
Avoiding “We can’t change THAT!”:
Software Architecture & Usability

Bonnie E. John
Human-Computer Interaction

Institute
Carnegie Mellon University

bej@cs.cmu.edu

Natalia Juristo
School of Computing

Technical University of Madrid
natalia@fi.upm.es

Len Bass
Software Engineering Institute

Carnegie Mellon University
ljb@sei.cmu.edu

Maribel Sanchez-Segura
Computer Science

Department
Carlos III University of Madrid

Mariaisabel.sanchez@uc3m.es

CHI2004 Tutorial

CHI 2004 John, Bass, Juristo & Sanchez-Segura i

Table of Contents

Agenda ii
Biographical Sketches of the Instructors iii
Objectives of the Course iv
Abstract v
Tutorial Slides

Introduction 1
Software architecture, and usability 8
How software architecture and usability techniques

fit into a software development activities 12
Separation based architectural patterns 16
Usability-Supporting Architectural Pattern Approach 25
The parts of a USAP 38
Example of a USAP, Canceling Commands 41
Small Group Exercise 55
Sample solution for Canceling Commands 56
Using USAPs in development 71
Tutorial Summary 72

Appendix I: General Usability Scenarios AI-1
Appendix II: Usability Benefits Hierarchy AII-1
Appendix III: USAP Template AIII-1
Appendix IV: Forces and General Responsibilities

for Canceling Commands AIV-1
References ref-1

CHI 2004 John, Bass, Juristo & Sanchez-Segura ii

Agenda

Time Topic
18:00-18:15 Instructor introduction, audience background &

tutorial objectives
18:15-18:30 What is Software Architecture & What is Usability?

• Basic Concepts of each
18:30-18:45 How software architecture and usability techniques

fit into a software development activities
18:45-19:15 • Separation based architectural patterns and their

motivation (e.g.,J2EE-MVC)
• Why separation is inadequate for interactive

systems
19:15-19:30 Usability-Supporting Architectural Patterns (USAP)

• Introduction to the concept of a USAP
19:30-20:00 BREAK
20:00-20:30 Usability-Supporting Architectural Patterns (USAP)

• The parts of a USAP
• Example of a USAP - problem statement,

forces, and general responsibilities
20:30-21:00 Small Group Exercise:

• Applying the problem statement and forces to a
real-world problem brought by the members of
the breakout group (one group per instructor)

• Report-out to the entire group
21:00-21:30 • Sample solution for example problem.

• Using USAPs in development
• Tutorial summary

CHI 2004 John, Bass, Juristo & Sanchez-Segura iii

Instructor Biographies
Bonnie John is an engineer (B.Engr., The Cooper Union, 1977; M. Engr.
Stanford, 1978) and cognitive psychologist (M.S. Carnegie Mellon, 1984;
Ph. D. Carnegie Mellon, 1988) who has worked both in industry (Bell
Laboratories, 1977-1983) and academe (Carnegie Mellon
University,1988-present). She is an Associate Professor in the Human-
Computer Interaction Institute and the Director of the Masters Program in
HCI. Her research includes human performance modeling, usability
evaluation methods, and the relationship between usability and software
architecture. She consults for many industrial and government
organizations.

Len Bass is an expert in software architecture & architecture design
methods. Author of six books including two textbooks on software
architecture & UI development, Len consults on large-scale software
projects in his role as Senior MTS on the Architecture Trade-off Analysis
Initiative at the Software Engineering Institute. His research area is the
achievement of various software quality attributes through software
architecture and he is the developer of software architecture analysis and
design methods. Len is also the past chair of the International Federation
of Information Processing Working Group on User Interface
Engineering.

Dr. Natalia Juristo is a professor of software engineering with the
Computing School at the Universidad Politecnica de Madrid and former
Director of the MSc in Software Engineering. Dr. Juristo has a B.S. and
a Ph.D. in Computing. She was fellow of the European Centre for
Nuclear Research (CERN) in Switzerland in 1988, and staff of the
European Space Agency (ESA) in Italy in 1989 and 1990. During 1992
she was a resident affiliate of the Software Engineering Institute at
Carnegie Mellon University. She was program chair for SEKE97 and
general chair for SEKE01 and SNPD02. Prof. Juristo has been the
keynote speaker for CSEET03. She has been the guest editor of special
issues in several journals, and a member of several editorial boards,
including IEEE Software and the Journal of Empirical Software
Engineering. She is a senior member of IEEE.

Maribel Sanchez-Segura has been a faculty member of the Computer
Science Department in the Carlos III Technical University of Madrid
since 1998. Her research interests include software engineering,
interactive systems, and usability. Maribel holds a B.S. in Computer
Science, a M.S. in Software Engineering and a Ph.D. in Computer
Science from the Technical University of Madrid.

CHI 2004 John, Bass, Juristo & Sanchez-Segura iv

Objectives of the course

Participants in this tutorial will
• Understand basic principles of software architecture for

interactive systems and its relationship to the usability of that
system

• Be able to evaluate whether common usability scenarios will
arise in the systems they are developing and what
implications these usability scenarios have for software
architecture design

• Understand patterns of software architecture that facilitate
usability, and recognize architectural decisions that preclude
usability of the end-product, so that they can effectively bring
usability considerations into early architectural design.

CHI 2004 John, Bass, Juristo & Sanchez-Segura v

Abstract
The usability analyses or user test data are in; the development team is

poised to respond. The software had been carefully modularized so that
modifications to the UI would be fast and easy. When the usability
problems are presented, someone around the table exclaims, “Oh, no, we
can’t change THAT!” The requested modification, feature, functionality,
reaches too far in to the architecture of the system to allow economically
viable and timely changes to be made. Even when the functionality is
right, even when the UI is separated from that functionality, architectural
decisions made early in development that are difficult to change have
precluded the implementation of a usable system. The members of the
design team are frustrated and disappointed that despite their best efforts,
despite following current best practice, they must ship a product that is
far less useable than they know it could be.

This scenario need not be played out if usability concerns are
considered during the earliest design decisions of a system, that is, during
the architectural design, just as concerns for performance, availability,
security, modifiability, and other quality attributes are considered. The
relationships between these attributes and architectural decisions are
relatively well understood and taught routinely in software architecture
courses in CS curricula. However, the prevailing wisdom in the last 20
years has been that usability had no architectural role except through
modifiability; design the UI to be easily modified and usability will be
realized through iterative design, analysis and testing.

Separation of the user interface has been quite effective, and is
commonly used in practice, but it has problems. First, there are many
aspects of usability that require architectural support other than
separation, and, second, the later changes are made to the system, the
more expensive they are to achieve. Forcing usability to be achieved
through modification means that time and budget pressures are likely to
cut off iterations on the user interface and result in a system that is not as
usable as possible.

Work conducted by this tutorial’s instructors at the Software
Engineering and Human-Computer Interaction Institutes at Carnegie
Mellon University, the Technical University of Madrid, and Carlos III
University of Madrid has investigated the relationship between
architectural decisions and usability. This tutorial will teach this
relationship. It will give usability specialists and software developers
alike an explicit link between their two realms of expertise, allowing both
to participate more effectively in the early design decisions of an
interactive system. It will give the entire design team the tools to consider
usability from the very earliest stages of design, and allow informed
architectural decisions that do no preclude usability.

CHI 2004 John, Bass, Juristo & Sanchez-Segura vi

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 1

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 1

Len Bass
Software Engineering Institute

Carnegie Mellon University

Natalia Juristo
School of Computing

Technical University of Madrid

Avoiding “We can’t change THAT!”:
Software Architecture and Usability

Sponsored by the U.S. Department of Defense, NASA, and the European Union.

Bonnie E. John
Human-Computer Interaction Institute

Carnegie Mellon University

Maribel Sanchez-Segura
Computer Science Department
Carlos III University of Madrid

Bonnie E. John
Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh PA 15213
USA
1-412-268-7182
bej@cs.cmu.edu

Natalia Juristo
School of Computing
Technical University of Madrid
Campus de Montegancedo s/n
28660 Boadilla del Monte
Spain
34-91-3366922
natalia@fi.upm.es

Len Bass
Software Engineering Institute
Carnegie Mellon University
Pittsburgh PA 15213
USA
1-412-268-6763
ljb@sei.cmu.edu

Maribel Sanchez-Segura
Computer Science Department
Universidad Carlos III de Madrid
Avda. de la Universidad, 30
28911 Leganes
Spain
34-91-6249421
Mariaisabel.sanchez@uc3m.es

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 2

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 2

Usability-Supporting Architectural Patterns (USAP)
• Introduction to the concept of a USAP

19:15-19:30

BREAK19:30-20:00

Separation based architectural patterns and their motivation
(e.g.,J2EE-MVC)
• Why separation is inadequate for interactive systems

18:45-19:15

How software architecture and usability techniques fit into a
software development activities

18:30-18:45

What is Software Architecture & What is Usability?
• Basic Concepts of each

18:15-18:30

Instructor introduction & tutorial objectives18:00-18:15

TopicTime

Schedule

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 3

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 3

Schedule

Sample solution for example problem.
Using USAPs in development
Tutorial summary

21:00-21:30

Small Group Exercise:
• Applying the problem statement and forces to a real-world

problem brought by the members of the breakout group
(one group per instructor)

• Report-out to the entire group

20:30-21:00

Usability-Supporting Architectural Patterns (USAP)
• The parts of a USAP
• Example of a USAP - problem statement, forces, and

general responsibilities

20:00-20:30

TopicTime

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 4

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 4

Introductions

Who are we?
• Len Bass
• Bonnie John
• Natalia Juristo
• Maribel Sanchez-Segura

Who are you?

What do you want to get out of this tutorial?

Bonnie John is an engineer (B.Engr., The Cooper Union, 1977; M. Engr. Stanford, 1978) and
cognitive psychologist (M.S. Carnegie Mellon, 1984; Ph. D. Carnegie Mellon, 1988) who has
worked both in industry (Bell Laboratories, 1977-1983) and academe (Carnegie Mellon
University,1988-present). She is an Associate Professor in the Human-Computer Interaction
Institute and the Director of the Masters Program in HCI. Her research includes human
performance modeling, usability evaluation methods, and the relationship between usability
and software architecture. She consults for many industrial and government organizations.

Len Bass is an expert in software architecture & architecture design methods. Author of six
books including two textbooks on software architecture & UI development, Len consults on
large-scale software projects in his role as Senior MTS on the Architecture Trade-off
Analysis Initiative at the Software Engineering Institute. His research area is the achievement
of various software quality attributes through software architecture and he is the developer of
software architecture analysis and design methods. Len is also the past chair of the
International Federation of Information Processing Working Group on User Interface
Engineering.

Dr. Natalia Juristo is a professor of software engineering with the Computing School at the
Universidad Politecnica de Madrid. From 1992 until 2002 she was the Director of the MSc in
Software Engineering. Dr. Juristo has a B.S. and a Ph.D. in Computing. She was fellow of the
European Centre for Nuclear Research (CERN) in Switzerland in 1988, and staff of the
European Space Agency (ESA) in Italy in 1989 and 1990. During 1992 she was a resident
affiliate of the Software Engineering Institute at Carnegie Mellon University. She was
program chair for SEKE97 and general chair for SEKE01 and SNPD02. Prof. Juristo has
been the keynote speaker for CSEET03. She has been the guest editor of special issues in
several journals, including the Journal of Software and Systems, Data and Knowledge
Engineering and the International Journal of Software Engineering and Knowledge
Engineering Dr. Juristo has been a member of several editorial boards, including IEEE
Software and the Journal of Empirical Software Engineering. She is a senior member of IEEE.

Maribel Sanchez-Segura has been a faculty member of the Computer Science Department in
the Carlos III Technical University of Madrid since 1998. Her research interests include
software engineering, interactive systems, and usability. Maribel holds a B.S. in Computer
Science, a M.S. in Software Engineering and a Ph.D. in Computer Science from the Technical
University of Madrid.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 5

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 5

Tutorial objectives: The scene
The usability analyses or user test data are in; the development
team is poised to respond. The software had been carefully
modularized so that modifications to the UI would be fast and
easy. When the usability problems are presented, someone
around the table exclaims, “Oh, no, we can’t change THAT!”

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 6

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 6

Tutorial objectives: The scene
The usability analyses or user test data are in; the development
team is poised to respond. The software had been carefully
modularized so that modifications to the UI would be fast and
easy. When the usability problems are presented, someone
around the table exclaims, “Oh, no, we can’t change THAT!”

The requested modification, feature, functionality, reaches too far
in to the architecture of the system to allow economically viable
and timely changes to be made.

• Even when the functionality is right,
• Even when the UI is separated from that functionality,
• Architectural decisions made early in development can

preclude the implementation of a usable system.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 7

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 7

Tutorial objectives:

• Understand basic principles of software architecture for
interactive systems and its relationship to the usability of that
system

• Be able to evaluate whether common usability scenarios will
arise in the systems you are developing and what implications
these usability scenarios have for software architecture
design

• Understand patterns of software architecture that facilitate
usability, and recognize architectural decisions that preclude
usability of the end-product, so that you can effectively bring
usability considerations into early architectural design.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 8

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 8

What is Software Architecture?

Enumeration of all major software components

Each component has enumeration of responsibilities

Interaction among components specified
• Control and data flow
• Sequencing information
• Protocols of interaction
• Allocation to hardware

There are many ways to document this information (Clements, et.
al. 2003)

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Nord, R., & Stafford J., (2003) Documenting Software Architectures:
Views and Beyond, Addison Wesley.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 9

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 9

Purposes of Software Architecture

Communication among stakeholders
• An educational purpose
• A managerial purpose

Artifact for analysis
• Embeds early design decisions

Set of blueprints for implementation

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 10

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 10

What does usability mean?

As many definitions as there are authors!

What’s important depends on context of use

Some commonly-seen aspects
• efficiency of use
• time to learn to use efficiently
• support for exploration and problem-solving
• user satisfaction (e.g., trust, pleasure, acceptance by

discretionary users)

Our concern is which of these can be influenced by architectural
decisions

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 11

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 11

A usability benefits hierarchy

Increases individual user effectiveness
• Expedites routine performance

- Accelerates error-free portion of routine performance
- Reduces the impact of routine user errors (slips)

• Improves non-routine performance
- Supports problem-solving
- Facilitates learning

• Reduces the impact of user errors caused by lack of knowledge
(mistakes)
- Prevents mistakes
- Accommodates mistakes

Reduces the impact of system errors
• Prevents system errors
• Tolerates system errors

Increases user confidence and comfort

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 12

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 12

Activities in software development

System Test and Deployment

Implementation

Detailed Design

Architecture Design

Requirements

System Formulation

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 13

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 13

Activities in software development +
HCI techniques

System Test and Deployment - HCI techniques:
User testing in the field, Log analysis, etc.

Implementation - HCI techniques:
UI Toolkits

Detailed Design - HCI techniques:
Heuristic Evaluation, Cognitive Walkthrough, GOMS, PICTIVE, Rapid
prototyping+user testing, etc.

Architecture Design - HCI techniques:
What we’ll learn today

Requirements - HCI techniques:
Interviewing, questionnaires, Contextual Inquiry

System Formulation - HCI techniques:
Interviewing, questionnaires, Contextual Inquiry

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 14

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 14

Detailed Design - Common Practice
for Interactive Systems

System Test and Deployment - HCI techniques:
Think-aloud Usability Testing, Log analysis, etc.

Implementation - HCI techniques:
UI Toolkits

Detailed Design - HCI techniques:
Heuristic Evaluation, Cognitive Walkthrough, GOMS, PICTIVE, Rapid
prototyping+user testing, etc.

Architecture Design - HCI techniques:
What we’ll learn today

Requirements - HCI techniques:
Interviewing, questionnaires, Contextual Inquiry

System Formulation - HCI techniques:
Interviewing, questionnaires, Contextual Inquiry

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 15

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 15

Detailed Design - Common Practice
for Interactive Systems
The HCI techniques supporting detailed design of the user
interface are all based on iterative design
• i.e.,design, test (analyze or measure),

change, and re-test.

Once software has been designed, iteration implies change.

Software engineers plan for change through isolating the section
to be changed (separation).

In detailed design, the items to be separated are those relating
to presentation, input, possibly dialog.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 16

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 16

Separation Based Architectural Patterns
for Usability

Presentation-Abstraction-Control (PAC)
• Developed in 1980s by group at the University of Grenoble
• Reaction to shortcomings of Smalltalk Model-View-Controller

(MVC)

J2EE Model-View-Controller (J2EE MVC)
• Developed by Sun to support J2EE
• Adaptation of Smalltalk MVC to web environment

Separation based patterns are commonly used in practice and
have proven quite successful

PAC is documented in:

Buschmann, F., Meuneir, R, Rohnert, H., Sommerlad, P. and Stal, M.,
(1996) Pattern-Oriented Software Architecture, A System of Patterns,
Chichester, Eng: John Wiley and Sons.

J2EE-MVC is documented at
http://java.sun.com/blueprints/patterns/MVC-detailed.html

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 17

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 17

J2EE Model-View-Controller

Object-oriented

Model - Application state and functionality
View - Renders models, sends user gestures to

Controller
Controller - Updates model, selects view, defines application

behavior

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 18

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 18

J2EE Model-View-Controller

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 19

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 19

Software architectural patterns

J2EE MVC is a “software architectural patterns” (Buschmann, et. al., 1996)

Independent of application

Provides some indication of assignment of responsibilities to components

Much left unspecified:
• Allocation to processes
• Synchronous/asynchronous communication
• Decomposition of components
• Class structure
• Other responsibilities of components
• Exceptions

Sufficient to give overall guidance for design approach

Buschmann, F., Meuneir, R, Rohnert, H., Sommerlad, P. and Stal, M.,
(1996) Pattern-Oriented Software Architecture, A System of Patterns,
Chichester, Eng: John Wiley and Sons.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 20

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 20

Software architectural patterns - 2

Patterns community has a variety of styles and levels of detail for
writing about patterns
• Buschmann, et. al., (1996) provide prose descriptions,

architecture-level diagrams, and sample code.
• Gamma, et. al., (1995) provide prose descriptions, class

diagrams, and code samples
• Hillside Group advocates mainly prose and emphasizes

pattern languages above individual patterns

Buschmann, F., Meuneir, R, Rohnert, H., Sommerlad, P. and Stal, M.,
(1996) Pattern-Oriented Software Architecture, A System of Patterns,
Chichester, Eng: John Wiley and Sons.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design
Patterns. Boston, Massachusetts: Addison-Wesley.

Information about the Hillside Group and patterns and pattern
languages can be found at http://www.hillside.net/

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 21

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 21

Why separation-based architectural
patterns are not sufficient for
interactive systems
Remember iterative design?

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 22

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 22

How does J2EE MVC support
iterative design?
Change color of font
• Modify only View

- View contains all display logic; font changes only require
modifying the display

Change order of dialogs
• Modify only Controller

- Controller defines the presentation flow, so changing dialog
order involves modifying the controller logic

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 23

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 23

What happens to other usability
changes?
Add the ability to cancel a long-running command
• Requires modification of all three modules

- View – must have cancel button or other means for user to
specify cancel

- Controller – logic to respond to the View’s menu selection
and execute the appropriate Model function

- Model – free allocated resources, etc.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 24

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 24

Shortcomings of separation patterns
for solving the “We can’t change
THAT!” problem
With respect to adding the ability to cancel

• Involved all components

• Not much localization

• If requirement for cancel discovered late, then will require
extensive modification to the architecture.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 25

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 25

Beyond separation-based architectural
patterns:
The Usability-Supporting Architectural
Patterns (USAP) Approach

Our goal is to provide software designers and usability specialist
tools to recognize and prevent common usability problems that
are not supported by separation.

We are doing this by:
• Identifying those aspects of usability that are “architecturally

sensitive” and embodying them in small scenarios
• Providing a way to reason about the forces acting on

architecture design in these scenarios
• Providing checklist of important software responsibilities and

possible architecture patterns to satisfy these scenarios

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 26

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 26

What does architecturally-sensitive
mean?
A scenario is architecturally-sensitive if it is difficult to add the
scenario to a system after the architecture has been designed.

Solution may:
• Insure that multiple components interact in particular ways
• Insure that related information and actions can be found in a

single component and easily changed

Separation patterns intended to localize changes to presentation.
Therefore,
• Changing color of font – NOT architecturally-sensitive
• Adding cancellation – IS architecturally-sensitive

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 27

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 27

An architecturally-sensitive scenario:
Canceling commands

The user issues a command then changes his or her mind,
wanting to stop the operation and return the software to its pre-
operation state. It doesn’t matter why the user wants to stop; he
or she could have made a mistake, the system could be
unresponsive, or the environment could have changed.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 28

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 28

What other architecturally-sensitive
scenarios can you think of?

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 29

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 29

Here are some others we have thought of
Aggregating Data
Aggregating Commands
Alert
Canceling Commands
Checking for Correctness
Evaluating the System
Form/Field Validation
History Logging
Maintaining Device Independence

(Different Access Methods)
Maintaining Compatibility with Other

Systems
Making Views Accessible
Modifying Interfaces
Navigating Within a Single View
Observing System State
Operating Consistently Across Views
Providing Good Help

(Context-Sensitive Help)
Predicting Task Duration
Recovering from Failure

Reusing Information
Retrieving Forgotten Passwords
Shortcuts
Status indication
Supporting Comprehensive Searching
Supporting International Use

(Different Languages)
Supporting Multiple Activities
Supporting Personalization

(User Profile)
Supporting Undo
Supporting Visualization
Tour
Using Applications Concurrently

(Multi-Tasking)
Verifying Resources
Wizard
Workflow model
Working at the User’s Pace
Working in an Unfamiliar Context

This list of architecturally-sensitive usability scnearios is compiled from

Bass, L., John, B. E., & Kates, J. (2001). Achieving usability through
software architecture (CMU/SEI-2001-TR-005). Pittsburgh, PA:
Software Engineering Institute.
http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html

and

Juristo , N., Moreno, A. M., & Sanchez, M. (2003) Deliverable D.3.4.
Techniques, patterns and styles for architecture-level usability
improvement. - ESPRIT project (IST-2001-32298)
http://www.ls.fi.upm.es/status/results/deliverables.html

An excerpt of Bass, John & Kates (2001), describing a set of
architecturally-sensitive suability scenarios can be found in Appendix I.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 30

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 30

Need more than just architecturally
sensitive scenario

Architecturally sensitive scenarios are potential requirements for
a particular system to support usability

Need
• to determine whether the benefit of supporting the scenario

outweighs the cost
• to provide guidance to the development team as to the issues

associated with implementing a solution

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 31

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 31

User’s Organizational Setting

Task in an Environment

System

Forc
es

Forces

B
en

ef
it

s

Systems exist in a context

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 32

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 32

Context for computer system

Computer systems fulfill “business” goals
• “Business goals” could be mission, academic, entertainment,

etc.
• User using the system creates certain benefits for the

“organization” that created it
• Creating system has costs.

Cost/Benefit
• Implementation support for total scenario
• Implementation support for pieces of the scenario

But more detail is necessary to be able to understand
cost/benefit and implications of implementation

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 33

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 33

User´s Organizational Settings

Task in an Environment

Forces

System

Users

Human
desires and
capabilities

Software

Benefits
realized

when the
solution is
provided

State of the
software

General
responsibilities

Specific Solution (more
detail): e.g., architecture,

software tactics

Forces

Forces

Forces

Previous
design

decisions

Forces
Benefits

Forces acting on architecture design

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 34

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 34

Reasoning about architecture
design
Differing forces motivate particular aspects of solution.

Forces come from three sources:
• Task and environment in which user is operating.

- E.g., Cancel is only useful if operation is long running.
• Human desires and capabilities.

- E.g., User makes mistakes, Cancel allows one type of
correction of mistake.

• State of the software.
- E.g., Networks fail. Giving the user the ability to cancel

may prevent the user from being blocked because of this
failure.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 35

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 35

Architecture Design

Many different methods for satisfying a particular scenario.

Most systems use a separation based architectural pattern as a
basis for overall design of system.

We provide two different solutions:
• General solution – responsibilities of the software that must

be fulfilled by any solution
• Specific solution. An architectural pattern that shows how to

implement the general solution in the context of a separation
based pattern. For example, we’ll assume J2EE-MVC as an
overarching separation based pattern.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 36

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 36

Software Architectural Patterns

We have given you two examples of architectural patterns (PAC,
mentioned, and J2EE-MVC, detailed)

These are examples of the solution portion of an architectural
pattern

The patterns community has developed a set of common
concepts that should be included in descriptions of a pattern.

We embody these concepts in Usability-Supporting Architectural
Patterns (USAPs)

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 37

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 37

Break

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 38

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 38

Usability-Supporting Architectural
Patterns - 1

Context
• Situation – architecturally sensitive usability scenarios
• Conditions – constraints on when the situation is relevant
• Usability benefits – enumeration of benefits to the user from

supporting this scenario

Problem - Forces in conflict
• Forces exerted by the task and environment
• Forces exerted by human desires and capabilities
• Forces exerted by the state of the software when the user

wishes to apply the architecturally sensitive usability scenario

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 39

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 39

Usability-Supporting Architectural
Patterns - 2

General solution – set of responsibilities that any solution to
situation must satisfy

Specific solution – architectural pattern to solve situation
assuming an overarching separation based pattern
• In our slides, we’ll assume J2EE-MVC

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 40

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 40

USAP Context template

Potential Usability Benefits: A brief description of the benefits to the
user if the solution is implemented. We use the usability benefit hierarchy
given earlier

Conditions on the Situation: Any conditions on the situation constraining
when the pattern is useful

Situation: A brief description of the situation from the user’s perspective
that makes this pattern useful

An excerpt of Bass, John & Kates (2001), describing a usability benefit
hierarchy can be found in Appendix II.

The full USAP template can be found in Appendix III.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 41

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 41

USAP Context for Cancel - 1

Conditions on the Situation: A user is working in a system where the
software has long-running commands, i.e., more than one second.
The cancellation command could be explicitly issued by the user, or
through some sensing of the environment (e.g., a child’s hand in a power
car window).

Situation: The user issues a command then changes his or her mind,
wanting to stop the operation and return the software to its pre-operation
state. It doesn’t matter why the user wants to stop; he or she could have
made a mistake, the system could be unresponsive, or the environment
could have changed.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 42

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 42

Benefits of Cancel - 1

Potential Usability Benefits:
A. Increases individual user effectiveness
A.1 Expedites routine performance

A.1.2 Reduces the impact of routine user errors (slips) by
allowing users to revoke accidental commands and return to their
task faster than waiting for the erroneous command to complete.

A.2 Improves non-routine performance
A.2.1 Supports problem-solving by allowing users to apply
commands and explore without fear, because they can always
abort their actions.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 43

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 43

Benefits of Cancel – 2

Potential Usability Benefits:
A. Increases individual user effectiveness
A.3 Reduces the impact of user errors caused by lack of knowledge
(mistakes)

A.3.2 Accommodates mistakes by allowing users to abort
commands they invoke through lack of knowledge and return to
their task faster than waiting for the erroneous command to
complete.

B. Reduces the impact of system errors
B.2 Tolerates system errors by allowing users to abort commands
that aren’t working properly (for example, a user cancels a download
because the network is jammed).

C.Increases user confidence and comfort by allowing users to
perform without fear because they can always abort their actions.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 44

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 44

Cost/Benefit

There is a cost to implementing cancel. The software engineer
can calculate this.

There is a benefit to the organization (as we explained) from
implementing cancel.
• Benefit to current user immediately from recovered time
• Benefit to current user later from cleaning up local resources

so system will not subsequently crash
• Benefit to other users from cleaning up shared resources.

Development team (or project manager) can do cost/benefit
analysis to determine whether to implement cancel.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 45

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 45

First row of the problem/general solution
template is essentially the scenario itself

The first row provides the rationale for the scenario in terms of
the forces.

This enables the development team to decide whether to
implement the scenario at all.

It may be that forces are not applicable to current development.

It may also be that forces cause consideration of scenario when
it may be have been overlooked.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 46

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 46

USAP Problem/General Solution
Template

Responsibilities
of the general
solution that
resolve the forces
in the row.

Forces exerted
by the state of
the software.
Each row
contains a
different force.

Forces
exerted by
human
desires and
capabilities.
Each row
contains a
different force.

Forces exerted
by the
environment
and the task.
Each row
contains a
different force

General SolutionProblem

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 47

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 47

Cancel Problem/General Solution:
Responsibility R1 is essentially the
scenario itself

R1.
Must provide a
means to
cancel a
command

Software is
sometimes
unresponsive

Users slip or
make mistakes,
or explore
commands and
then change their
minds, but do not
want to wait for
the command to
complete.

Networks are
sometimes
unresponsive.

Sometimes
changes in the
environment
require the
system to
terminate.

General
Solution

Problem

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 48

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 48

Template Problem/General Solution -
other rows

Each subsequent row of the problem general solution template
provides rationale for one or more responsibilities.

Usually one row per responsibility, but sometimes rationale for
multiple responsibilities are the same and so multiple
responsibilities are included in one row.

Allows development team to understand reason for responsibility
and make cost/benefit decisions about:
• Necessity
• Utility

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 49

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 49

Cancel Problem/General Solution:
Responsibility R2

R2.
Provide a button,
menu item, keyboard
shortcut and/or other
means to cancel the
active command.

Software has
to receive an
action from
the user to
do something

Users have to
communicate
their intentions to
the software
through overt acts
(e.g., finger
movements)

General SolutionProblem

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 50

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 50

Cancel Problem/General Solution:
Responsibilities R3 and R4

R3.
Must always listen for the
cancel command or
environmental changes
R4.
Must be always gathering
information (state, resource
usage, actions, etc.) that
allow for recovery of the state
of the system prior to the
execution of the current
command

No one can
predict when the
users will want to
cancel commands

No one can
predict when
the
environment
will change

General SolutionProblem

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 51

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 51

Appendix IV contains the full table of
forces and general responsibilities for
canceling commands.

• We have enumerated 21 responsibilities
• Some are conditional

- on aspects of the task
- or state of the software

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 52

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 52

Summary of responsibilities that any
implementation of cancel must consider
R1. Must provide a means to cancel a command
R2. Provide a button, menu item, keyboard shortcut and/or other means to

cancel the active command.
R3. Must always listen for the cancel command or environmental changes
R4. Must always gather information (state, resource usage, actions, etc.) that

allow for recovery of the state of the system prior to the execution of the
current command

R5. Must acknowledge receipt of the cancellation command appropriately
within 150 msec. The acknowledgement must be appropriate to the
manner in which the command was issued. For example, if the user
pressed a cancel button, changing the color of the button will be seen. If
the user used a keyboard shortcut, flashing the menu that contains that
command might be appropriate.

… to R21 (see Tutorial Notes)

Either the command itself is responsive

R6. The command must have the ability to cancel itself (I.e., it must fulfill
Responsibilities R10 to R21 (e.g., an object-oriented system would have a
cancel method in each object)

Or the command itself is not responsive

R7. An active portion of the application must ask the infrastructure to cancel the
command, or

R8. The infrastructure itself must provide a means to request the cancellation of
the application (e.g., task manager on Windows, force quit on MacOS)

R9. If either R7 or R8, then the infrastructure must have the ability to cancel the
active command (I.e., it must fulfill Responsibilities R10 to R21)

If the command has invoked collaborating processes

R10. The collaborating processes have to be informed of the cancellation of the
invoking command (these processes have their own responsibilities that they
must perform in response to this information, possibly treat it as a
cancellation.). The information given to collaborating processes may include
the request for cancellation, the progress of cancellation, and/or the
completion of cancellation.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 53

Continuation of responsibilities that any implementation of cancel
must consider

Either the system is capable of rolling back all changes to the state prior to execution
of the command.

R11. Restore the system back to its state prior to execution of the command.

Or the system is not capable of rolling back all changes to the state prior to execution
of the command.

R12. Restore the system back to as close to the state prior to execution of the
command as possible

R13. Inform the user of the difference between the prior state and the restored
state.

R14. Resources that can be freed must be freed

If any resources are not capable of being freed, then,

R15. Inform the user of the partially-restored resources in a manner that they will see
it.

For critical tasks with incomplete state or resource restoration,

R16. Require acknowledgement from the user that they are aware of the partially-
restored nature of the cancellation.

R17. Return control to the user, or not, depending on the forces from the task

R18. If control cannot be returned to the user, inform the user of this fact (and
ideally, why that is the case)

R19. Estimate the time it will take to cancel within 20%

R20. Inform the user of this estimate.

If the estimate is between 1 and 10 seconds, changing the cursor shape is
sufficient.

If the estimate is more than 10 seconds, and time estimate is with 20%,
then a progress indicator is better.

If estimate is more than 10 seconds but cannot be estimated accurately,
consider other alternatives (see TN, footnote 8)

R21. Once the cancellation has finished the system must provide feedback to the
user that cancellation is finished, e.g., if cursor was changed to busy indicator,
change it back to normal; if progress bar was displayed, remove it; if dialog
box was provided, close it.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 54

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 54

Observations on general responsibilities

Many details might be overlooked by implementer
• Free resources
• Provide feedback if not able to completely cancel
• Inform collaborators

Table provides rationale which enables cost/benefit possibilities.
e.g. “return control to the user immediately”
• Benefit is that user wants to multi-task – increased efficiency
• Cost may be too high depending on system environment.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 55

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 55

Small Group Exercise:

Apply the problem statement and forces to a real-world problem
brought by the members of the breakout group. (one group per
instructor)

Report-out to the entire group

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 56

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 56

Overarching patterns

Designers do not build system design around desire for
architecturally sensitive usability scenarios.

Designers have some overarching pattern that they use.
e.g. PAC or J2EE-MVC

This overarching pattern introduces additional software forces on
specific solution.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 57

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 57

We’ll use J2EE-MVC as overarching
pattern to illustrate our USAPs

Overarching pattern will affect specific solution in our USAPs

We’ll use J2EE-MVC as overarching pattern because it is widely
used in web applications.

Open question as to how, in general, choice of a different
overarching pattern would affect specific solutions

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 58

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 58

We’ll use a non-critical task for the
example
This implies that
• The user can have control while the cancellation is happening
• The user need not acknowledge the results of the cancellation

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 59

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 59

Specific Solution

Architectural view: Presentation of one (or more) aspects of the
architecture.

Common views:
• Component Diagram – shows major units of software but

does not show dynamic behavior or assignment of units to
various processors.

• Sequence Diagram – shows sequence of activities for a single
thread through the system

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 60

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 60

Context of the specific solution:
J2EE-MVC

:Controller

:View Active-
Command
:Model

:Controller:Controller

:View:View Active-
Command
:Model

Active-
Command
:Model

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 61

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 61

Component diagram for a specific
solution to Cancel

Prior- State-
Manager
:Model

:Controller

Cancellation-
Manager
:Model

Listener
:Controller

:View Active-
Command
:Model

Collaborating-
Process
:Model

Prior- State-
Manager
:Model

Prior- State-
Manager
:Model

:Controller:Controller

Cancellation-
Manager
:Model

Cancellation-
Manager
:Model

Listener
:Controller
Listener
:Controller

:View:View Active-
Command
:Model

Active-
Command
:Model

Collaborating-
Process
:Model

Collaborating-
Process
:Model

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 62

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 62

Responsibilities of new component –
Listener

• Type Controller
• Must always listen for the cancel command or environmental

changes (R3)

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 63

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 63

Responsibilities of new component –
Cancellation Manager

• Type Model
• Always listen and gather information (R3, R4)
• If the Active Command is not responding, handle the

cancellation (R7, R10, R11, R12)
• Free resources (R14)
• Estimate time to cancel (R19)
• Inform the user of Progress of the cancellation (R13, R15,

R20, R21)

Full text of responsibilities assigned to the Cancellation Manager in this example solution

R3. Must always listen for the cancel command or environmental changes

R4. Must always gather information (state, resource usage, actions, etc.) that allow for
recovery of the state of the system prior to the execution of the current command

R7. An active portion of the application must ask the infrastructure to cancel the command,

If R7, then R10. The collaborating processes have to be informed of the cancellation of the
invoking command (these processes have their own responsibilities that they must
perform in response to this information, possibly treat it as a cancellation.). The
information given to collaborating processes may include the request for cancellation,
the progress of cancellation, and/or the completion of cancellation.

If R7, then R11. Restore the system back to its state prior to execution of the command. OR
R12. Restore the system back to as close to the state prior to execution of the command
as possible

If R12, then R13. Inform the user of the difference between the prior state and the restored
state.

R14. All resources that can be freed must be freed.

If any resources are not capable of being freed, then R15. Inform the user of the partially-
restored resources in a manner that they will see it.

R19. Estimate the time it will take to cancel within 20%

R20. Inform the user of this estimate.

R21. Once the cancellation has finished the system must provide feedback to the user that
cancellation is finished, e.g., if cursor was changed to busy indicator, change it back to
normal; if progress bar was displayed was displayed, remove it; if dialog box was
provided, close it.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 64

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 64

Responsibilities of new component –
Prior State Manager
• Type Model
• Must always gather information (state, resource usage,

actions, etc.) that allow for recovery of the state of the system
prior to the execution of the current command (R4)

• If the Active Command is not responding (R7), work with the
Cancellation Manager to restore the system back to its state
prior to execution of the command (R11) or as close as
possible to that state (R12)

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 65

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 65

New responsibilities for old components
- View

• Type View
• Provide a button, menu item, keyboard shortcut and/or other

means to cancel the active command (R2)
• Must always listen for the cancel command or environmental

changes (R3)
• Provide feedback to the user about the progress of the

cancellation (R5, R13, R15, R20, R21)

Full text of responsibilities assigned to the View in this example solution

R2. Provide a button, menu item, keyboard shortcut and/or other means to cancel
the active command

R3. Must always listen for the cancel command or environmental changes

R5. Must acknowledge receipt of the cancellation command appropriately within
150 msec.

If any module did R12, then R13. Inform the user of the difference between the prior
state and the restored state.

If any module did R14, then R15. Inform the user of the partially-restored resources in
a manner that they will see it.

R20. Inform the user of the time estimate.

R21. Once the cancellation has finished the system must provide feedback to the
user that cancellation is finished, e.g., if cursor was changed to busy indicator,
change it back to normal; if progress bar was displayed was displayed, remove
it; if dialog box was provided, close it.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 66

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 66

New responsibilities for old components
- Active Command
• Type Model
• Always gather information (R4)
• Handle the cancellation by terminating processes, and restoring

state and resources (R6, R10, R11, R12, R14)
• Provide appropriate feedback to the user (R13, R15, R19, R20,

R21)

Full text of responsibilities assigned to the Active Command in this example solution

R4. Must always gather information (state, resource usage, actions, etc.) that allow for
recovery of the state of the system prior to the execution of the current command

R6. The command must respond by canceling itself (I.e., it must fulfill Responsibilities R10 to
R21 (e.g., an object-oriented system would have a cancel method in each object)

If R6 then R10. The collaborating processes have to be informed of the cancellation of the
invoking command (these processes have their own responsibilities that they must
perform in response to this information, possibly treat it as a cancellation.). The
information given to collaborating processes may include the request for cancellation,
the progress of cancellation, and/or the completion of cancellation.

If R6, then R11. Restore the system back to its state prior to execution of the command. Or R12.
Restore the system back to as close to the state prior to execution of the command as
possible

If R12, then R13. Inform the user of the difference between the prior state and the restored
state.

R14. Resources that can be freed must be freed

If any resources are not capable of being freed, then R15. Inform the user of the partially-
restored resources in a manner that they will see it.

R19. Estimate the time it will take to cancel within 20%

R20. Inform the user of this estimate.

R21. Once the cancellation has finished the system must provide feedback to the user that
cancellation is finished, e.g., if cursor was changed to busy indicator, change it back to
normal; if progress bar was displayed was displayed, remove it; if dialog box was
provided, close it.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 67

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 67

Responsibilities not assigned or
shown in our diagrams and why.
• We are not considering a “critical task” where the progress

and results of the cancellation must effect user behavior,
therefore R16 and R18 are not assigned.

• J2EE-MVC implicitly returns control to the user during
cancellation, so R17is not assigned.

• Our diagram does not show the infrastructure in which the
application runs, therefore responsibilities assigned to the
infrastructure are not shown (R8, R9)

List of responsibilities not assigned to our components or not shown in the diagrams.

R8. The infrastructure itself must provide a means to request the cancellation of the
application (e.g., task manager on Windows, force quit on MacOS)

R9. If either R7 or R8, then the infrastructure must have the ability to cancel the
active command (I.e., it must fulfill Responsibilities R10 to R21)

R16. Require acknowledgement from the user that they are aware of the partially-
restored nature of the cancellation. (we’re not doing a “critical task” in this
example)

R17. Return control to the user, or not, depending on the forces from the task
(implicit in J2EE-MVC)

R18. If control cannot be returned to the user, inform the user of this fact (and ideally,
why that is the case) (we’re not doing a “critical task” in this example)

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 68

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 68

:View

Sequence diagram of activities prior to
issuing cancel command

:Controller Active-
Command
:Model

Prior-State-
Manager
:Model

Cancellation-
Manager
:Model

:User
normal
operation

invoke
register (R4)

save current state (R4)

normal
operation

Comments about Sequence Diagram

Only components that participate in this sequence are shown.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 69

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 69

command (R5)

:View Listener
:Controller

Active-
Command
:Model

Prior-State-
Manager
:Model

Cancellation-
Manager
:Model

press
cancel
button (R1,2) send cancel

request (R2, R3) cancel active
command (R3)

change cursor shape (R20)

acknowledge
user’s

estimates cancel
time between

1 and 10 secs
(R19, busy cursor)

are you alive? (R6)

yes (R6)

return original state (R11)

original state (R11)

release
resources (R14)

exiting R21)
x restore cursor (R21)

:User

Sequence diagram of activities after
issuing cancel command

Comments about Sequence Diagram

Only components that participate in this sequence are shown.

An important portion of cancel is that the Listener is on separate thread
of control (otherwise listener may be blocked because command is not
responding and command owns the active thread).

Sequence diagram does not make this explicit. It is implicit in fact that
the Listener responds regardless of state of active command.

Sequence diagram is UML (standard). Difficult to show threads in UML.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 70

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 70

Current status of USAPs

We have about two dozen architecturally sensitive scenarios and
discussions of architectural solutions (see Bass, John, & Kates, 2001;
Juristo, Moreno, & Sanchez, 2003).

Four more scenarios have been elaborated into forces and general
responsibilities (preliminary).

We are elaborating additional scenarios.

We are also looking for additional scenarios.

Goal is to produce a handbook.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 71

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 71

Experiences of USAPs in
development
Several Architectural Tradeoff Analyses conducted by the SEI
used some of the architecturally-sensitive usability scenarios

NASA’s MERBoard, a large-screen collaborative tool used in the
Mars Exploration Rover mission this winter, redesigned their
architecture using the scenarios and USAPs

Short descriptions of the Attribute Tradeoff Analysis MethodSM

(ATAMSM) and Attribute-Driven Design (ADD) can be found in Bass, L.
Clements, P. & Kazman, R. (2003). Software Architecture in Practice,
2nd edition. Reading, MA: Addison Wesley Longman.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 72

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 72

Tutorial Summary

Software architectural design can support iterative design through
separation based patterns, but some usability issues are difficult to
resolve through iterative design.

Architecturally sensitive scenarios are examples of problems that are
difficult to implement once architecture is designed.

USAPs are an attempt to capture some of these problems, provide
rationale to support cost/benefit analysis, provide general set of
responsibilities for any solution, and provide sample specific solution to
further guide software designer.

Currently have about two dozen architecturally sensitive scenarios and
are in process of turning these into USAPs.

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 73

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 73

Questions?

To keep up with recent developments concerning usability and
software architecture (U&SA), check our website periodically:
www.UandSA.org

CHI 2004 John, Bass, Juristo & Sanchez-Segura page 74

CHI 2004 -- John, Bass, Juristo & Sanchez-Segura -- page 74

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix I-1

Appendix I
General Usability Scenarios
(excerpt of Bass, L., John, B. E., & Kates, J. (2001). Achieving usability
through software architecture (CMU/SEI-2001-TR-005). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University)

This section enumerates the usability scenarios that we have identified as being architec-
turally sensitive. A general usability scenario describes an interaction that some
stakeholder (e.g., end user, developer, system administrator) has with the system under
consideration from a usability point of view.

We generated the list of usability scenarios by surveying the literature, by personal expe-
rience, and by asking colleagues [Gram 1996, Newman 1995, Nielsen 1993]. We also
screened the list so that all entries have explicit software architectural implications and
solutions. Section 5 provides an architectural pattern that implements each scenario given
in this report.

1. Aggregating Data
A user may want to perform one or more actions on more than one object. For example,
an Adobe® Illustrator® user may want to enlarge many lines in a drawing. It could be-
come tedious to perform these actions one at a time. Furthermore, the specific aggrega-
tions of actions or data that a user wishes to perform cannot be predicted; they result from
the requirements of each task. Systems, therefore, should allow users to select and act
upon arbitrary combinations of data.

2. Aggregating Commands
A user may want to complete a long-running, multi-step procedure consisting of several
commands. For example, a psychology researcher may wish to execute a batch of com-
mands on a data file during analysis. It could become tedious to invoke these commands
one at a time, or to provide parameters for each command as it executes. If the computer
is unable to accept the required inputs for this procedure up front, the user will be forced
to wait for each input to be requested. Systems should provide a batch or macro capabil-
ity to allow users to aggregate commands.

3. Canceling Commands
A user invokes an operation, then no longer wants the operation to be performed. The
user now wants to stop the operation rather than wait for it to complete. It does not matter
why the user launched the operation. The mouse could have slipped. The user could have
mistaken one command for another. The user could have decided to invoke another op-
eration. For these reasons (and many more), systems should allow users to cancel opera-
tions.

4. Using Applications Concurrently
A user may want to work with arbitrary combinations of applications concurrently. These
applications may interfere with each other. For example, some versions of IBM® Via-
Voice and Microsoft® Word contend for control of the cursor with unpredictable results.

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix I-2

Systems should ensure that users can employ multiple applications concurrently without
conflict. (See: Supporting Multiple Activities)

5. Checking for Correctness
A user may make an error that he or she does not notice. However, human error is fre-
quently circumscribed by the structure of the system; the nature of the task at hand, and
by predictable perceptual, cognitive, and motor limitations. For example, users often type
“hte” instead of “the” in word processors. The frequency of the word “the” in English and
the fact that “hte” is not an English word, combined with the frequency of typing errors
that involve switching letters typed by alternate hands, make automatically correcting to
“the” almost always appropriate. Computer-aided correction becomes both possible and
appropriate under such circumstances. Depending on context, error correction can be en-
forced directly (e.g., automatic text replacement, fields that only accept numbers) or sug-
gested through system prompts.

6. Maintaining Device Independence
A user attempts to install a new device. The device may conflict with other devices al-
ready present in the system. Alternatively, the device may not function in certain specific
applications. For example, a microphone that uses the Universal Serial Bus (USB) may
fail to function with older sound software. Systems should be designed to reduce the se-
verity and frequency of device conflicts. When device conflicts occur, the system should
provide the information necessary to either solve the problem or seek assistance. (Devices
include printers, storage/media, and I/O apparatus.)

7. Evaluating the System
A system designer or administrator may be unable to test a system for robustness, cor-
rectness, or usability in a systematic fashion. For example, the usability expert on a de-
velopment team might want to log test users’ keystrokes, but may not have the facilities
to do so. Systems should include test points and data gathering capabilities to facilitate
evaluation.

8. Recovering from Failure
A system may suddenly stop functioning while a user is working. Such failures might
include a loss of network connectivity or hard drive failure in a user’s PC. In these or
other cases, valuable data or effort may be lost. Users should be provided with the means
to reduce the amount of work lost from system failures.

9. Retrieving Forgotten Passwords
A user may forget a password. Retrieving and/or changing it may be difficult or may
cause lapses in security. Systems should provide alternative, secure mechanisms to grant
users access. For example, some online stores ask each user for a maiden name, birthday,
or the name of a favorite pet in lieu of a forgotten password.

10. Providing Good Help
A user needs help. The user may find, however, that a system’s help procedures do not
adapt adequately to the context. For example, a user’s computer may crash. After re-

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix I-3

booting, the help system automatically opens to a general table of contents rather than to
a section on restoring lost data or searching for conflicts. Help content may also lack the
depth of information required to address the user’s problem. For example, an operating
system’s help area may contain an entry on customizing the desktop with an image, but
may fail to provide a list of the types of image files that can be used. Help procedures
should be context dependent and sufficiently complete to assist users in solving problems.

11. Reusing Information
A user may wish to move data from one part of a system to another. For example, a tele-
marketer may wish to move a large list of phone numbers from a word processor to a da-
tabase. Re-entering this data by hand could be tedious and/or excessively time-
consuming. Users should be provided with automatic (e.g., data propagation) or manual
(e.g., cut and paste) data transports between different parts of a system. When such trans-
ports are available and easy to use, the user’s ability to gain insight through multiple per-
spectives and/or analysis techniques will be enhanced.

12. Supporting International Use
A user may want to configure an application to communicate in his or her language or
according to the norms of his or her culture. For example, a Japanese user may wish to
configure the operating system to support a different keyboard layout. However, an appli-
cation developed in one culture may contain elements that are confusing, offensive, or
otherwise inappropriate in another. Systems should be easily configurable for deployment
in multiple cultures.

13. Leveraging Human Knowledge
People use what they already know when approaching new situations. Such situations
may include using new applications on a familiar platform, a new version of a familiar
application, or a new product in an established product line.

New approaches usually bring new functionality or power. When, however, users are un-
able to apply what they already know, a corresponding cost in productivity and training
time is incurred. For example, new versions of applications often assign items to different
menus or change their names. As a result, users skilled in the older version are reduced to
the level of novices again, searching menus for the function they know exists.

System designers should strive to develop upgrades that leverage users’ knowledge of
prior systems and allow them to move quickly and efficiently to the new system.

14. Modifying Interfaces
Iterative design is the lifeblood of current software development practice, yet a system
developer may find it prohibitively difficult to change the user interface of an application
to reflect new functions and/or new presentation desires. System designers should ensure
that their user interfaces can be easily modified.

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix I-4

15. Supporting Multiple Activities
Users often need to work on multiple tasks more or less simultaneously (e.g., check mail
and write a paper). A system or its applications should allow the user to switch quickly
back and forth between these tasks.

16. Navigating Within a Single View
A user may want to navigate from data visible on-screen to data not currently displayed.
For example, he or she may wish to jump from the letter “A” to the letter “Q” in an on-
line encyclopedia without consulting the table of contents. If the system takes too long to
display the new data or if the user must execute a cumbersome command sequence to
arrive at her or his destination, the user’s time will be wasted. System designers should
strive to ensure that users can navigate within a view easily and attempt to keep wait
times reasonably short. (See: Working at the User’s Pace)

17. Observing System State
A user may not be presented with the system state data necessary to operate the system
(e.g., uninformative error messages, no file size given for folders). Alternatively, the sys-
tem state may be presented in a way that violates human tolerances (e.g., is presented too
quickly for people to read. See: Working at the User’s Pace). The system state may also
be presented in an unclear fashion, thereby confusing the user. System designers should
account for human needs and capabilities when deciding what aspects of system state to
display and how to present them.

A special case of Observing System State occurs when a user is unable to determine the
level of security for data entered into a system. Such experiences may make the user
hesitate to use the system or avoid it altogether.

18. Working at the User’s Pace
A system might not accommodate a user’s pace in performing an operation. This may
make the user feel hurried or frustrated. For example, ATMs often beep incessantly when
a user “fails” to insert an envelope in time. Also, Microsoft Word’s scrolling algorithm
does not take system speed into account and becomes unusable on fast systems (the data
flies by too quickly for human comfort). Systems should account for human needs and
capabilities when pacing the stages in an interaction. Systems should also allow users to
adjust this pace as needed.

19. Predicting Task Duration
A user may want to work on another task while a system completes a long running op-
eration. For example, an animator may want to leave the office to make copies or to eat
while a computer renders frames. If systems do not provide expected task durations, users
will be unable to make informed decisions about what to do while the computer “works.”
Thus, systems should present expected task durations.

20. Supporting Comprehensive Searching
A user wants to search some files or some aspects of those files for various types of con-
tent. For example, a user may wish to search text for a specific string or all movies for a

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix I-5

particular frame. Search capabilities may be inconsistent across different systems and
media, thereby limiting the user’s opportunity to work. Systems should allow users to
search data in a comprehensive and consistent manner by relevant criteria.

21. Supporting Undo
A user performs an operation, then no longer wants the effect of that operation. For ex-
ample, a user may accidentally delete a paragraph in a document and wish to restore it.
The system should allow the user to return to the state before that operation was per-
formed. Furthermore, it is desirable that the user then be able to undo the prior operation
(multi-level undo).

22. Working in an Unfamiliar Context
A user needs to work on a problem in a different context. Discrepancies between this new
context and the one the user is accustomed to may interfere with the ability to work. For
example, a clerk in business office A wants to post a payment for a customer of business
unit B. Each business unit has a unique user interface, and the clerk has only used unit
A’s previously. The clerk may have trouble adapting to business unit B’s interface (same
system, unfamiliar context.) Systems should provide a novice (verbose) interface to offer
guidance to users operating in unfamiliar contexts.

23. Verifying Resources
An application may fail to verify that necessary resources exist before beginning an op-
eration. This failure may cause errors to occur unexpectedly during execution. For exam-
ple, some versions of Adobe® PhotoShop® may begin to save a file only to run out of
disk space before completing the operation. Applications should verify that all necessary
resources are available before beginning an operation.

24. Operating Consistently Across Views
A user may become confused by functional deviations between different views of the
same data. Commands that had been available in one view may become unavailable in
another or may require different access methods. For example, users cannot run a spell
check in the Outline View utility found in a mid-90’s version of Microsoft Word. Systems
should make commands available based on the type and content of a user’s data, rather
than the current view of that data, as long as those operations make sense in the current
view.

For example, allowing users to perform operations on individual points in a scatter plot
while viewing the plot at such a magnification that individual points cannot be visually
distinguished does not make sense. A naïve user is likely to destroy the underlying data.
The system should prevent selection of single points when their density exceeds the
resolution of the screen, and inform the user how to zoom in, access the data in a more
detailed view, or otherwise act on single data points. (See: Providing Good Help and
Supporting Visualization)

25. Making Views Accessible
Users often want to see data from other viewpoints. For example, a user may wish to see
the outline of a long document and the details of the prose. If certain views become un-

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix I-6

available in certain modes of operation, or if switching between views is cumbersome,
the user’s ability to gain insight through multiple perspectives will be constrained. (See:
Supporting Visualization)

26. Supporting Visualization
A user wishes to see data from a different viewpoint. Systems should provide a reason-
able set of task-related views to enhance users’ ability to gain additional insight while
solving problems. For example, Microsoft Word provides several views to help users
compose documents, including Outline and Page Layout modes.

27. Supporting Personalization
(not in CMU/SEI-2001-TR-005)

A user wants to work in a particular configuration of features that the system provides.
The user may want this configuration to persist over multiple uses of the system (as op-
posed to having to set it up each time). Systems should enable a user to specify their pref-
erences for features and provide the possibility for these preferences to endure. For ex-
ample, customizing Netscape’s toolbar or saving a hierarchical structure of bookmarks.

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix II-1

Appendix II
Details of the Usability Benefit Hierarchy
(excerpt from Bass, L., John, B. E., & Kates, J. (2001). Achiev-
ing usability through software architecture (CMU/SEI-2001-TR-
005). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University)

To create usable systems, designers must first ensure that their proposed products provide
the functionality their users actually need to perform work as opposed to the functionality
that the marketing or development team imagines they need. In other words, systems
must provide functionality that fits the individual, organizational, and social structure of
the work context. Although specifying and identifying needed functionality are funda-
mental steps in the development process, these design phases do not typically involve
architectural concerns. Thus, we will not discuss them here. (We refer readers interested
in these issues to Contextual Design [Beyer 1998].)

Assuming that the functionality needed by a system’s users is correctly identified and
specified, the usability of such a system can still be seriously compromised by architec-
tural decisions that hinder or even prevent the required benefits. In extreme cases, the
resulting system can become virtually unusable.

This section organizes and presents scenarios by their usability benefits. We arrived at the
hierarchy of usability benefits presented in Table 1 using a bottom-up process called the
affinity process [Beyer 1998]. We took this approach rather than taking an existing defi-
nition of usability and sorting the scenarios into it because it was not clear that architec-
turally sensitive scenarios would cover the typical range of usability benefits. However,
the resulting hierarchy does not differ significantly from organizations of usability given
by other authors [e.g., Newman 1995; Nielsen 1993; Shneiderman 1998], and we view
this as partial confirmation that our set of architecturally sensitive scenarios covers, in
some sense, the usability space. Each scenario occurs in one or more positions in the hi-
erarchy.

The entries in this chapter discuss each item of the usability benefit hierarchy. One prem-
ise of this work has been that the design of a system embodies tradeoffs between benefits
(usability) and cost (software engineering). Hence in each section, we discuss the appro-
priate messages for each benefit. This will enable the usability engineer to better argue
the potential benefits of each scenario and the software engineer to know what instru-
mentation should be embedded into the system to support the benefit calculations.

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix II-2

Table 1. Usability Benefits Heirarchy

Increases individual user effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance
Reduces the impact of routine user errors (slips)

Improves non-routine performance
Supports problem-solving
Facilitates learning

Reduces the impact of user errors caused by lack of knowledge (mistakes)
Prevents mistakes
Accommodates mistakes

Reduces the impact of system errors
Prevents system errors
Tolerates system errors

Increases user confidence and comfort

1 Increases Individual User Effectiveness

If addressed properly, the scenarios included in this category will improve the perform-
ance of individual users. Such increases in productivity, though seemingly small when
considered discretely, can aggregate to produce substantial benefits for an organization as
a whole.

1.1 Expedites routine performance

In a routine task, a user recognizes a situation, knows what the next goal should be, and
knows what to do to accomplish that goal. No problem-solving is necessary. All that re-
mains is for the user to recall and execute the commands necessary to complete the task.

When performing routine tasks, even skilled users will become faster but will probably
not develop new methods to complete their tasks [Card 1983]. This is in contrast to a
problem-solving or learning situation where the user is likely to discover or learn a new
method while performing a task. (For an example of learning and problem-solving be-
havior, see non-routine performance.)

Although users know what to do to accomplish routine tasks, they will still make errors.
In fact, observations of skilled users performing routine tasks reveal that about 20% of a
user’s time may be consumed by making, then recovering from, mistakes. These “routine
errors” result from “slips” in execution (e.g., hitting the wrong key or selecting the menu
item next to the one desired), rather than from a lack of knowledge (i.e., not knowing
which command to use). Slips can never be totally prevented if there are multiple actions
available to a user, but some system designs accommodate these errors more successfully
than others.

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix II-3

Accelerates error-free portion of routine performance

Routine tasks take time for a user to recognize the situation, recall the next goal and the
method used to accomplish it, and to mentally and/or physically execute the commands to
accomplish the goal. We call the minimum required time to accomplish a task, assuming
no slips, the error-free portion of routine performance.

In practice, the actual performance time is the sum of this minimum time and the time it
takes to make and recover from slips. Systems can be designed to maximize error-free
performance time, thereby reducing time to perform routine tasks and increasing individ-
ual effectiveness.

Reduces the impact of routine user errors (slips)

The negative impact of routine user errors can be reduced in two ways. First, since users
will always slip, reducing the number of opportunities for error (roughly corresponding to
the number and difficulty of steps in a given procedure) will usually reduce its occur-
rence. Second, systems can be designed to better accommodate user slips by providing
adequate recovery methods.

1.2 Improves non-routine performance

In a non-routine task, a user does not know exactly what to do. In this situation, the user
may experiment within the interface by clicking on buttons either randomly or systemati-
cally to observe the effects. The user might guess at actions based on previous experi-
ence. He or she might also use a tutorial, a help system, or documentation. Success in
these “weak methods” of dealing with a new situation can be helped or hindered through
system design.

Supports problem-solving

Users employ problem-solving behavior when they do not know exactly what to do. This
behavior can be described as a search through a problem space [Newell and Simon 1972].
When confronted with a new problem, people guess at solutions based on previous expe-
rience, try things at random to see what happens, or search for the desired effect.

For this discussion, we assume that the user understands the goal of the task (e.g., I would
like to replace all occurrences of “bush” with “shrub”), but the user may have to search
through the system’s available commands to achieve the desired outcome.

Measures of how well a system supports problem-solving include

• the time it takes to accomplish a novel task

• the number of incorrect paths the user takes while accomplishing a novel task

• the type of incorrect paths the user takes while accomplishing a novel task (e.g., paths
that have unforeseen and permanent side effects or benign paths that change nothing
but simply add to the problem-solving time)

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix II-4

• the time necessary to recover from incorrect paths (Systems that support UNDO usu-
ally score well on this measure.)

In addition to reducing time spent on incorrect paths, well-designed systems may actually
enhance users’ problem-solving capabilities, further improving productivity.

Facilitates learning

Humans continuously learn as they perform tasks. Even in routine situations, humans
continue to speed up with each repetition, eventually reaching a plateau where further
improvements in performance become nearly imperceptible. In non-routine situations,
people learn by receiving training, consulting instructions (using a help system, docu-
mentation, or asking a friend), by exploring the system, by applying previous experience
to the new situation, and/or by reasoning based on what they know (or think they know)
about a system. They may also learn by making a mistake, observing that the erroneous
action does not produce the desired result, and by remembering not to perform this action
again.

Measures of how well a system supports learning typically include

• the number of times a task must be performed by a user before it is completed with-
out error. (Often investigators include a repetition requirement to avoid the “luck”
factor; for example, a user must perform a task n times without error.)

• the time before a user fulfills the error-free repetition requirement (defined above)

• incidental learning measures, in which a user first performs a task until some level of
mastery is reached. The user then performs a different task that he or she has not
practiced. The problem-solving and learning measures associated with this second
task are measures of incidental learning.

1.3 Reduces the impact of user errors caused by lack of
knowledge (mistakes)

In addition to the errors people make even when they know how to accomplish their tasks
(slips, discussed above), people make errors when they do not know what to do in the
current situation. In a typical scenario, a user does not understand that the current situa-
tion differs in important ways from previously encountered situations, and therefore he or
she misapplies knowledge of procedures that have worked before.1 Errors due to lack of
knowledge are called mistakes.

1 It is often difficult to distinguish a mistake from an exploratory problem-solving action.

Typically, a mistake is when the user “knows” what to do and is wrong; while prob-
lem-solving is when the user doesn’t know what to do and is trying to find the correct
way. Therefore, the difference can only be detected through means other than the
observation of actions – think-aloud protocols or interviews about what a person in-
tended when taking an action, or his or her response when the action does not have
the intended result (which indicates a mistake) typically allow observers to make this
distinction. However, for architecture design, this distinction is not important; some
users may be problem-solving and others making mistakes, but the architecture
should support both.

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix II-5

Design cannot prevent all mistakes, but careful design can prevent some of them. For ex-
ample, a typical technique to help prevent mistakes is to gray out inapplicable menu
items. Since some mistakes will still occur, systems should also be designed to accom-
modate them.

Prevents mistakes

The following are typical measures of how well a system helps to prevent mistakes:

• the number of mistaken actions that a user could make while completing a task

• the type of mistakes the user could make while accomplishing a task (e.g., paths that
have unforeseen and permanent side effects, or benign paths that change nothing)

(While these measures appear similar to those associated with problem-solving; that case
focuses on how well the system guides the user back to the correct path. Preventing mis-
takes focuses on how well the system guides the user away from an incorrect path. The
difference is subtle.)

Accommodates mistakes

Since mistakes will occur if the user has the freedom to stray from a correct path, the
system should accommodate these errors. The most telling measures of such accommo-
dation are

• the degree to which the system can be restored to the state prior to the mistake

• the time necessary to recover from mistakes (Systems that support UNDO usually
score well on this measure.) This duration includes the time needed to restore all data
and resources to the state before the error.

2 Reduces the Impact of System Errors

Systems will always operate with some degree of error. Networks will go down, power
failures will occur, and applications will contend for resources and conflict. Design can-
not prevent all system errors, but careful design can prevent some of them. All systems
should be designed to tolerate system errors. This section differs from section 3.1. “Re-
duces the impact of routine user errors” only in the source of the error discussed. Here,
we address system

error, not user error. The measures stay the same but the object of measurement becomes
the system.

2.1 Prevents system errors

As with preventing mistakes, the measures associated with preventing system errors are
the number and type of error that occur as a user performs a task.

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix II-6

2.2 Tolerates system errors

Since system errors will occur, systems should be set up to tolerate them. Again, as with
accommodating mistakes, the most telling measures of error tolerance are

• the degree to which the system state can be restored to the state before the error.

• the time necessary to recover from errors. This duration includes the time needed to
restore all data and resources to the system state before the error.

3 Increases user confidence and comfort
In the scenarios included in this category, the benefits do not involve users’ effi-
ciency, problem-solving processes, ability to learn, or propensity to make mis-
takes. The benefits do involve how they feel about the system; for some architec-
tural decisions do facilitate or inhibit capabilities that increase user confidence
and comfort, and this may be of value to an organization. Measures of confidence
and comfort are more indirect than the time- and error-based metrics in the pre-
ceding categories, and typically involve questionnaires or interviews, or analysis
of buying behavior (e.g., return customers and referrals).

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix III-1

Appendix III: Usability Supporting Architectural Pattern Template
Bonnie E. John, Len Bass, Maribel Sanchez-Segura, and Rob J. Adams, Sept. 2004

Name: Usability Supporting Architectural Patterns must have suggestive names, which give an idea of the
problem addressed and the solution in a word or two.
Usability Context
The context is divided into three parts: the situation (or general usability scenario), the conditions under
which this situation is relevant, and the potential benefits to the users if the problem arising from this
situation is solved.

Situation: A brief description of the situation that makes this pattern useful from the user’s
viewpoint.
Conditions: Any conditions concerning the situation constraining when the pattern is useful
Potential Usability Benefits: A brief description of the benefits to the user if the solution is
implemented. We use the usability benefit hierarchy taken from Bass & John to express these
benefits.

Problem
The problem is expressed as the requirements arising from human desires and capabilities and the task
versus the constraints deriving from the state of the software or the environment. These forces result in
responsibilities that the software must fulfil to solve the problem. The responsibilities are part of the
solution, but it is valuable to see how they arise. They are, therefore, presented here.
Forces exerted by the
environment and task

Forces exerted by
human desires and

capabilities

Forces exerted by the
state of the software

system

Responsibilities of the general
solution

This field describes the
state of the
environment and the
task, which may
include issues of task
criticality or control,
among others.

This field describes the
human desires and
needs, which may
include issues of
salience or control,
among others.

This field describes the
state of the software,
which may include
issues of resources and
control, among others.

This field contains the
responsibility of the software
and an argument about why this
responsibility is necessary
given the user/task needs and/or
the system/environment
constraints.

Specific Solution
The specific solution is situated in a partial design that reflects requirements that the designer believes are
more important than cancel. The designer will make particular choices of overall architecture, MVC is one
example, we need to present our table as an example of how the general solution is customised for the
overall architecture.

General
responsibilities of the

software

Forces exerted by
previous design

decisions

Allocation of
responsibilities to

specific components

Rationale

This field describes the
general responsibilities
of the software
identified in the
problem description.

This field describes the
forces that come from
design decisions taken
independently of
usability aspects but
that influence the way
in which these aspects
must be designed.

This field describes the
responsibilities of the
software components
involved in the design
of the usability aspects.

Justification of how this
allocation of responsibilities to
specific modules satisfies the
problem.

Components diagram of specific solution
Sequence diagram of specific solution
Deployment diagram of specific solution (if necessary)

CHI 2004 John, Bass, Juristo & Sanchez-Segura Appendix III-2

Forces exerted by the
environment and task

Forces exerted by human
desires and capabilities

Responsibilities that must
be satisfied by any software

design solution:

Networks are sometimes
unresponsive.

Sometimes changes in the
environment require the system
to terminate

Users have to communicate their
intentions to the software through
overt acts (e.g., finger
movements)

R2. Provide a button, menu
item, keyboard shortcut and/or
other means to cancel the active
command.

R4. Must always gather
information (state, resource
usage, actions, etc.) that allow
for recovery of the state of the
system prior to the execution of
the current command

Relationship of Forces to General Responsibilities for Cancelling Commands
Bonnie E. John, Len Bass, Maribel Sanchez-Segura, Rob Adams, Elsa Golden

19-Feb-2004

Software has to receive an action
from the user to do something

R1. Must provide a means to
cancel a command

Forces exerted by the state of
the software

No one can predict when the
environment will change

No one can predict when the users
will want to cancel commands

Appendix IV

R3. Must always listen for the
cancel command or
environmental changes

Users slip or make mistakes, or
explore commands and then
change their minds, but do not
want to wait for the command to
complete.

Software is sometimes
unresponsive

CHI 2004 John, Bass, Juristo Sanchez-Segura AppIV-1

User needs to know that the
command was received within
150 msec, or they will try again.

R5. Must acknowledge receipt
of the cancellation command
appropriately within 150 msec.
The acknowledgement must be
appropriate to the manner in
which the command was issued.

It can be assumed that a user is
looking at a button as they click
it. People can see changes in
color in their fovea.

For example, if the user
pressed a cancel button,
changing the color of the
button will be seen.

People can see changes in
intensity in their peripheral
vision.

If the user used a keyboard
shortcut, flashing the menu
that contains that command
might be appropriate.

EITHER R6. The command must respond
by cancelling itself (I.e., it must
fulfill Responsibilities R10 to
R21 (e.g., an object-oriented
system would have a cancel
method in each object)

R7. An active portion of the
application must ask the
infrastructure to cancel the
command, or
R8. The infrastructure itself
must provide a means to request
the cancellation of the
application (e.g., task manager
on Windows, force quit on
MacOS)

The command itself is
responsive at the time of
cancellation

OR The command itself is
not responsive at the
time of cancellation

The task or environment has
indicated that the command
should stop (e.g., the OS has
determined that there is not
enough memory to continue)

User has communicated a desire
for the command to stop

CHI 2004 John, Bass, Juristo Sanchez-Segura AppIV-2

R9. If either R7 or R8, then the
infrastructure must have the
ability to cancel the active
command with whatever help is
available from the active portion
of the application (I.e., it must
fulfill Responsibilities R10 to
R21)
R10. The collaborating
processes have to be informed of
the cancellation of the invoking
command (these processes have
their own responsibilities that
they must perform in response to
this information, possibly treat it
as a cancellation.). The
information given to
collaborating processes may
include the request for
cancellation, the progress of
cancellation, and/or the
completion of cancellation.

EITHER the system is capable of
rolling back all changes
to the state prior to
execution of the
command.

R11. Restore the system back to
its state prior to execution of the
command.

R12. Restore the system back to
as close to the state prior to
execution of the command as
possible
R13. Inform the user of the
difference between the prior
state and the restored state.

User wishes to operate the system
as if their command had not been
issued.

OR the system is not capable
of rolling back some of
the changes made during
the operation of the
command prior to
cancelation

The command has invoked
collaborating processes

OR The command itself is
not responsive at the
time of cancellation

The task or environment has
indicated that the command
should stop (e.g., the OS has
determined that there is not
enough memory to continue)

User has communicated a desire
for the command to stop

CHI 2004 John, Bass, Juristo Sanchez-Segura AppIV-3

The system should remain stable
over time (if there are resources
not returned, it may lead to
subsequent system crash, e.g.,
memory leak)

User wants the software to return
to the pre-command state.

R14. All resources that can be
freed must be freed

Users need to know to what
degree this desire was achieved
(because it may effect what they
do in their current or future tasks)

IF some resources has been
irrevocably consumed
and cannot be restored

R15. Inform the user of the
partially-restored resources in a
manner that they will see it.

For critical tasks, the inability to
restore state or resources may
require external actions to
acknowledge the partial restore

Users may not always be paying
attention, or may forget to take
action

R16. Require acknowledgement
from the user that they are aware
of the partially-restored nature
of the cancellation.

User wants to multi-task
depending on the time it will take
to cancel the command, typically
more than 1 second.

R17. Return control to the user,
or not, depending on the forces
from the task

R18. If control cannot be
returned to the user, inform the
user of this fact (and ideally,
why that is the case)
R19. Estimate the time it will
take to cancel within 20%

R20. Inform the user of this
estimate.

If the estimate is between 1
and 10 seconds, changing the
cursor shape is sufficient.
 If the estimate is more than 10
seconds, and time estimate is
with 20%, then a progress
indicator is better.

EITHER it is not critically
important to the task that the
cancellation be complete before
another action can be taken

Users expect accurate feedback
(within 20%, see TN) so they can
plan their multitasking.

The command takes more than 1
second to cancel

OR it is critically important to
the task that the cancellation be
complete before another action
can be taken

CHI 2004 John, Bass, Juristo Sanchez-Segura AppIV-4

 If estimate is more than 10
seconds but cannot be
estimated accurately, consider
other alternatives (see TN,
footnote 8)

User wants to be notified when
the cancellation has finished

R21. Once the cancellation has
finished the system must provide
feedback to the user that
cancellation is finished, e.g., if
cursor was changed to busy
indicator, change it back to
normal; if progress bar was
displayed was displayed, remove
it; if dialog box was provided,
close it.

Users expect accurate feedback
(within 20%, see TN) so they can
plan their multitasking.

The command takes more than 1
second to cancel

OR it is critically important to
the task that the cancellation be
complete before another action
can be taken

CHI 2004 John, Bass, Juristo Sanchez-Segura AppIV-5

CHI 2004 John, Bass, Juristo Sanchez-Segura AppIV-6

CHI 2004 John, Bass, Juristo & Sanchez-Segura ref-1

References

References in Usability and Software Architecture

Bass, L. J. & John, B. E. (2000) Achieving Usability Through Software Ar-
chitectural Styles. Extended Abstracts of CHI, 2000 (The Hague, The
Netherlands, April 1-6, 2000) ACM, New York. pp. 502-509.

Bass, L., John, B. E. (2002) Supporting the CANCEL command through
software architecture, CMU/SEI-2002-TN-021. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.
http://www.sei.cmu.edu/publications/documents/02.reports/02tn021.html

Bass, L. J. & John, B. E. (2003) Linking usability to software architecture
patterns through general scenarios. Journal of Systems and Software,
66(3), 187-197.

John, B. E. & Bass, L. J. (2001) Usability and software architecture. Be-
haviour and Information Technology, 20(5), 329-338.

Bass, L., John, B. E. & Kates, J. (2000) Achieving usability through soft-
ware architecture (CMU/SEI-2001-TR-005). Pittsburgh, PA: Software En-
gineering Institute, Carnegie Mellon University.
 http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html

Juristo , N., Moreno, A. M., & Sanchez, M. (2003) Deliverable D.3.4.
Techniques, patterns and styles for architecture-level usability improve-
ment. - ESPRIT project (IST-2001-32298)
http://www.ls.fi.upm.es/status/results/deliverables.html

References in software engineering and software architec-
ture

Bachmann, F., Bass, L., Chastek, G., Donohoe, P., & Peruzzi, F. (2000)
The architecture based design method (CMU/SEI-2000-TR-001). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University.
http://www.sei.cmu.edu/publications/documents/00.reports/00tr001.html

Bass, L.; Clements, P. & Kazman, R. (2003). Software Architecture in
Practice. 2nd edition. Reading, MA: Addison Wesley Longman.

Buschmann, F., Meuneir, R, Rohnert, H., Sommerlad, P. and Stal, M.,
(1996) Pattern-Oriented Software Architecture, A System of Patterns,
Chichester, Eng: John Wiley and Sons.
Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Nord, R., & Stafford J., (2003) Documenting Software Architectures: Views
and Beyond, Addison Wesley.

Clements, P., Kazman, R, & Klein, M. (2001). Evaluating software archi-
tectures: Methods and case studies. Boston: Addison-Wesley.

CHI 2004 John, Bass, Juristo & Sanchez-Segura ref-2

Gamma, E., Helm, R., Johnson, R., Vlissides, J., (1995) Design Patterns,
Elements of Reusable Object-Oriented Software, Reading, Ma: Addison
Wesley Longman.

Hillside Group: Information about patterns and pattern languages can be
found at http://www.hillside.net/ (19 February 2004).

J2EE-MVC is documented at
http://java.sun.com/blueprints/patterns/MVC-detailed.html
(19 February 2004).

Klein, M. & Bachmann, F. (2000). Quality Attribute Design Primitives
(CMU/SEI-2000-TN-2000-017). Pittsburgh, PA: Software Engineering In-
stitute, Carnegie Mellon University.
www.sei.cmu.edu/publications/documents/00.reports/00tr017.html

Laprie, J.-C. (1992) Dependability: Basic Concepts and Terminology.
Springer-Verlag: Vienna.
McCall, J. (2001) Quality Factors. In Encyclopedia of Software Engi-
neering (2nd edition) John Marciniak, ed., John Wiley, New York, pp 1083-
1093
Smith, C. & Williams, L., (2001) Performance Solutions: A Practical Guide
to Creating Responsive, Scalable Software. Reading, Ma.:Addison Wesley
Longman.
References in human performance usability

Beyer, H. & Holtzblatt, K. (1998) Contextual Design. San Francisco, CA:
Morgan Kaufmann Publishers, Inc.

Card, S. K., Moran, T. P. & Newell, A. (1983) The Psychology of Human-
Computer Interaction. Hillsdale, NJ: Erlbaum.

Gram, C. & Cockton, G. (1996) Design Principles for Interactive Systems.
London, England: Chapman and Hall.

Newell, A. & Simon, H. A. (1972) Human Problem Solving. Englewood
Cliffs, NJ: Prentice-Hall.

Newman, W. & Lamming, M. (1985) Interactive System Design. Woking-
ham, England: Addison-Wesley Publishing.

Nielsen, J. (1993) Usability Engineering. Boston, MA: Academic Press Inc.

Shneiderman, B. (1998) Designing the User Interface, 3rd ed. Reading,
MA: Addison-Wesley.

