containment relationshiipfedicting location (the best
single feature was the number of people in the meeting, teepgaér was the number of
people and the seminar type, and the best triple was thaphairone more feature), for
predicting duration the best pair and best triple had nasetion.

The Winnow algorithm used can be viewed as assigning wetghgach possible “rule
of length 27, indicating the extent to which that rule shoblel trusted. For instance, for
predicting duration for User 1, some top-weighted rules are

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 13

Table 3.Average fraction correct (overthe
4 tasks) of predictions by CAP, Winnow,
and a “brain-damaged” Winnow (Win-
nowDay) which was only allowed to up-
date its internal state at day boundaries.

| User1 User2

CAP | 0.53 0.43

Winnow | 0.63 0.62
WinnowDay | 0.59 0.56
Winnow-bigset| 0.65 0.63
WinnowDay-bigset| 0.62 0.51

“If there is a single attendee and he/she is from the ECE tmeat, then 30
minutes.”

“If there is more than one attendee and they are researchrgmmogers, then 60
minutes.”

“If the attendees are faculty members and not from CMU themBtutes.”

As discussed earlier, the weight of a rule does not deschibeatcuracy of that rule in
isolation; rather, the method for updating weights depemdthe relationship of that rule
to the others that are firing at that time.

4.2. Incremental versus Batch

The Winnow and Weighted-Majority algorithms tested in thexperiments were allowed
to update their internal state after each example. In somgesé¢his is an unfair advantage
over CAP which only updated its hypotheses overnight. (@ndther hand, this is one
of the advantages of using a fast, incremental algorithrmetyg real-time updating of
hypotheses is possible.) To factor out this advantage, s rain Winnow in a “brain-
damaged” mode in which it was forced to make predictionsgigmstate from the end
of the previous day. Results are presented in Table 3. Nttimefor User 1, average
performance drops by 3% on the large feature set and 4% onnth#es feature sets,
compared with the non “brain-damaged” version. For Useh@ drop is more substantial
(and interestingly, this seems to cause greater damageftoipance on the large feature
set) but the improvement over CAP is more substantial as well

4.3. How important is the weighting scheme?

The standard Winnow algorithm has the property that all sfléarned information is
stored in its weights: if one does not allow it to update wesglthen it learns nothing.
However, the “specialists” version of the algorithm usecthearns in two ways. The global
algorithm learns which specialists to pay attention to ¢htis stored in the weights), but
also each individual specialist learns what output it stiquredict. In order to test the

14 AVRIM BLUM

Table 4. Testing the importance of the weighting scheme. Winnow-ie#grs to the
version that only updates its state at day boundaries (dde 3a “Winnow-1"and
“Winnow-Day-1" are the versions that force all weights tonan at 1. All of these
results are on the smaller feature sets (the ones used by. CAP)

Task | Winnow Winnow-Day Winnow-1 Winnow-Day-1
User 1: location 0.75 0.70 0.67 0.59
User 1: duration 0.71 0.68 0.63 0.56
User 1: start-time 0.51 0.45 0.32 0.22
User 1: day-of-week| 0.57 0.53 0.47 0.37
AVERAGE | 0.63 0.59 0.52 0.44
User 2: location 0.71 0.62 0.65 0.29
User 2: duration 0.73 0.70 0.66 0.44
User 2: start-time 0.58 0.49 0.51 0.18
User 2: day-of-week| 0.47 0.42 0.44 0.37
AVERAGE | 0.62 0.56 0.56 0.32

relative importance of the weighting scheme, we ran theralyn in a mode in which
weights were fixed to 1. In fact, the two algorithms (Winnowd aieighted Majority)
become equivalent in this case, except for small technitferences

The results of this experiment are listed in Table 4. One eartlsat forcing all weights to
remain at 1 causes Winnow to degrade significantly: a lossldf fercentage points. For
the version that is only allowed to update its internal stdtday boundaries (the internal
state includes the memory of the individual specialist®) litss is much more severe,
ranging from 15 to 24 percentage points.

4.4. Accuracy versus coverage

A desirable property for learning algorithms in settindeelthe calendar domain is to be
able to achieve a goaakcuracy versus coverage tradeoffi other words, the algorithm
should have some sort of adjustable parameter that allawsrade off reduced coverage
(the ability to not make a prediction on some examples) fordased accuracy on those
examples on which it does predict.

The Winnow algorithm has a natural parameter of this sortmalg, since the global
algorithm is performing a vote, it can choose to predict aflthat vote is sufficiently
lopsided. However, we found that the algorithm makes a betideoff by performing the
following slightly more detailed strategy. Each speciiigote is splitamong the outcomes
in its memory. For instance, if the last 5 times the spedialias “awake”, three of the
correct answers were Friday and two were Monday, then itsg8/8 of its vote to Friday
and 2/5to Monday. Then the totals are tallied and a prediction ideranly if the outcome
with highest weight receives at least a specified fractiahetotal vote. The advantage of
this approach is that it allows individual specialists @il differing degrees of confidence.

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 15

1.00

0.80

Accuracy

0.60

0.40

0.20

O—© Userl
- — 8 User2

0.00
0.00

Figure 3. Location

1.00

0.20 0.40 0.60 0.80 1.00
Coverage

0.80

Accuracy

0.60

0.40

0.20

EIEBEE@E
Mﬂﬂ\m
(E

O—© Userl
- — 8 User2

0.00
0.00

Figure 4. Duration

0.20 0.40 0.60 0.80 1.00
Coverage

Modifying the algorithmin this way also does not signifidgiaffect accuracy at the 100%

coverage level.

Graphs showing the accuracy versus coverage tradeoffevachiby Winnow are in
Figures 3—6. “Coverage” is the fraction of examples on wiagbrediction is made, and
“Accuracy” is the fraction correct on those examples. Siedwy, for very high cutoffs, the
performance in predicting day-of-week for User 1 decreasesewhat: the exact cause of

this is unclear.

The performance of Winnow here compares quite well with &i&@AP (Mitchell et al.,
1994). For example, Winnow achieves 86% accuracy predjciration for User 1 at
50% coverage, while CAP achieves a maximum of 74% accuragyedicting duration

16

1.00

AVRIM BLUM

0.80

Accuracy

0.60

0.40

0.20

0.00

O—© Userl
- — 8 User2

0.00

Figure 5. Day of week

1.00

0.20 0.40

0.60 0.80 1.00
Coverage

0.80

Accuracy

0.60

0.40

0.20

0.00

O—© Userl
- — 8 User2

0.00

Figure 6. Start time

0.20 0.40

0.60 0.80 1.00
Coverage

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 17

(and only about 70% accuracy at 50% coverage). In fact, Aongtet al. (Armstrong
et al., 1995) report similarly good accuracy-coveragegranance using Winnow for a Web
link-prediction task.

4.5. Pruning

The weighted-majority algorithm brings up the followingoéing notion: by dropping
poorly performing experts from consideration (neitheriagkfor their predictions nor
updating their weights), one can have an algorithm thatdgpae as it learns more. This
lies in contrast to the vast majority of algorithms that skdswn as they learn.

The most natural method for pruning experts is simply toatiddhem when the ratio
of their weight to the highest weight drops below some giverghold. In Figure 7, we
plot for day-of-week prediction the number of experts ramrag as a function of time for
several different thresholds. Also given is the accurasylieng from each policy. (Results
for the other prediction tasks were similar.) Notice thatingng too aggressively may
reduce effectiveness, but a wide range of policies existitbth do essentially no damage
and prune quickly. As described in Section 5.1 below, thertétecal guarantees suggest
using a cutoff that decreases polynomially with the numbexxperts. (This is the same
as pruning when the number of mistakes made exceeds that cfitrent best expert by
some quantity that depenttsgarithmicallyon the number of experts.)

5. Theoretical results
5.1. Pruning Weighted-Majority

In the standard worst-case analysis of weighted-majolityi¢stone and Warmuth, 1994;
Cesa-Bianchi et al., 1993), pruning experts in the mannscudised in Section 4.5 is
dangerous: an expert that currently has a low weight coutdniially become important
later. However, pruninganbe justified under less pessimistic distributional assuwngt
Specifically, suppose that examples are selected from adiddbution) and classified
by some fixed target concept (as inthe PAC model), and thett>gre each fixed prediction
algorithms. This means that the probabilitythat expert predicts correctly on a random
example is well-defined (though thegés need not be independent). In this case, canre
provide theoretical guarantees. Of course in the calenetting, each predictor is not a
fixed function, but rather a learning algorithm itself. Ntmeless, the analysis in this model
illuminates the type of behavior one can hope to expect.

We first need a small amount of notation. kebe the number of experts and tgtt be
the (index of) the true optimal expert: the one with largestWe will say that an expeiit
is e-optimalif p; > p,,: — €. Let us define thebserved optimadxpert to be the one that
has made the fewest mistakes so far. We can now prove thafoliadwo simple theorems
(the second is the more interesting one).

The first result, which follows immediately from Hoeffdingbnds, states that a timid
pruning policy is not likely to remove the true optimal exper

18 AVRIM BLUM

600

(No pruning: 55.8% correct)
Threshold 0.000001: 55.8% correct
Threshold 0.00001: 55.8% correct
Threshold 0.0001: 55.4% correct
Threshold 0.001: 51.8% correct
Threshold 0.01: 51.7% correct

500 [}

400 |}

Experts remaining

300

200

100

0 200 400 600 800 1000 1200 1400 1600 1800
example number

Figure 7. Pruning results for Weighted-Majority: number of unprureegberts as a function of time for day-of-
week prediction using the large feature set (User 1).

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 19

THEOREM1 (Timid pruning) Consider the strategy that removes an exipérhas made
at leasty/2t In(2¢?n/4) mistakes more than the observed optimal, whiesethe number
of examples seen so far. Then with high probability- 4), the optimal expert will never
be removed.

Proof: Hoeffding bounds state that for a coin of bjaghe probability that aftet coin
flips the number of heads exceegisby more thany/(¢/2) In(1/v) is at mosty. The
probability that the number of heads falislowpt by that amount is also at mosgt

Notice that to removept requires that at some timg eitheropt has made at least
£./2tIn(2t2n/§) more mistakes than its expectation, or some other predictor retem
that manyfewer (or both). The probability that either of these events ewaggens is at
most

ny §f(2a*n) = §/23 1* < 5 W
t=1 t=1
One can improve the dependencetdn the above bound somewhat by arguing as in the
proof of the law of the iterated logarithm (Feller, 1968).

The second theorem states that with a more aggressive peliep though one may
remove the optimal expert, one still can ensure that witlh lggobability at least some
near-optimal expert remains. Notice that the number of g@ast does not appear in
this bound, and the dependence on the number of expéstgarithmic. This motivates
using a rule that discards experts when their weight dropeg® than 1Ip(n) times the
maximum, for some polynomial

THEOREM?2 (Aggressive pruning) Let < 1/2 and consider the strategy that removes an
expert if it has made at leagt/ <) In[16n/(¢*)] more mistakes than the observed optimal.
Then with high probability1 — &), we will never remove a#-optimal experts.

Proof: We begin by showing that with probability at least-15/2, opt will not be
removed at any time < (4/¢2) In[222]. This follows directly from Theorem 1 since in this
range of times, the quantity/2¢ In(4¢?n/4) (taken from Theorem 1 but usiny 2 instead
of §) is less thar{4/¢) In[12], so long as < 1/2.

Now consider the larger times We show that in this range, with probability at least
1 - 6/2, none of the nor-optimal experts (henceforth called “bad” experts) haseflew
mistakes thampt. This means that ifpt is ever removed, then so are all the bad experts,
proving the theorem. This again will follow from Hoeffdingbnds.

Specifically, in this range of timegs we havect/2 > /(¢/2) In(4¢?n /). (This can be
seen by first squaring, rearranging, and exponentiatingddyze the inequalityﬁzt/2 >
4t>n /4§, then noticing that it suffices to verify the inequality ugithe specific value of
t = (4/€%)In(%82), and finally using the fact that = 1% satisfiesz > 4(Inz)? for
¢ < 1/2.) Thus, for any fixed time in this range, the chance that either makeset/2
mistakesamorethan its expectation, or some other expert makg2 mistakedessthan its
expectation is at most/4t2. Notice that the expected number of mistakes)pydiffers
from the expected number of mistakes by any bad expert bysitke so for the procedure
to fail, one of these two events must happen. Thus, summiagalt we have that with

20 AVRIM BLUM

probability at least 1- §/2, opt never makes more mistakes than any of the bad experts.
O

5.2. Mistake bounds for Winnow

We describe here an analysis of our winnow variant, whictctmvenience we refer to as
Winnow-Specialist, in the following “infinite-attribute model” setting.

The setting is that we have some large (possibly infinitep$eapecialists predictors
that on each example may either predict or abstain. Out gkthpecialists; are infallible:
whenever one of thosepredicts it is always correct. In addition, on each exampdave
the following two guarantees: (1) at mosspecialists make a prediction, and (2) at least
one of those is one of theinfallible specialists. We call theinfallible specialistselevant
and the othersrelevant

In the calendar domain, this corresponds to thinking of thesification as being given
by a list ofr rules like:

If event-type = meeting , andattendees = Joe , then my office.
If event-type = meeting , andattendees =the-dean , then dean’s office.

If attendee-type = funder ,
andsingle-attendee = yes , then my office.

and the proviso that each example makes at least one ruleaficethat we never will
see an example which makes two inconsistent rules fire. Thatigyn is the number
of feature-pairs. Alternatively, this setting can be viemas assuming that each output
corresponds to some disjunction of boolean variables, evttex total number of relevant
boolean variables is, and we are guaranteed that each example satisfies exaetof tme
disjunctions.

The algorithmWinnow-Specialist is as described in Section 3.2: Specialists have their
weight initialized to 1 when they first predict. After thahely have their weight cut in
half when they make a mistake, and their weight is multipbgd/2 when they predict
correctlyandthe global algorithm makes a mistake. The analysis is esdigrthe same
as that for the standard Winnow algorithm, but one slight glication is that since we
initialize specialists even when the global algoritdoes notmake a mistake, we cannot
bound the total weight. For instance, many examples migés pawhich no mistake is
made, and yet a large number of initializations occur. ladteve will bound the weight
on specialists whose weight is greater than 1. (Alternbtivee could have modified the
algorithm to only initialize new specialists when a mistékenade.)

THEOREM 3 The Winnow-Specialist algorithm makes at mos2r log,,(3n) mistakes
under the conditions described above.

Proof: Define a specialist to have “high weight” if its weight is gerathan 1. Define
Whigh—irre t0 be the total weight on high-weight irrelevant specialist

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 21

Consider what happens when the global algorithm makes akeist etiV, be the total
weight on high-weight specialists that predictedorrectly. So, the total weight predicting
incorrectly is at mostV, + n. Let W, be the total weight on the irrelevant specialists
that predictectorrectly (whether their weight is high or not) and |Bt, be the weight on
the relevant specialists that predicted (and must haveigtesticorrectly by definition).
So, the total weight predicting correctly i§;, + 1,.. Since the global algorithm made a
mistake, this means thét, + W, < W, + n. Now, notice thatV;4,_irre; iNCreases
by at mostit, /2 — W, /2, since the irrelevant specialists whose weights are plidtl by
3/2 are exactly those included i, and the specialists included ¥, (which all were
high-weight) have their weights multiplied by 2. Thus, the increase #;gp—;rre; due
to this mistake is at most

Wy/2 — W,o/2 < %(n—Wr). (1)

Now, consider mistakes in which, < 2n. There can be at most+ r log;,,(2n) of
these, since after that many such mistakesy allevant specialists will have weight at
least 2. So, by Equation 1, these mistakes together add at bjast+ nr logs,(2n)] to
Whigh—irrel -

Ngw consider mistakes that occur whén. > 2n. Each of these removes at least
n/2 from Whyigh_irrer. SO at most + r IogS/z(Zn) mistakes of this sort can be made as
well. Thus the total number of mistakes is at mosti22r logs,,(2n) = 2r logs,,(3n).

In fact, similar reasoning to the above shows that (as fosthedard Winnow algorithm)
Winnow-Specialist is fairly robust to noise. For instance, if a relevant spestigredicts
incorrectly on an example, the result is that its weight dlcut in half, perhaps producing
two more mistakes of thelV, < 2n” form while its weight recoups, which in turn may
produce up to two more mistakes of the’;: > 2n” form.

6. Summary and conclusions

Winnow and Weighted-Majority are learning algorithms wdarte is in “learning simple
things really well”. If the learning setting has the propetttat one can hope to predict
well by using a collection of simple rules, these algorithmse advantages of being fast
and incremental, of being able to quickly focus on relevaatidres (Littlestone, 1988),
of adapting well to target concepts that change with timel @it least in the instance
discussed here) having reasonable accuracy/coveragmfiisd

Several factors seemed to be influential in producing thedgmerformance of these
algorithms on the CAP data. One is that in the Winnow and WeidjMajority algorithms
implemented, the question of how to discount old data inffafmew data is handled in a
distributed manner. Most algorithms view examples in a ntitimio, centralized way. For
instance, CAP provides to its learning algorithm a fixed vaivabf the past 180 examples.
A disadvantage with this approach is that one is likely tgé&rare but useful events, and
yet not adapt quickly enough to small changes. In the allgmstused here, however, the
memory is kept at the level of the experts/specialists. kstaince, theévent-type =

22 AVRIM BLUM

seminar andseminar-type = Al seminar " specialist stores the 5 most recent
Al seminars. Storing information at this more “local” lexadlows for recent events to take
precedence over previous ones, while at the same time rearérglihe rare cases. For a
frequent event, we benefit because only a few examples of aonewme are needed to
change behavior (e.g., the seminar is moved from Mondayittafy. For an infrequent
event, we benefit as well because the associated specidlistilvremember where and
when that previous event occurred, no matter how long agast Wote that although there
is a fair amount of “concept drift”, the fact that pruning exfs in the Weighted Majority
algorithm worked so well suggests that in this domain, theetgf drift that occurs is not
one in which the set of “most important features” changesrdiher the change is in what
one should do with those features. For instance, semimaena an important feature
across semesters, but the start time and location of a geramar may change with time.

A second factor influencing the performance of these allgort is that the weighting
scheme allows one to quickly focus in on a good set of praghictiles. As described
in Table 4, performance drops substantially when the weighihechanism is disabled.
Moreover, in the Winnow algorithm it is important that the igl#ts represent not the
individual “percentage correct” figures for each specialsit rather the extent to which
the specialist is helpful in combination with the other sphsts available. As mentioned
in Section 3.2, if weights are increased for specialist;avhen the global algorithm is
predicting correctly, performance drops significantlyoftigh not quite as much as when
the weights are completely disabled). Furthermore, theiplidative weighting scheme
allows the algorithms to perform well even when a large nunaféeatures are available
without needing a separate feature-selection algorithrim &SAP. This ability to focus
should be even more useful if the learning system itself vemithe ability to probe the
world for features (e.g., by fingering users, scanning ttieete.).

In summary, this paper has demonstrated that Winnow and hiégigMajority can be
useful algorithms in practice and has discussed some ofsthes involved in their im-
plementation. These are algorithms especially worth ctamsig in situations where one
suspects that good performance can be achieved by hypstbieseelatively simple form
but where other factors such as concept drift, noise, a nebd fast and incremental, and
an abundance of features complicate the learning task.

Acknowledgements

I would like to thank Prasad Chalasani for a great deal of helihé early stages of this
work, and the members of the CAP project, especially Richu@aa, Dayne Freitag, Tom
Mitchell, and David Zabowski (Stork), for helpful discuses and for making their data
available.

Thiswork was supported in part by NSF National Young Invgggor grant CCR-9357793,
by a Sloan Foundation Research Fellowship, and by ARPA wurdet F33615-93-1-1330.
The views and conclusions in this document are those of theoaand should not be
interpreted as representing official policies, either esped or implied, of ARPA, NSF,
the Sloan Foundation, or the U.S. Government.

EMPIRICAL SUPPORT FOR WINNOW AND WEIGHTED-MAJORITY 23

Data and source code

Data and source code are available via

http://www.cs.cmu.edu/afs/cs/usr/avrim/Calendar/info.html

Notes

1. Visit http://www.cs.cmu.edu/afs/cs/project/theadiv/cap-data.html.

2. Ofcourse there is no true target concept — just labelethples. Yet the notion of a target conceptis always
a convenientfiction.

3. Clearly one could implement this strategy using, saglds of conditions; experimentally, in this domain
using triples did not help much, and pairs performed mucteb#tan using just single conditions.

4. In the Weighted Majority algorithm, each expertis reqdito make a prediction on each example. So, if an
example is seen that does not match anything in an experttstable, the expert just predicts a global default
value. In the Winnow algorithm, there is no need to predicetadlt unlessioneof the specialists predict,
which never happensin the two data sets (except for the fisshple). Running both algorithms with weights
fixed to 1 on this data reveal no significant differences irfgrerance between them.

References

Armstrong, R., Freitag, D., Joachims, T., and Mitchell, 1995). Webwatcher: A learning apprentice for the
world wide web. In1995 AAAI Spring Symposium on Information Gathering frortekgeneous Distributed
Environments

Blum, A. (1992). Learning boolean functions in an infiniteiatite spaceMachine Learning9:373-386.

Blum, A., Hellerstein, L., and Littlestone, N. (1991). Laarg in the presence of finitely or infinitely many
irrelevant attributes. IfProceedings of the Fourth Annual Workshop on Computatibeatning Theorypages
157-166, Santa Cruz, California. Morgan Kaufmann.

Caruana, R. and Freitag, D. (1994). Greedy attribute detectin Proceedings of the Eleventh International
Conference on Machine Learning

Cesa-Bianchi, N., Freund, Y., Helmbold, D., Haussler, RBh&pire, R., and Warmuth, M. (1993). How to use
expertadvice. IProceedings of the Annual ACM Symp. on the Theory of Contpptiges 382—-391.

Dent, L., Boticario, J., McDermott, J., Mitchell, T., anditavski, D. (1992). A personal learning apprentice. In
Proceedings of the 1992 National Conference on Artificigglligence

DeSantis, A., Markowsky, G., and Wegman, M. (1988). Leagnimobabilistic prediction functions. In
Proceedings of th2dth IEEE Symposium on Foundations of Computer Scigramges 110-119.

Feller, W. (1968). An Introduction to Probability and its Applicationgolume 1. John Wiley and Sons, third
edition.

Jourdan, J., Dent, L., McDermott, J., and Zabowski, D. (399fterfaces that learn: A learning apprentice for
calendar management. Technical Report CMU-CS-91-13%ieg# Mellon University.

Littlestone, N. (1988). Learning quickly when irrelevatributes abound: A new linear-threshold algorithm.
Machine Learning2:285-318.

Littlestone, N. (1989) Mistake bounds and logarithmic linear-threshold learnaigorithms PhD thesis, U. C.
Santa Cruz.

Littlestone, N. (1991). Redundant noisy attributes, latie errors, and linear-threshold learning using winnow.
In Proceedings of the Fourth Annual Workshop on Computatibeatning Theorypages 147-156, Santa Cruz,
California. Morgan Kaufmann.

Littlestone, N. and Warmuth, M. K. (1994). The weighted niijoalgorithm. Information and Computatign
108(2):212-261.

Mitchell, T., Caruana, R., Freitag, D., McDermott, J., arabdwski, D. (1994). Experience with a personal
learning assistantCACM, 37(7):81-91.

