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Probability Densities in Data Mining

e Why we should care

e Notation and Fundamentals of continuous
PDFs

e Multivariate continuous PDFs

e Combining continuous and discrete random
variables
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Why we should care
e Real Numbers occur in at least 50% of
database records
e Can't always gquantize them

e So need to understand how to describe
where they come from

e A great way of saying what's a reasonable
range of values

e A great way of saying how multiple
attributes should reasonably co-occur
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Why we should care

e Can immediately get us Bayes Classifiers
that are sensible with real-valued data

e You'll need to intimately understand PDFs in
order to do kernel methods, clustering with
Mixture Models, analysis of variance, time
series and many other things

e Will introduce us to linear and non-linear
regression

Copyright © Andrew W. Moore Slide 4




A PDF of American Ages in 2000

0,005 1
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A PDF of American Ages in 2000

Let X be a continuous random

variable.
015 /\ /\ If p(x) is a Probability Density

Function for X then...

P(a <X< b jp(x)dx

xX=a

P(30 < Age<50)= j p(age)dage

age=30

=0.36
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0,005 1

Properties of PDFs

Pla< X <b)= ip(x)dx

That means...

P(x—h<XSx+Z)

r)=lim

h—0

0
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—P(X <x)=

h

p(x)
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0.015 T

Properties of PDFs

b
Pla< X <b)= jp(x)dx\ Therefore...

xX=a

\
0

Oox
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—P(X < x)= p(x) A Thereﬂgfaore...

Tp(x)dx =1

X=—00

Vx:p(x)>0
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Talking to your stomach
e What's the gut-feel meaning of p(x)?

If
p(5.31) = 0.06 and p(5.92) = 0.03
then

when a value X is sampled from the
distribution, you are 2 times as likely to find
that X is “very close to” 5.31 than that X is
“very close to” 5.92.
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Talking to your stomach
e What's the gut-feel meaning of p(x)?

If
p(a )=0.06andp( b )=0.03
then

when a value X is sampled from the
distribution, you are 2 times as likely to find
that X is “very close to” a than that X is
“very close to” b
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Talking to your stomach
e What's the gut-feel meaning of p(x)?

If
p(a )=2 andp(b )= ~
then

when a value X is sampled from the
distribution, you are 2 times as likely to find
that X is “very close to” a than that X is
“very close to” b
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Talking to your stomach
e What's the gut-feel meaning of p(x)?

If
p(a )=ar andp(b )= ~
then

when a value X is sampled from the
distribution, you are « times as likely to find
that X is “very close to” a than that X is
“very close to” b
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Talking to your stomach
e What's the gut-feel meaning of p(x)?

If pla) _,
p(D)

then

when a value X is sampled from the
distribution, you are « times as likely to find
that X is “very close to” @ than that X is
“very close to” P
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Talking to your stomach
e What's the gut-feel meaning of p(x)?

It pla) _,
p(b)

then
. Pla—h<X<a+h)
lim =a
>0 P(b—h< X <b+h)
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Yet another way to view a PDF

Plage)

A recipe for sampling a random
age.

0,019

1. Generate a random dot
from the rectangle
surrounding the PDF curve.
Call the dot (age,d)

2. If d < p(age) stop and
return age

000581

3. Else try again: go to Step 1.
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Test your understanding
e True or False:

Vx: p(x)<1

Vx:P(X =x)=0
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Plage)

0,015 7

0,005 1

Expectations

E[X] = the expected value of
random variable X

= the average value we'd see
if we took a very large number
of random samples of X

o0

= pr(x) dx

X=—00
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plage}

0,005 T

N 7/\

E[age]=35.89

Expectations

E[X] = the expected value of
random variable X

= the average value we'd see
if we took a very large number
of random samples of X

o0

= pr(x)dx

X=—00
= the first moment of the

shape formed by the axes and
the blue curve

= the best value to choose if
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5 ™ .. Yyou must guess an unknown
person’s age and you'll be
fined the square of your error
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Expectation of a function

uw=E[f(X)] = the expected
. value of f(x) where x is drawn

/\ from X's distribution.

= the average value we'd see
if we took a very large number
of random samples of f(X)

= [ () plx)ds

E[age®]=1786.64 o
1 (E[age])? =1288.62  Note that in general:
E[f(x)]= f(E[X])
Variance
c? = Var[X] = the
. egpected squared "
o B o e o

= amount you'd expect to lose
if you must guess an unknown
person’s age and you'll be

_ fined the square of your error,
Var[age 498.02 and assuming you play
optimally

0,005 T
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c? = Var[X] = the
expected squared
difference between
x and E[X]

Plage)

Var[age]=498.02

0,005 1
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Standard Deviation

o0

o' = [(x-m)* p(x)d

X=—00

= amount you'd expect to lose
if you must guess an unknown
person’s age and you'll be
fined the square of your error,
and assuming you play
optimally

o = Standard Deviation =
“typical” deviation of X from
its mean

o =4 Var[X]
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In 2
dimensions

density <= 8e-006

density values: 2.1e-005 <= density < 3.4e-005

weight  sgog” "

86-006 <= density < 2.1e-005 p(x,y) = probability density of
: random variables (X,Y) at

location (X,y)

4500 :}E )
4000° ?
3500
30007

2500

2000

10 15 20 25 30 35 40 45
mpg
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I n 2 Let X, Y be a pair of continuous random
variables, and let R be some region of (X,Y)

dimensions -
P((X,Y)eR)= ”p(x,y)dydx

density values: 2.1e-005 <= density < 3.4e-005 (x7y)eR

density <= 8e-006
8e-006 <= density < 2.1-005
weight 5000
4500 - 150
40007 i

3500

10 15 20 25 30 35 40 45
mpg
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I n 2 Let X, Y be a pair of continuous random
variables, and let R be some region of (X,Y)

dimensions ¥
P((X,Y)eR)= ”p(x,y)dydx

density values: 2.1e-005 <= density < 3.4e-005 (x,y)eR

density <= 8e-006

8e-006 <= density < 2.1e-005

P( 20<mpg<30 and
2500<weight<3000) =

weight sgogg”
4500 -

40007 s L

Ll area under the 2-d surface within

3500 the red rectangle

3000

2500

2000

10 15 20 25 30 35 40 45
mpg
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I n 2 Let X, Y be a pair of continuous random
variables, and let R be some region of (X,Y)

dimensions -
P((X,Y)eR)= ”p(x,y)dydx

density values: 2.1e-005 <= density < 3.4e-005 (x7y)eR

density <= 8e-006

8e-006 == density < 2.1e-005
. - 2
weight 5000 ]R8 P( [(mp'g 25)/10]° +
W gin [(weight-3300)/1500]2
4500 --‘E':,T-. <1)=
et
40007 &
25007 ; area under the 2-d surface within
| the red oval
3000
2500
2000
10 15 20 25 30 35 40 45
mpg
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I n 2 Let X, Y be a pair of continuous random

variables, and let R be some region of (X,Y)

dimensions ¥
P((X,Y)eR)= ”p(x,y)dydx

(x,y)eR

Take the special case of region R = “everywhere”.

Remember that with probability 1, (X,Y) will be drawn from
“somewhere”.

So..

o0

f Tp(x,y)dydx =1

X=—0 y=—00
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I n 2 Let X, Y be a pair of continuous random

variables, and let R be some region of (X,Y)

dimensions -

P((X,Y)eR)= ”p(x, y)dydx

(x,y)eR
P(x—h< XSerﬁ A y—ﬁ< Y£y+hj
p(_x y) = 2 2 2 2
! Ilm hZ
h—0
I nNm Let (X, X,,...X,,) be an n-tuple of continuous

random variables, and let R be some region

dimensions %"
P((X,,X,,...X )eR)=
jj...jp(xl,xz,..., x, )dx, ,,...dx,,dx,

(x1,X9,..,X,, JER

Copyright © Andrew W. Moore

Slide 28

14



Independence

X LY Iff VX y:p(x,y)=px)p(y)

density values:
density <= 8e-006
8e-006 <= density < 2.1e-005

weight 5000

10 15 20 25 30 35 40 45
mpg

If X and Y are independent
21e-005 <= density < 3.4¢-005 then knowing the value of X
3.4e-005 < density does not help predict the
value of Y

Copyright © Andrew W. Moore
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Independence

X LY VX y:p(x,y)=px)p(y)

density values:

acceleration

3.16228e-007 <= density < 1e-005 |
density <= 3.16228e-007 1e-005 < density

23
21
19
17
15
13
1
9

2000

weight

If X and Y are independent
then knowing the value of X
does not help predict the
value of Y

3000 4000 5000
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Multivariate Expectation
tx = EIX] = [ x p(x)dx

density values:

2.1e-005 <= density < 3.4e-005

density <= 8e-006

B8e-006 <= densi

ity < 2.1e-005

weight spog” ¢

4500 --

| byt
4000 LY

3500

3000

2500

2000

i E[mpg,weight] =
; (24.5,2600)

R .
I
B el o
AR T . et
3 1
R0 S
o e
b, A

S ) The centroid of the
C e cloud

L PR

||||||||

10 15 20 25 30 35 40 45
mpg
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Multivariate Expectation

ELf(X)]= [ £(x) p(x)dx

Slide 32
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Test your understanding
Question : When (if ever)does E[X + Y] = E[X]+ E[Y]?

*All the time?

*Only when X and Y are independent?

eIt can fail even if X and Y are independent?

Slide 33

Bivariate Expectation

ELf (e 01 = [ /(% 3) p(

if f(x,y)=xthen E[f(X,Y)]=]

if f(x,y)=ythenE[f(X,Y)]=

x, y)dydx

[ x p(x, v)dydx

[ p(x,y)dyax

[ (x+ ) p(x, y)dvdx

if f(x,y):x+ythenE[f(X,Y)]:.

E[X +Y]=E[X]+E[Y]

Slide 34
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Bivariate Covariance
o, =Cov[X,Y]=E[(X —u )Y —u,)]

o, =0’ =Cov[X,X]=Var[X]= E[(X — 1,)°]
o, =0y =Cov[Y,Y]=Var[Y]=E[(Y — u,)°]

Bivariate Covariance
o, =Cov[X,Y]=E[(X —u )Y —p,)]

o, =0’ =Cov[X, X]=Var[X]= E[(X — 1,)°]
o, =0’y =Cov[Y,Y]=Var[Y]=E[(Y — u,)°]

. X
Write X = (Yj . then

Cov[X] = E[X—p )X-p, )] =E=[zx O

xy Oy
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Covariance Intuition

density values: 2.1e-005 <= density < 3.4e-005
density <= 8e-006 3.4e-005 < density
8e-006 <= density < 2.1e-005

weight 5000

4500

4000
E[mpg,weig
(24.5,2600

10 15 20 25 30 35 40 45
mpg
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Covariance Intuition

density values: 2.1e-005 <= density < 3.4e-005
density <= 8e-006 3.4e-005 < density
8e-006 <= density < 2.1e-005

weight 5000

4500

4000
E[mpg,weig

(24.5,2600

10 16 20 25 30 35 40 45
mpg
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Principal
Eigenvector

of X

ht] =

Slide 38

19



Covariance Fun Facts

2
O x O
_ T7 _ _ Xy
COV[X] _E[(X_ux)(x_ux) ] _Z_ 2
o, Oy
«True or False: If 6,, = 0 then X and Y are A
independent
True or False: If X and Y are independent How could
then c,, =0 > you prove
di
True or False: If o,, = o, 5, then X and Y are ?r:eslesg rove
deterministically related
eTrue or False: If X and Y are deterministically
related then o,, = o, o, J
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General Covariance

Let X = (X, X,, ... X}) be a vector of & continuous random variables

Cov[X] = E[X—p )X-pn)'] =X
X, :Cov[Xi,Xj]zaxixj

S is a k x k symmetric non-negative definite matrix
If all distributions are linearly independent it is positive definite

If the distributions are linearly dependent it has determinant zero

Copyright © Andrew W. Moore Slide 40
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Test your understanding

Question: When (if ever)does Var[ X + Y] =Var[ X]+Var[Y]?

*All the time?

*Only when X and Y are

independent?

eIt can fail even if X and Y are independent?

Copyright © Andrew W. Moore Slide 41
Marginal Distributi
density values: 2.1e-005 <= density < 3.4e-005
density <= 8e-006
8e-006 <= density < 2.1e-005
g | o
o8 poht sopo
.'l." |
S 4500
4000
\ i
\ 3500
A 30007
o 2500
e |
e 2000
o o8 10 15 20 25 30 35 40 45
8 8 B ~
g 8 8 sity 0.055 £\
(=] (=] o .’n’ \
0.04 f N
J e
0 0026 /
/
p(x)= | p(x,y)d 001 1
- ] y y B AT e
i o i
e :
y:—cx) 10 15 20 25 30 35 40 45
mpg
Slide 42
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[ p(mpg | weight = 4600)

Copyright © Andrew W. Moore

Conditional

density
0.18]
0.14] ///// \\ . . .
wl \. Distributions
0.02 =" — - |<'
: [ P | density values: 2.1e-005 <= density < 3.4e-005
0 115 13 145 16 13 density <= 8e-006 3.46-005 < density
mpg _
’p(mpg | Welght _ 3200) 8e-006 <= den5|ty‘< 2.1e-005
density 0.09 weight sgpg
0.07] o
0.05 /f/ \\\ 4500
0.03] N — 4000
e ]\ 3500
% 0 2 2 5 3000
P9 2500
| p(mpg | weight = 2000)
density 2008 e
i // \ 10 15 20 25 30 35 40 45
0os| , \ o
003" \\\\ -
R P px|y)=
T = ';I‘ T . T : |I
26 32 36 40 44 _
o p.d.f.of XwhenY =y
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[p(mpg | weight = 4600)

density J

0.18 N\

0.14] \\

0.1 A

006 S,

0,02 =" *
. T |

O T - I |
T T - . : {
10 115 13 145 16  1j
mpg

))
- pW)

@

Why?

p(x|y)= pxy)
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Conditional
Distributions

density values: 2.1e-005 <= density < 3.4e-005
density <= 8e-006 3.4e-005 < density

8e-006 <= density < 2.1e-005

weight 50007 ™

45007+ F i
4000 i

as00
3000

2500

2000

10 15 20 25 30 35 40 45
mpg

px|y)=
p.d.f.of X whenY =y
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Independence Revisited
X LYt vXy:p(x, y)=px)p(y)

It's easy to prove that these statements are equivalent...

VX, y:p(x,y)=p(x)p(y)
=
VX, y:p(x|y)=p(x)
=

VX, y:ip(ylx)=p(y)

Slide 45

. More useful stuff

[palpde=1 iz
T previous slides)
('x1 | Z)
p(’x | y1 Z) — p y
p(y|z)
( x) (.x) B;yles
(x| y) = 22 1X)P
p(y)

Slide 46
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Mixing discrete and continuous variables

P(x—h<XSx+h/\A:v)
2 2

plx.A=v)=lim

h—0 h

i Tp(x,A:v)dle

v=l y=—o

_ P(A]x) p(x)
p(X | A) - P(A) Rule
P4 ) - 2L AP

p(x)
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Mixing discrete and continuous variables

wealth density

0.25]
\%7
P(EduYears,Wealthy) r 0.157
0.05]
poor
rich

T T T T ‘I - T i 5 I
2 4 6 8 10 12 14 16
edunum

The data shown in the figure is merely a subsample of the full dataset.

Copyright © Andrew W. Moore Slide 48
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Mixing discrete and continuous variables

wealth density

0.25
\%7
P(EduYears,Wealthy) r 0.15
005| B
poor L. g ]
fich :

> 4 6 8 10 12 14
edunum

The data shown in the figure is merely a subsample of the full dataset.

P(Wealthy| EduYears)

wealth values: poor rich v

prob 1

06|

edunum

Copyright © Andrew W. Moore
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Mixing discrete and continuous variables

wealth density

0.25
\%7
P(EduYears,Wealthy) r 0.15
005]
poor L.
rich

|I|I-f i-
2 4 6 8 10 12 14

d
P(EduYears|Wealthy) ‘ edunum
The data shown in the figure is merely a subsample of the full dataset.

P(Wealthy| EduYears)

wealth  density | .I'. wealth values: poor rich v
prob 1
0.6

poor
rich

2 4 8 8 10 12 14 16

edunum
The data shown in the figure is merely a subsample of the ful dataset edunum
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What you should know

e You should be able to play with discrete,
continuous and mixed joint distributions

e You should be happy with the difference
between p(x) and P(A)

e You should be intimate with expectations of
continuous and discrete random variables

e You should smile when you meet a
covariance matrix

e Independence and its consequences should
be second nature

Copyright © Andrew W. Moore
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Discussion

» Are PDFs the only sensible way to handle analysis
of real-valued variables?

e Why is covariance an important concept?

e Suppose X and Y are independent real-valued
random variables distributed between 0 and 1:
e What is p[min(X,Y)]?
e What is E[min(X,Y)]?

e Prove that £/X]is the value v that minimizes
E[(X-u)F]

e What is the value v that minimizes E[| X-u|]?

Copyright © Andrew W. Moore
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