
10-701/15-781 Machine Learning, Fall 2005

Assignment 2 DRAFT 2
Out: 9/27/05 Due: beginning of class 10/06/05

If you have questions, please contact Mike Stilman <robot+ta@cmu.edu>.

Linear Regression

1. (Noise in Linear Regression) [25 pts] Linear regression is applied when we assume that
there is an underlying linear function f(x) = wx + E that is generating data. Here, E is a
random variable representing noise.

In class you saw that selecting w to minimize the sum of squares of residual error yields
the Maximum Likelihood w. To prove this, we assumed that E is independent, normally
distributed and of constant variance.

Your classmate has some trouble believing that noise is normally distributed. He claims
that the noise distribution should be bounded by some region [−a, a] where p(E) is 0
outside these bounds and strictly greater than 0 within the bounds.

(a) Lets look at a simple bounded distribution of noise:

p(E) =

{
1 − 1

2 ≤ E ≤ 1
2

0

In this case, least squares (L2) regression will not necessarily maximize the likelihood
of the data. Demonstrate an example where L2 regression finds a w that is not
MLE. (i.e. Present a univariate linear function and data points that do not violate
the uniform error distribution. Then show that L2 regression results in a suboptimal
model.)

(b) Your classmate accepts that uniform distributions are not necessarily a good model
for noise. The bigger question, however, remains unresolved: Is there a bounded
distribution for noise such that least squares regression always finds the MLE w?
Either define such a distribution and prove that L2 regression must find the MLE w
(for any valid linear function/data points), or prove that no such distribution exists.
(Visual arguments are acceptable, but they must be supported by clear and correct
logical reasoning.)

2. (Interpolating with Regression) [20 pts] One fun application of regression is interpolation.
Basic linear regression fits a line to points. By introducing basis functions we were able to
model polynomials.

Some functions, however, are quite complex and could require very high order polynomials
to achieve accurate modeling. Often it is better to split these functions into segments at
some number of points that we call knots.

In the following exercises you may use these functions to simplify your notation:

I(a, b, x) =

{
1 a ≤ x < b

0 otherwise
G(x) =

{
1 0 < x

0 otherwise
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(a) We have split the following data-set into three evenly spaced regions at knots ξ1 and
ξ2 (where ξi+1− ξi = 160). The data set represents some function y = f(x)+E. Sup-
pose we applied linear regression to each segment separately. Draw a rough sketch of
the resulting model function.

ξ1 ξ2ξ0 ξ3

x 8 24 52 64 80 96 116 128 140 156
y 48 76 72 92 104 96 84 84 68 52

x 184 204 212 224 244 272 284 304 300
y 48 40 56 68 48 36 48 68 52

x 344 348 372 384 404 408 428 432 452
y 20 48 56 68 72 68 104 88 104

(b) Your model should be discontinuous. It is possible to achieve the same model with a
single linear regression of the form:

y′ =
m∑

i=1

βihi(x)

Find a set of six (6) basis functions, hi(x), such that their linear combination can
represent any piecewise linear function with discontinuities at the knots ξ. Find the
parameters βi that satisfy the maximum likelihood model for the given data.

(c) Generally, we do want our model y′ to be continuous. Find a set of four (4) basis
functions, hi(x), such that y′ =

∑m
i=1 βihi(x) can represent any continuous piecewise

linear function that has discontinuous derivatives only at the knots. Estimate βi and
formulate a new y′ that minimizes the squared residual error.

Theoretical Analysis of Logistic Regression and Naive Bayes

[20 pts] In class and in Tom’s draft chapter handout we showed that when Y is Boolean and
X = (X1 . . . Xn) is a vector of continuous variables, then the assumptions of the Gaussian
Naive Bayes classifier imply that P (Y |X) is given by the logistic function with appropriate
parameters W . In particular:

P (Y = 1|X) =
1

1 + exp(w0 +
∑n

i=1 wiXi)

and

P (Y = 0|X) =
exp(w0 +

∑n
i=1 wiXi)

1 + exp(w0 +
∑n

i=1 wiXi)

Consider instead the case where Y is Boolean and X = (X1 . . . Xn) is a vector of Boolean
variables. Prove for this case also that P (Y |X) follows this same form (and hence that logistic
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regression is also the discriminative counterpart to a Naive Bayes generative classifier over
Boolean features).

Hints:

1. Simple notation will help. Since the Xi are Boolean variables, you need only one parameter
to define P (Xi|Y = yk). Define θi1 ≡ P (Xi = 1|Y = 1), in which case P (Xi = 0|Y = 1) =
(1− θi1). Similarly, use θi0 to denote P (Xi = 1|Y = 0).

2. Notice with the above notation you can represent P (Xi|Y = 1) as follows

P (Xi|Y = 1) = θXi
i1 (1− θi1)(1−Xi)

Note when Xi = 1 the second term is equal to 1 because its exponent is zero. Similarly,
when Xi = 0 the first term is equal to 1 because its exponent is zero.

Programming Generative and Discriminative Classifiers

Discriminative classifiers learn the parameters of P (Y |X) directly, whereas generative classi-
fiers instead learn the parameters of P (X|Y ) and P (Y ).

In this exercise you are asked to implement and compare both types of classifiers. You
may use any programming language you like (Matlab, C++, C, Java... ). All programming
must be done from first principles. You are only permitted to use existing tools for simple
linear algebra such as matrix multiplication/inversion. Do NOT use any toolkit that performs
machine learning functions.

For this assignment, please submit all answers and any plots that are requested in the following
questions. Also, print out and clearly label any code you wrote for this assignment and append
it to the back of your submission. We do not require comments, however the clarity of your
code and explanations will affect how much partial credit we can give. We encourage you to
discuss the questions, but you must write/submit your own code and your own answers.

The provided data has two real variables X1, X2 and the boolean variable Y representing a
class. Each line in the data files represents a data point (X1, X2, Y ).

Make a 2D plot (X1, X2) of ”test-1”, using different symbols for data points that belong to
different classes.

1. (Naive Bayes) [9 pts] You may notice that given the class (Y ), the data follows a bi-variate
normal distribution. For Naive Bayes, we make the assumption that X1 is conditionally
independent of X2 given the class.

(a) Write the equation for the probability of some data point coming from class Y = 1
i.e. P (Y = 1|X1 = x1, X2 = x2).

(b) Write a program that estimates the means and variances of the Gaussians, as well
as P(Y ) for each class. This program should yield all the information necessary to
complete your equation in (a). Run this program on ”train-1.”
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(c) Part of your program should estimate the two normal distributions that maximize the
probability of the data. Submit one plot that shows the mean and the two standard
deviation iso-contour for each Gaussian.

(d) Write a program that uses the parameters learned from ”train-1” to classify the points
in ”test-1”. Report your test error.

2. (Logistic Regression) [9 pts] Now, let us not make the conditional independence assumption
and classify with Logistic Regression. For this exercise, use gradient descent as presented
in (Ch. 3.2) of Tom’s handout.

(a) Write a program that optimizes the weights w0, w1 and w2 to construct a logistic
regression model of the data. In your program, set the step size η = 1× 10−6 and fix
the number of iterations to 20000. (Perform exactly this number of iterations whether
or not gradient descent converges).

(b) Train your program on ”train-1” and report the learned weights.

(c) Write a program that uses the linear regression model to predict the class of the data
based on observed (X1, X2). Test it on ”test-1”. Report your test error.

3. (Comparisons) [15 pts] Let us call Logistic Regression LR and Naive Bayes NB. So far,
you have used the entire training set to train these classifiers. Suppose that less data was
available. Limit your classifier to training on subsets of the provided training data. (e.g.
500, 1000, 1500 ... 10000.) Retrain LR and NB on subsets of ”train-1” data and observe
their performance on ”test-1”. To reduce needless variance in your experiment, be sure
to use the same training data subsets (not just random subsets of the same size) to train
both LR and FB.

(a) Construct a single plot showing the accuracy of each classifier as it depends on the
number of training examples.

(b) What do you notice about the relationship between classifier accuracy and the number
of available data points?

(c) Make a short list of observations about LR and NB that you have made through-
out this exercise. Using knowledge from class/experience in programming and under-
standing of the assumptions briefly describe the causes for the differences you observe.
(1-2 sentences per observation).

4. (Full Bayes) [2 pts - Only if you have free time] Without making the conditional inde-
pendence assumption, it is still possible to train a Bayesian classifier. Suppose that X1 is
not conditionally independent of X2 given the class (i.e. you can’t assume p(X1|X2, Y ) =
p(X1|Y )).

(a) Write the equation for the probability of some data point coming from class Y = 1
i.e. P (Y = 1|X1 = x1, X2 = x2).

(b) Duplicate and modify your Naive Bayes classifier to reflect this changed formula. Train
your classifier on ”train-1.” It should learn P (Y ), the means and the full covariance
matrices for the Gaussians.

(c) Plot the mean and 2 SD iso-contour for each Gaussian. How does your plot compare
to Naive Bayes?

(d) Test your classifier on ”test-1.” What do you notice?
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