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1 Basic Idea

The basic idea behind inference in Bayesian networks is to observe that when a joint
distribution is factored, each of the factors can be distributed across a sum. For example,
on the following network
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While these three equations all compute the same marginal distribution, equation 2 re-
quires first multiplying all the local conditional probabilities together to recover the joint.
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Multiplying all these tables together gives us a single table of size exponential in the num-
ber of variables n. If we distribute the factors, as in equation 3, we only multiply a few
factors at a time and the memory (and time) savings can be substantial.

2 Operations on Factors

2.1 Factor Notation

A convenient way to view a probability distribution in a Bayesian network is as a factor,
or function mapping an assignment of variables to a real number. In our 4-node network,
the local conditional probability table P (D|B,C) can also be denoted f(B,C,D). For
example, f(B = F,C = T,D = F ) = 0.8 and f(B = F,C = T,D = T ) = 0.2.

Formally, let the n variables in the network be denoted X1, X2, . . . , Xn. Let factors be
denoted by lower case letters. Let Val(Xi) denote the values that Xi takes.

Multiply Factors : If X, Y ⊆ {X1, . . . , Xn} and f, g, h are factors then f(X ∪ Y ) =
g(X)h(Y ). This is similar to relational join in databases.

Evidence : Think of it as partial assignment. If we observe that Xi = T then in all the
functions that involve Xi, we fix the value of Xi to true.

Marginalization : If X = {Xi1 , Xi2 , . . . , Xik} ⊆ {X1, . . . , Xn} then g(X − {Xi1}) =∑
xi1

∈Val(Xi1
) f(Xi1 = xi1 , Xi2 , . . . , Xik).
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