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Summary. In mesh refinement for scientific computing or graphics, the input is a descrip-
tion of an input geometry, and the problem is to produce a set of additional “Steiner” points
whose Delaunay triangulation respects the input geometry, and whose points are well-spaced.
Ideally, we would like the minimum output size – as few Steiner points as possible. Ruppert
showed how to come within a constant factor of optimal in two dimensions, and a number
of techniques have been proposed to extend his work to various settings (higher dimension,
curved features, fast runtime, parallelism, etc). Each extension needs a different choice of
Steiner point, and thus its own tedious proof of the sizing guarantee. In this article, I show
how to classify Steiner points as safe or potentially unsafe; any algorithm that chooses only
safe points achieves the sizing guarantee. Furthermore, I show that it is easy to classify as safe
the Steiner points chosen in most prior work. This work frees future meshing researchers to
more easily consider varying the choice of Steiner points to achieve important new properties.

1 Introduction

The Delaunay refinement method [Che89, Rup95, She96, She98] sketched in Fig-
ure 1 is one of the main approaches for mesh refinement, because it sits at a happy
confluence of theoretically provable qualities and good behaviour in practice. The
method starts by computing a Delaunay triangulation, and incrementally adds ver-
tices and retriangulates until the mesh being maintained has the desired properties.
According to Shewchuk [She98]: The central question of any Delaunay refinement
algorithm is “where should the next vertex be inserted?” He gives what he calls a
“reasonable” answer, but it is not the only one: indeed, many prior and subsequent
approaches describe different reasonable answers, and provide provable guarantees
that they work. One proof in particular, pioneered by Ruppert, shows that the algo-
rithm terminates with a small mesh. This proof recurs in nearly all Delaunay refine-
ment articles, with only minor adjustments. It is typically two pages long. My goal
here is to allow future meshing researchers to reproduce the termination proof very
quickly — in a few sentences. This will allow the meshing community to more eas-
ily develop new algorithms, and leave us more room to describe their novel features
without surrendering any mathematical rigor.
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DelaunayRefinement(X , sf , ρ, K)
1: Initialize a Delaunay triangulation T
2: while ∃t ∈ T that is “bad” do
3: Choose a point p
4: Add p to the mesh and retriangulate
5: end while
6: return T

Fig. 1: A sketch of the Delaunay refinement technique: Given an input geometry X , a spacing
function sf , and a quality requirement ρ, and perhaps some other constants K, iteratively
add points until the Delaunay triangulation respects the geometry, conforms to the spacing
function, and contains only good-quality elements.

Ruppert’s algorithm [Rup95], extended to three dimensions by Shewchuk [She98],
was stated with very specific choices for the main steps: (1) the initial triangulation is
the Delaunay triangulation of the input points; (2) a triangle or tetrahedron is skinny
if its radius-edge ratio — the ratio of the radius of its circumscribing ball to the
length of its shortest edge — is larger than a user-specified constant ρ; (3) when
a triangle or tetrahedron is skinny, we must insert the center of its circumscribing
ball (its circumcenter), unless that point is close to a facet of the input geometry, in
which case we must follow a specific procedure to snap the point to that facet. See
Section 9.1 for details. This allowed them to produce a proof that the loop is guar-
anteed to terminate with a good quality mesh in which each input feature appears
as the union of a set of facets in the output mesh. Furthermore, it outputs a mesh of
bounded size: no more than a constant factor larger than is optimal.

Much subsequent work has largely kept this framework in mind, but changed
the definition of each step in order to prove ever-better qualities or handle more
general inputs. Boivin and Ollivier-Gooch show how to adapt Ruppert’s algorithm
for some curved inputs [BOG02]; there have recently been several results on mesh-
ing piecewise smooth inputs in higher dimension [ORY05, RY07, CDL07]. Üngör
recommends using the off-center [Üng04], a point other than the circumcenter: in
practice, this nearly halves the output size without affecting the provable guar-
antees. Har-Peled and Üngör [HPÜ05] show how to achieve fast asymptotic run-
time when meshing point clouds by carefully using off-centers. Hudson, Miller, and
Phillips [HMP06] achieve fast runtime on a broader class of inputs by starting with
a very coarse mesh, then alternating between inserting input and Steiner points. Re-
finement can also be done in parallel: the question becomes to find a set of points to
insert simultaneously [STÜ07, STÜ04, HMP07].

Each article cited above must prove that the bound on the output size still holds.
There are three main approaches: showing that someone else’s prior proof applies,
spending approximately two tedious pages on the proof, or eliding the proof for
lack of space. The first approach is, of course, the ideal. Chernikov and Chriso-
choides [CC06, CC07] have studied one generalization. The present work provides
a much broader generalization, in the hopes of allowing far more radical departures
from tradition.
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Contributions

I describe simple rules for categorizing a Steiner point as safe. The rules allow a
meshing algorithm to produce a mesh that has good quality (see Section 2), and that
respects the input geometry (Section 3) and an optional user-supplied mesh sizing
field. In addition, the rules allow perturbation, either on purpose or as a model of
numerical error during mesh construction. Finally, they allow for choosing sets of
points in parallel. The rules appear in Section 5. I prove that an algorithm that fol-
lows the rules and inserts only safe sets of points terminates (Section 6). I discuss
the size of a mesh made of safe points: it is within a constant factor of optimal in
some settings, and as small as we know how to produce in other settings (Section 7).
Finally, I give examples of how to prove an algorithm uses safe points in Section 9.

2 Quality measures

In meshing for the finite element method, the usual quality criterion we wish to
achieve is that all the simplices have good aspect ratio. The typical way to provably
achieve good aspect ratio is to start by producing a mesh with good radius-edge
ratio, and to modify it by either adding a small number of additional points [LT01]
or by computing a weighted Delaunay triangulation [CD03]. The radius-edge ratio of
a simplex compares the radius r of the smallest ball that circumscribes the simplex
and the length e of the shortest edge of the simplex; we say that the simplex has
good radius-edge ratio if r/e ≤ ρ for some constant ρ. Theorem 1 describes the
legal values of ρ. In the proofs, it is easier to make statements about the dual Voronoi
diagram, so henceforth I use the following, closely-related definition of quality:

Definition 1. Let NN(v) be the distance from a vertex v to its nearest neighbour in
the mesh. Let R(v) be the distance from v to the farthest node of its Voronoi cell —
equivalently, R(v) is the largest circumradius of any Delaunay simplex that has v as
one of its vertices. The quality of v is the ratio R(v)/ NN(v). We say that v is ρ-good
if R(v) ≤ ρ NN(v).

The vertex quality defined here and the more traditional radius-edge ratio are
nearly equivalent: If a simplex has radius-edge ratio larger than ρ, then there is a
vertex of that simplex with quality worse than ρ. Conversely, if a vertex has quality
worse than ρ, then there is a simplex on that vertex with radius-edge ratio worse than
some constant ρ′.

3 Input Geometry

I follow recent practice and allow the input geometry to be quite general: the input
can be a complex including curves and manifold surfaces.

Definition 2. A piecewise manifold complex X is a finite set of compact manifolds,
plus the empty set, with the following properties:
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• For any manifold f ∈ X , the boundary of f is a subset of X .
• For any two manifold f and f ′ both in X , f ∩ f ′ is a subset of X .
• There is exactly one d-manifold, known as the domain Ω; all other members of
X are submanifolds of Ω.

For clarity, I say that an i-manifold f ∈ X is a feature with dimension dim(f) =
i. A 0-manifold is an input point. There are only a few possible relationships between
features. Consider two features f and f ′. If f ⊂ f ′ then f is a subfeature of f ′. If
f ∩f ′ = ∅, then f and f ′ are disjoint. Finally, if f and f ′ are not disjoint, and neither
is a subfeature of the other, they are adjacent.

The proofs in this paper require a further condition on the input: that any two
adjacent features form a right or obtuse angle at their intersection. I call this a non-
acute complex. Mesh refinement algorithms typically also require more: that features
intersect generically (two adjacent i-features intersect in a set of (i − 1)-features),
and that each feature be smooth, or even linear. I do not make use of the former
assumption. Some results in this paper apply only to the piecewise linear case; I will
make it clear when the results are limited in this way.

In the end, we want the mesh that the algorithm outputs to respect the geometry.
A set of vertices M (a mesh) respects a linear feature if it appears as the union of
simplices in some triangulation of M , typically the Delaunay or Constrained Delau-
nay. For manifolds, what it means to respect the geometry is less clear. Typically,
we will want each feature f to have a corresponding set F of Delaunay simplices
that form a manifold. F should be homeomorphic to f , close in Hausdorff distance,
and should have similar surface normals. The details are not particularly important
to the present work; instead, I show that my framework applies to algorithms that are
known to produce meshes that respect the geometry.

Scientific applications often need to refine some areas more than is required to
respect the geometry; for example, an application may know there is an eddy in the
middle of a wide flow. Therefore, the input can also specify a spacing function, de-
noted sf . The spacing function denotes that at a point p ∈ Ω, there should be at least
two mesh vertices within a distance of sf(p). Due to the quality requirement, this
definition of spacing function is equivalent to imposing an area constraint on trian-
gles, or an edge length constraint on simplices in general. After sliver elimination,
the spacing function is also equivalent to imposing a volume constraint on simplices.

4 Local Feature Size

Ruppert [Rup95] noted a beautiful connection between a function he called the local
feature size defined by a piecewise linear input, and the performance of his algorithm.
I denote this function as the traditional local feature size lfstrad. Ruppert proves two
things: first, that when his algorithm inserts a vertex v, the distance NN(v) from
v to its nearest neighbour is in Ω(lfstrad(v)). Second, that in any mesh that both
respects the geometry and has bounded aspect ratio simplices, the shortest edge of
the simplex that contains a point x has length in O(lfstrad(x)). In other words, the
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Fig. 2: Two curved features: a curve (left), and an ellipse (right). The ball B(p, rp) intersects
the curve twice, so lfs(p) < rp. Similarly, B(q, rq) intersects the ellipse in a sphere, not a
ball, so lfs(q) < rq .

local feature size reflects both how much refinement Ruppert’s (or his successors’)
algorithm will produce around a point, and how much refinement even the optimal
mesh must suffer.

I follow this approach, but with a new definition of local feature size to account
for curved features. The traditional local feature size says that at a point x, the ball
B(x, lfstrad(x)) is the smallest ball that intersects at least two features f and f ′ that
are disjoint from each other. However, consider a geometry that doubles back on it-
self, such as the curves illustrated in Figure 2. A useful notion of local feature size
will allow for greater refinement depending on whether the curve approaches itself.
To accommodate this, I change the disjointness requirement of lfstrad to instead re-
quiring that B(x, lfs(x)) should intersect the feature(s) in a topological ball. The
quality requirement means that the size of mesh elements grows only linearly with
the distance from areas with small lfs, so I also impose a 1-Lipschitz condition on
lfs. More formally:

Definition 3. Given an input piecewise smooth complex X and a spacing function
sf : Ω → R+, define the local feature size lfs : Ω → R+ as the maximum function
that satisfies the following four requirements:
• Consider a point p on a feature f ∈ X . For all r < lfs(p), for all f ′ ∈ X , the

intersection of B(p, r) with f ∪ f ′ must be contractible to a point.
• For all p ∈ Ω, lfs(p) ≤ sf(p).
• lfs is 1-Lipschitz: For all p and q in Ω, lfs(p) ≤ lfs(q) + |pq|.

One unfortunate feature of this local feature size function is that it is only
bounded away from zero if features meet at non-acute angles — at an acute angle,
the local feature size I define is forced to zero. This is a traditional problem with all
Delaunay mesh refinement algorithms; some algorithms specially handle small an-
gles, while others fail or risk failing when faced with acute angles. Properly handling
inputs with acute angles in the present framework remains a major open problem.
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Constant Use Range Typical values
ρ Quality See Theorem 1

√
2, 2, or 4

δ Perturbation [0, 1) 1
γ Spacing Function γ > 0 ∞
β Lemmas 3 and 7 Fixed 2 or

√
2

d Dimension N 2 or 3

Fig. 3: Constants for the safety definitions and proofs.

5 Safe Steiner Points

We now have the terminology to discuss where it is safe to insert Steiner points into
a mesh. Fundamentally, we want to ensure that whenever an algorithm inserts a safe
Steiner point p, the relation NN(p) ∈ Ω(lfs(p)) holds. The definition of safety is
split into three parts. First, I describe a set of conditions under which a point p is
almost safe: inserting p would not violate the bound. Inserting an almost safe point
might make it impossible to resolve the geometry without later violating the bound.
To prevent this, the definition of full safety adds a requirement that points must be
sufficiently far from input features. Finally, to support parallel algorithms, I define a
notion of a safe set of points that can all be inserted at once.

I define safety not on points but on triples 〈p, r, f〉 ∈ Ω × R × X . They should
be read as denoting an open ball B(p, r) with radius r, centered on a point p that lies
on a feature f . Ideally, the ball would contain no vertices of f , though vertices may
be on its surface. To model perturbation or rounding errors, I allow vertices as close
to p as δr. The safety rules refer to a number of other constants. The quality bound ρ
is as described in Section 2. Almost all extant Delaunay refinement algorithms allow
specifying ρ as an input parameter. Indeed, many prior investigators have noted that
in practice, their algorithms terminate even with ρ smaller than the proofs allow. The
constant γ allows refinement based directly on the spacing function; smaller values
mean more refinement. Finally, Lemma 3 defines a constant β = 2, which I show
how to improve to β =

√
2 in some circumstances in Section 8 — smaller is better.

Figure 3 summarizes the constants.

Definition 4 (Almost-safe). Let X be a piecewise manifold complex. Let B(p, r) be
a ball centered on an input feature f ∈ X , but not centered on any lower-dimensional
feature. The triple 〈p, r, f〉 is almost safe if no vertex on f , nor any 0-manifold that
is a subfeature of f , lies within B(p, δr), and also one or more of the following
conditions hold (see Figure 4):
• INPUT: p ∈ X and r = ∞.
• SPACING: There is some x ∈ B(p, r) such that r ≥ γ lfs(x).
• ENCROACHMENT: For some f ′ ∈ X , B(p, r) ∩ (f ∪ f ′) is not contractible.
• QUALITY: B(p, r) contains a vertex v, and |pv| ≥ ρ NN(v).
• YIELDING: B(p, r) contains both a point q that lies on fq and a vertex v that

lies on f ; f is a subfeature of fq; and q is the center of an almost-safe triple.
Under these conditions, we say that q yields to p.
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Fig. 4: Illustration of almost-safe points.

An almost-safe triple could be arbitrarily close to a feature. The QUALITY and
YIELDING rules would then allow arbitrary amounts of refinement, defeating our
goal of having limited refinement. Following prior work, I solve this issue by requir-
ing that an almost-safe triple that can yield must not be inserted:

Definition 5 (Safe). Let 〈p, r, f〉 be an almost-safe triple. The triple is safe if p does
not yield to any point on a subfeature of f .

The safety rules are all local checks, so we should not be surprised that we can
apply them in parallel. I use the technique of serialization: an algorithm is allowed to
insert a set of safe triples in parallel if there exists at least one sequential ordering of
the insertions under which each triple is safe when it is inserted. It is more convenient
to use the following geometric definition, which I prove (in Lemma 5) is equivalent:

Definition 6 (Safe Set). Let S = {〈pi, ri, fi〉, . . .} be a set of triples. We say the set
is safe if S does not have a pair of distinct triples on the same feature, 〈p, r, f〉 and
〈q, rq, f〉, where |pq| < δ min(r, rq).

Definition 7 (Safe Meshing Algorithm). An algorithm is a safe meshing algorithm
for an input X if it incrementally inserts safe sets, and no other points.

6 Termination proof

The key theorem of this paper shows that the lfs function I define acts as a lower
bound on the spacing between vertices in the final output mesh of a safe algorithm,
assuming that the parameters mentioned previously are appropriately set. Then the
safe algorithm must terminate, since the meshing domain is compact. For most extant
algorithms, all but one of the parameters is implicit in the algorithm. Then the only
free parameter is the quality criterion ρ, and the theorem shows how large ρ must be
for the algorithm to provably terminate. One should keep in mind that in practice,
most algorithms usually terminate when ρ is set smaller than required by the proof.
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Theorem 1. Consider the output of a safe meshing algorithm with the parameters
listed in Figure 3 set to constant values that satisfy

δdρ > βd−1 and γ > 0

Then, at any vertex v in the mesh, NN(v) ∈ Ω(lfs(v)).

The proof of the theorem rests on several lemmas. I start by proving a technical
detail: when a point yields, it is close to a subfeature; and when a point does not yield,
it is far from any subfeature. I use this fact to prove two mutually inductive lemmas:
when we propose an almost-safe triple, it is far (compared to the local feature size)
from from vertices on its feature; and when we commit to inserting a truly safe
point, it is far from points not only on its feature, but anywhere in the mesh. I state
the lemmas here, positing the existence of a constant c and of a set of constants ci

with the property that c ≥ c0 ≥ . . . ≥ cd. A sceptical reader will verify that the
proofs are not circular: the induction is on dimension among almost-safe triples, and
on the order in which vertices are inserted.

Lemma 1 (Proposal). Inspect the domain at any time during the run of A. Given an
almost-safe triple 〈p, r, f〉 where f is an i-feature, lfs(p) ≤ cir.

Lemma 2 (Commitment). For all vertices u in the mesh at any point during the run
of A, we have lfs(u) ≤ (c + 1)NN(u). Immediately after the algorithm has inserted
a safe vertex v, we have lfs(v) ≤ cNN(v).

The Proposal and Commitment lemmas impose constraints on c and ci. Lemma 4
shows that the set of constraints is satisfiable, assuming the parameters are chosen
appropriately. Having proved it, we know that an algorithm that inserts safe vertices
one by one matches the theorem’s requirements. A final lemma (Lemma 5) completes
the proof by showing that the bounds also apply to parallel algorithms that insert safe
sets, because the points could have been safely inserted one by one.

6.1 Yielding relations

Lemma 3. Consider an almost-safe triple 〈p, r, f〉. If it yields due to the YIELDING
rule to an almost-safe triple 〈q, rq, fq〉, where fq is a subfeature of f , then r ≤ β

δ rq,
with β = 2. Conversely, if it does not yield to any lower-dimensional triple, then no
subfeature of f passes within B(p, δ

1+δ r).

Proof. For the first part, note that there is some vertex v on fq within B(q, rq), and
that p is also within the ball. Then |pv| ≤ 2rq. This vertex also lies on f ; then
|pv| ≥ δr and r ≤ (2/δ)rq. For the second part, consider some point q on a sub-
feature fq such that |pq| = αr for some α. There are no vertices on f (and thus
none on fq either) within B(p, δr). If B(q, δαr) were to be empty of any vertices,
then 〈q, αr, fq〉 would be almost-safe due to the YIELDING rule and p could yield.
Therefore, B(q, δαr) must contain a vertex. In other words, αr + δαr ≥ δr and
α ≥ δ

1+δ .
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6.2 Proof of the Proposal Lemma

The Proposal Lemma itself is proved in cases, one case per rule. Each case shows
that for an almost-safe triple 〈p, r, f〉 of dimension i, lfs(p) ≤ cir.
Case INPUT: Then r is infinite, and the statement is trivial.
Case SPACING: By definition, r ≥ γ lfs(x) for some x ∈ B(p, r). The Lipschitz
condition bounds lfs(p) ≤ lfs(x) + r ≤ (1 + γ−1)r, which satisfies the lemma so
long as ci ≥ cd ≥ 1 + γ−1 .
Case ENCROACHMENT: By the definition of the local feature size, lfs(p) ≤ r.
Case QUALITY: There is a vertex v in B(p, r). The Lipschitz condition on lfs allows
us to conclude lfs(p) ≤ lfs(v)+ |pv| ≤ lfs(v)+ r. Since v has already been inserted,
we can inductively apply the Commitment Lemma to see that that lfs(v) ≤ (c +
1) NN(v). The QUALITY rule specifies that NN(v) ≤ r/ρ; therefore lfs(p) ≤ ((c +
1)/ρ + 1)r. To satisfy the statement of the lemma, we need cdim(f) ≥ (c + 1)/ρ +
1. Because we assumed that cdim(f) ≥ cd, we know that the lemma holds in the

QUALITY case as long as cd ≥ 1 + (c + 1)/ρ .
Case YIELDING: Let q be the point on fq that yields to p. We will again use the
Lipschitz condition lfs(p) ≤ lfs(q) + |pq|, with |pq| ≤ r. There triple 〈q, rq, fq〉 is
almost-safe. Because the dimension of fq is strictly greater than the dimension of f ,
we can inductively assume that lfs(q) ≤ cdim(fq)rq. Lemma 3 shows that rq ≤ βr/δ.
Then lfs(p) ≤ cdim(fq)rq + r < (1 + β

δ cdim(fq))r. To ensure that this is less than
cdim(f)r as claimed, we need 1+ β

δ cdim(fq) ≤ cdim(f). Generalizing over all possible
dimensions of f and fq, and remembering that ci ≥ ci+1, we can summarize this

constraint as ci ≥ 1 + β
δ ci+1 for i ∈ [1, d− 1].

6.3 Proof of the Commitment Lemma

I now show that when an algorithm commits to inserting a safe triple 〈p, r, f〉, having
previously only inserted safe points, the distance to any other vertex v currently in
the mesh satisfies lfs(p) ≤ c|pv|. In particular, this holds for the nearest neighbour,
which proves the lemma as previously stated. There are four cases, depending on the
relation between f and the feature fv on which v was inserted:
Case f and fv are disjoint: Then lfs(p) ≤ |pv|.
Case f is a subfeature of fv: When v was inserted, it did not yield to the ball
B(p, r). Therefore, v is not contained in that ball: |pv| ≥ r, and c ≥ 1.
Case fv is a subfeature of f , or f = fv: Since v lies on f , for p to be almost-safe
|pv| ≥ δr. The Proposal Lemma applied to p states that lfs(p) ≤ cdim(f)r, which
is itself bounded by (cdim(f)/δ)|pv|. Given that dim(f) ≥ 1, the lemma holds if

c ≥ c1/δ

Case f and fv are adjacent: Consider the ball b ≡ B(p, |pv|). If b ∩ (f ∪ fv)
is not contractible, then lfs(p) ≤ |pv|. Otherwise, it must intersect a subfeature g
common to f and fv; the distance |pg| ≤ |pv|. From the Proposal Lemma, we know
that lfs(p) ≤ cdim(f)r. It remains to compare r to |pg|. If g is a 0-manifold, then
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|pg| ≥ δr, which bounds c as in the prior case. If g is a 1-manifold or higher (and
thus f is a 2-manifold or higher), then |pg| ≥ (1 + δ)r/δ, as proved in Lemma 3.
Therefore, lfs(p) ≤ c2r ≤ c2

δ
1+δ |pv|. This satisfies our requirements if c ≥ c2

δ
1+δ .

Note that this is a strictly looser requirement than the requirement of the prior case,
because 0 < δ ≤ 1 and c1 ≥ c2.

Finally, the Commitment Lemma also claims a corollary: at every vertex v of the
mesh, lfs(v) ≤ (c + 1)NN(v). Consider u, the vertex nearest v. If v was inserted
after u, then we just proved that lfs(v) ≤ c|uv|. If instead u was inserted after v,
then we know that at the time u was inserted, lfs(u) ≤ c|uv|. Then, the Lipschitz
condition shows lfs(v) ≤ lfs(u) + |uv| ≤ (c + 1)|uv| as claimed.

6.4 Satisfiability

Lemma 4. The constraints on c and ci imposed by the Proposal and Commitment
lemmas can be satisfied if δdρ > βd−1 and γ > 0.

Proof. Let us collect the constraints. From the Proposal Lemma, we know the fol-
lowing: The SPACING case requires that cd ≥ γ−1. The ENCROACHMENT case re-
quires ci ≥ 1. The QUALITY case requires cd ≥ (1 + c)/ρ + 1. The YIELDING
case requires ci ≥ ci+1β/δ + 1. We can unwind the constraints from yielding and
encroachment to see that they require c1 ≥ (β

δ )d−1cd + (d− 1)β
δ , assuming d ≥ 2.

Finally, the Commitment Lemma requires c ≥ c1/δ. Therefore, we can bound c by
the constraint c ≥ (βd−1

δd )cd + (d− 1) β
δ2 .

We have two lower bounds on cd. If the tighter one is cd ≥ 1 + γ−1, then c is a
constant as long as γ−1 is a constant, which is true if γ is strictly positive. Otherwise,
the tighter bound is cd ≥ 1+(1+c)/ρ. Substituting it in and confounding the constant
additive terms into a constant K, we find that (δdρ− βd−1)c ≥ K. By assumption,
the multiplicative term is positive: there does indeed exist such a c.

6.5 Serialization

Lemma 5. A set of safe triples is a safe set if and only if there exists a serial ordering
of single insertions under which each triple is safe when it is inserted.

Proof. The forward direction is fairly simple: Consider a set of safe triples, S, for
which there exists a serial ordering of insertions where each insertion is a safe in-
sertion. When a triple 〈p, r, f〉 is inserted, we know it is safe. In particular, we know
that for every previously-inserted safe triple 〈q, rq, f〉, |pq| ≥ δr ≥ δ min(r, rq).

The reverse direction takes greater effort: Define the dimension of a triple
〈p, r, f〉 as the dimension of f . I claim that if we insert the highest-dimension triples
first, breaking ties according to the radius of each triple, then under this ordering,
every insertion is safe.

We need to prove that each 〈p, r, f〉 in the safe set S remains safe even after
inserting earlier members of S. Safety requires three conditions. First, p must not
yield: there must not be a subfeature with a large empty ball. This was true when
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S was chosen, so after adding a few more vertices, it must remain true. Second, we
need to show that there does not exist a vertex v on f such that |pv| < δr. If v was
present before any of the vertices of the safe set were inserted, then 〈p, r, f〉 cannot
have been safe. Otherwise, v stems from another member 〈v, rv, fv〉 of the safe set.
Since the set is safe, |pv| ≥ δ min(r, rv). If fv is of lower dimension than f , it would
not have been inserted yet, according to the ordering; therefore dim(f) ≤ dim(fv).
But v is on both f and fv , which proves that f = fv . By the ordering, since v was
inserted before p, rv ≥ r. Then we can conclude that |pv| ≥ δr.

Third, we need to show that 〈p, r, f〉 still matches one of the rules even after
inserting a few other triples. If, when it was chosen to join S, the triple matched
the INPUT, SPACING, or ENCROACHMENT rules, then it still does. If it matched the
YIELDING rule, then the point that yields to p may have been an almost-safe triple
that is now a vertex; it still matches the rule. Finally, in the QUALITY case, the vertex
v that B(p, r) contained still exists, and the distance to v’s nearest neighbour can only
have fallen, so the rule still matches.

7 Mesh size

Proving that an algorithm terminates is critical, but we will typically want more: that
the mesh it outputs is small. In this section, I give an upper bound on the size of the
mesh, in terms of an integral of the local feature size. I also discuss lower bounds on
mesh size.

7.1 Upper bound

Theorem 2. If X is a piecewise manifold complex with non-acute angles, and its
domain Ω is bounded by a piecewise linear shape (for example, a box), then a safe
meshing algorithm will output a mesh with no more than O(

∫
Ω

lfs−d(x)dx) vertices.

Proof. A meshing algorithm would be safe if it inserted no points at all, but it would
then be hard to analyze properties of the mesh. I avoid this technicality by specifying
that after the algorithm has done its work, we will refine it further, until no point is
safe. During this postprocess, we will set γ to 1 if it was otherwise specified to be
larger. This process only adds vertices. Let M be the set of all vertices inserted either
by the original algorithm or by the postprocess.

The proof is reversed from what is intuitive: we start with the integral and show
that it is lower-bounded by a constant factor times the number of vertices. Consider
the Voronoi diagram of M . I define V (v) to be the Voronoi cell of a vertex v. The
Voronoi cells, restricted to the domain Ω, tessellate Ω, so the integral over Ω is the
sum of the integral over each restricted Voronoi cell:∫

Ω

lfs(x)−ddx =
∑
v∈M

∫
V (v)∩Ω

lfs(x)−ddx
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The ball b ≡ B(v,NN(v)/2) is entirely within the Voronoi cell of v, so we can lower-
bound the term for v with

∫
b∩Ω

lfs(x)−ddx. For any such x, lfs(x) ≤ lfs(v) + |vx|.
We know from Theorem 1 that lfs(v) ≤ (c + 1) NN(v), and from the radius of the
ball that |vx| ≤ NN(v)/2; thus lfs(x) ≤ (c + 1.5) NN(v). Therefore, the integral on
the Voronoi cell of v reduces to∫

V (v)∩Ω

lfs(x)−ddx ≥ Volume(b ∩Ω)
((c + 1.5) NN(v))d)

The volume of b is exactly Vd × (NN(v)/2)d, where Vd is the volume of the unit
d-ball. However, the ball may protrude outside the domain. This does not happen if
v is in the strict interior of Ω: if it did protrude, that would imply that v was very
close to the boundary, but then the YIELDING rule would apply. On the boundary,
the least fraction of b that is within the domain is realized when v is a corner. Due
to the non-acute condition on the geometry, in an infinitesimal neighbourhood of the
corner, Ω is a cone at least as large as a quadrant. Because we refined with γ ≤ 1,
and because the bounding facets are assumed to be linear, Ω is a cone throughout b.
In other words, Volume(b ∩ Ω) ≥ Volume(b)/2d = Vd NN(v)d/22d. Substituting
into the original integral and sum, the NN(v)d terms cancel and we are left with:∫

Ω

lfs(x)−ddx ≥
∑
v∈M

Vd

(c + 1.5)d · 22d
=

Vd

(4c + 6)d
|M |

7.2 Lower bound

A two-dimensional proof of Ruppert [Rup95] that easily extends to any dimension
states that any triangulation — in particular, the one with the fewest vertices —
with bounded aspect ratio simplices that respect X (under some restrictions) must
contain at least Ω(

∫
Ω

lfstrad(x)−ddx) vertices. For the proof to hold, X must be a
non-acute piecewise linear complex, and the domain must be convex. This is highly
reminiscent of the upper bound we proved in the previous section; the differences
are that the upper bound also applied to curved interior surfaces, and used the lfs
function instead of lfstrad. It happens that lfs and lfstrad are within a constant factor
of each other, which proves that on any non-acute PLC, a safe meshing algorithm
outputs a number of vertices within a constant factor of the smallest possible mesh
of good aspect ratio. Keep in mind that a safe meshing algorithm only outputs a mesh
with good radius/edge ratio, and must then be post-processed to achieve good aspect
ratio; however, the post-process only adds a linear number of vertices. Unfortunately,
little is known about lower bounds for meshes that respect curved input.

Lemma 6. If X is piecewise linear and all its features meet at non-acute angles, and
if sf is unspecified (or everywhere infinite), then lfstrad(p) ≤ lfs(p) ≤ 3 lfstrad(p).

Proof. For the upper bound, consider a point p in Ω. By definition, two disjoint
features f and f ′ intersect the ball B(p, lfstrad(p)). Let q be the closest point to p on
f . The ball B(q, 2 lfstrad(p)) is centered on f and intersects f ′. Therefore (f ∪ f ′)∩
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p

q

v

r

Fig. 5: PROJECTION: The projection of q onto the line vp lies to the right of p, as does v.

B(q, 2 lfstrad(p)) cannot be contractible, and lfs(q) ≤ 2 lfstrad(p). Finally, since lfs
is 1-Lipschitz, lfs(p) ≤ lfs(q) + |pq| ≤ 3 lfstrad(p).

For the lower bound, there are two cases depending on whether lfs(p) is set by
the contractibility condition or by the Lipschitz condition; the spacing function con-
dition does not apply. First, let p be on a feature f , and let f ′ be a feature such that
(f ∪ f ′) ∩ B(p, lfs(p)) is not contractible. If f and f ′ met anywhere, they would
meet at a non-acute angle; but then B(p, lfs(p)) would intersect them in a topolog-
ical ball. So f and f ′ are disjoint, and lfstrad(p) ≤ lfs(p). Second, if lfs(p) is set
by the Lipschitz condition, there is a q with lfs(q) set by the contractibility condi-
tion such that lfs(p) = lfs(q) + |pq|. We know lfs(q) ≥ lfstrad(q) from the prior
argument: lfs(p) ≥ lfstrad(q) + |pq|. The lfstrad function is 1-Lipschitz, so we know
that lfstrad(q) ≥ lfstrad(p) − |pq|. A final substitution yields lfs(p) ≥ lfstrad(p) as
claimed.

Corollary 1. A safe meshing algorithm run on a non-acute piecewise linear complex
with convex domain outputs only a constant factor more vertices than necessary.

8 Improving the requirement on ρ

We have proved so far that most algorithms that insert only safe sets of points ter-
minate as long as ρ ≥ 2d−1. Ruppert and Shewchuk proved something stronger:
that their algorithms terminate if ρ > 2(d−1)/2. To improve my bound, I propose a
slightly stricter definition of safety, which will allow us to prove a smaller value for
β. Recall from Lemma 3 that the value β is defined by the YIELDING rule, and is
found by seeing how far a point q can be from a vertex v on the feature f to which
it yields. Using the triangle inequality, |qv| ≤ 2r. But under the following condi-
tion (see Figure 5), which is only slightly more strict than YIELDING, we can prove
|qv| ≤

√
2r:

Definition 8 (PROJECTION). Let B(p, r) be a ball centered on an input feature f ∈
X . Let v be a vertex on f , with δr ≤ |pv| ≤ r. Let q be a point on a feature fq

that is a superfeature of f , and q is either a vertex of the mesh, or is the center of
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an almost-safe triple. Then 〈p, r, f〉 satisfies the PROJECTION rule if both v and the
orthogonal projection of q onto the line pv lie on the same side of p.

Lemma 7. Consider an almost-safe triple 〈p, r, f〉. If it yields via the PROJECTION
rule to an almost-safe triple 〈q, rq, fq〉, where fq is a subfeature of f , then r ≤ β

δ rq,
with β =

√
2. If the input is a piecewise linear complex, and p does not yield, then

no subfeature of f intersects the ball B(p, δr/(1 + δ)).

Proof. Let 〈p, r, f〉 be almost-safe, due to the PROJECTION rule. There is a vertex
v nearby (in B(p, r)), and a point q that yields to p. Consider the plane that goes
through p, v, and q. Without loss of generality, we can rotate and translate this plane
such that p is the origin, v = (xv, 0) with positive xv , and q = (xq, yq). We know
that x2

q +y2
q ≤ r2, and that δr ≤ xv ≤ r. Finally, the projection condition shows that

xq ≥ 0. We can compute |qv| directly to find |qv|2 ≤ (xq−xv)2+y2
q ≤ 2r2−2xvxq.

Since both xv and xq are positive, we can drop the negative term to conclude |qv| ≤√
2r. But |qv| ≥ δrq, or q would not be almost-safe.

The reverse condition follows by a proof of Shewchuk [She98]: in a piecewise
linear complex, if p can yield under the YIELDING rule to some q, then it can yield
under the PROJECTION rule to some q′, not necessarily the same point as q. Contra-
positively, if PROJECTION does not apply, then YIELDING does not apply. Therefore,
we can use the proof of Lemma 3.

Therefore, an algorithm that uses the PROJECTION rule is guaranteed to termi-
nate, with a small mesh, when ρ ≥ (1 + δ)

√
2

d−1
/δd, which is a substantial im-

provement in the achievable quality ρ. Unfortunately, there is not currently a proof
that we can indeed use PROJECTION on non-linear inputs.

9 Algorithms

So far, we have seen that the safety rules are sufficiently restrictive for us to guaran-
tee an algorithm that follows the rules will terminate with a small mesh. The question
remains, however: are the rules sufficiently permissive to implement interesting al-
gorithms? The present section answers in the affirmative by showing that existing
algorithms fit the framework.

9.1 Ruppert/Shewchuk refinement

In Ruppert/Shewchuk refinement [Rup95, She98], the input is assumed to be a piece-
wise linear complex in two (for Ruppert) or three (for Shewchuk) dimensions, with
linear features meeting at non-acute angles. Given that Ruppert’s algorithm is essen-
tially a special case of Shewchuk’s algorithm, here I will only describe the latter.
The algorithm maintains a mesh (a Delaunay triangulation) for the domain Ω, but
also one for each polygonal facet, and for each segment (though these are trivial).
The initial step is to compute the Delaunay triangulations of the input points on
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each feature. This corresponds to repeatedly invoking the INPUT rule, which is al-
ways safe. A subsimplex is a simplex of a segment or of a polygonal facet mesh. In
the affine plane of their correponding feature, subsimplices have an associated cir-
cumball B(p, r), which naturally extends to R3. Shewchuk defines an encroached
subsimplex as being one whose associated ball contains either a vertex of a disjoint
feature, or a point being considered for insertion. When a subfacet is encroached,
we should insert its circumcenter p — unless the circumcenter itself encroaches a
subsegment. This corresponds to the ENCROACHMENT and YIELDING rules. Finally,
if a tetrahedron is skinny (that is, if it has circumradius r, shortest edge uv, and
r ≥ ρ|uv|), then we may attempt to insert its circumcenter, yielding as necessary.
The nearest neighbour of u can be no further than |uv| (it may be far closer), and
the circumball of the tetrahedron has u on its surface, so the circumball of the tetra-
hedron is almost safe according to the QUALITY rule. Shewchuk proves a projection
lemma: when a subsimplex is encroached, another subsimplex on the same feature is
also encroached for which the PROJECTION rule applies. Upon yielding, Shewchuk
proposes to split all encroached subsimplices. This is unsafe; however, the natural
implementation is to push all the subsimplices onto a work queue and process them
sequentially, not splitting subsimplices that no longer exist. A subsimplex no longer
exists if another point is inserted in its circumball: the points actually inserted form
a safe set. Shewchuk uses δ = 1 in theory (in practice, numerical errors may reduce
δ). Theorem 1 thus proves that the algorithm terminates for any ρ > 2, matching
Shewchuk’s bound; or, in two dimensions, for ρ >

√
2, matching Ruppert’s bound.

9.2 Parallel Sparse Voronoi Refinement

Sparse Voronoi Refinement [HMP06, HMP07] (SVR) follows a formalism much
like Ruppert/Shewchuk refinement. SVR differs in one main regard: not all the in-
put points are in the mesh at the outset. Instead, when SVR considers inserting a
circumcenter p from a simplex with circumradius r, it first checks whether there is
an uninserted point in B(p, kr) for a constant k given by the user. If so, the unin-
serted point is inserted; this is an application of the INPUT rule. If not, p is inserted,
which shows that δ = k. The key invariants in SVR are that every mesh (for each
feature) always has mediocre or better quality, and subsimplices are unencroached.
When no ball is almost-safe due to QUALITY or YIELDING, SVR finds a vertex v
that contains an uninserted input point in its Voronoi cell. If v is a Steiner point, SVR
performs an INPUT insertion. Otherwise, SVR inserts the Voronoi node farthest from
v. Let p be that point. We know that lfstrad(v) ≤ |pv| because v is an input point,
and there is another input point in the Voronoi cell. Then by the Lipschitz condition,
lfstrad(p) ≤ 2|pv|, and lfs(p) ≤ 6|pv|. In other words, this move is a SPACING move
with γ = 1/6. Parallel SVR differs from SVR in two respects: first, it chooses a set of
such operations, each of them safe as we’ve shown, with the requirement that for any
two triples 〈p, r, f〉 and 〈q, rq, fq〉, where f ⊆ fq, the two balls B(p, r) and B(q, rq)
do not intersect (in fact, it requires rather more). In other words, |pq| ≥ r+rq. This is
much more strict than the minimum requirement for set safety. To achieve good par-
llelism, the algorithm also uses the ENCROACHMENT rule explicitly, inserting points
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to ensure that protecting balls of disjoint features do not overlap. All this matches
the requirements of Theorem 1: Parallel SVR terminates with a small mesh, for any
kdρ > 2d−1. When these algorithms were written, the authors were not aware of the
PROJECTION rule and Shewchuk’s proof that it applies; using it, parallel SVR would
terminate for any kdρ >

√
2

d−1
.

9.3 Off-centers and the CoreDisk

Üngör finds that by inserting the off-center, rather than the circumcenter, but oth-
erwise following Ruppert’s algorithm, the size of the output mesh falls by almost
half in practice [Üng04]. Given a bad-quality triangle abc with shortest edge ab, the
off-center is the point p found by walking along the perpendicular bisector of ab un-
til either p is the circumcenter of abc, or the triangle abp is of barely good quality.
The distance |ap| is at least ρ|ab|, so the off-center qualifies as being almost safe
due to the QUALITY rule. This shows that off-center refinement terminates in two
dimensions when ρ >

√
2.

Reportedly, the off-center does not extend well to three dimensions. However,
Jampani and Üngör [JU07] define the CoreDisk of an edge ab as being a circle de-
fined by the points p such that |ap| = |bp| = ρ|ab|. They recommend sampling a cer-
tain set of points outside the CoreDisk, but still on the Voronoi facet normal to |ab|.
Each point is almost-safe due to the QUALITY rule. In addition, points are chosen so
that each pair p and q subtend an angle θ > 60◦ above the midpoint of ab; there-
fore, |pq| ≥ |pa|. In other words, the points form a safe set. The authors described
their algorithm in a periodic point set model, but we can imagine using their Core-
Disk sample to handle bad-quality simplices within Shewchuk’s algorithm, using the
PROJECTION rule as necessary. Theorem 1 then proves that CoreDisk refinement in
three dimensions terminates on an input non-acute piecewise linear complex when
ρ > 2.

9.4 Piecewise Smooth Complexes

Rineau and Yvinec [RY07] recently demonstrated a method for meshing non-acute
piecewise smooth complexes, where each feature is a smooth manifold. They use
the YIELDING rule almost exactly as described here, they refine skinny tetrahedra
identically as Shewchuk’s algorithm does (which we showed was the QUALITY rule),
and they use an ENCROACHMENT rule to recover an initial surface mesh. Assuming
δ = 1, their algorithm terminates when ρ > 4. Slightly deviating from the present
framework, they allow different quality requirements ρ3 for tetrahedra in space and
ρ2 for triangles on 2-manifolds; it is not too hard to see how to extend my framework
to show termination assuming ρ2 > 2 and ρ3 > 4.

10 Conclusions

The major limitation of my framework is that it requires a non-acuteness condition
on the geometry. There is increasing understanding of how one may sidestep the
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issue [CP06, CDL07, PW04]. Informally, the techniques consist of protecting the
acute angle with a bounded number of points, then using standard Delaunay refine-
ment away from the acute angles. Away from the acute angle, the local feature size
does not go to zero, so the present techniques apply. The major obstacles to incor-
porating protection techniques into my framework are the definition of local feature
size and of the ENCROACHMENT rule: my local feature size goes to zero at a small
angle, and the ENCROACHMENT rule in fact allows inserting infinitely many points.
On the other hand, protection techniques also do not guarantee inserting an optimal
number of points.

Algorithms that insert only safe sets are guaranteed to terminate if ρ is large
enough compared to β and δ. To improve the bound (and allow smaller values of
ρ) on piecewise smooth complexes, probably the easiest path would be to show that
some analogue to the PROJECTION rule applies. Even on piecewise linear complexes,
termination can be guaranteed for slightly better (smaller) values of ρ using the tech-
nique of diametral lenses [Che93, She02]. Under the purely incremental setting I
described in Figure 1, lenses do not help; to get an improvement requires occasion-
ally removing some Steiner vertices.

The work here showed a general proof framework for getting good radius-edge
meshes on sufficiently nice geometries, and showed how to apply it to some extant
algorithms. The promise of the framework is evident in that we can easily com-
pose algorithms and prove they are still correct: for instance, the Jampani and Üngör
CoreDisk idea for choosing Steiner points in space can be applied to the Rineau
and Yvinec algorithm, producing an algorithm that provably terminates on non-acute
PSCs so long as ρ ≥ 4, and that is also likely to have very good output size behaviour
in practice.
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[HPÜ05] Sariel Har-Peled and Alper Üngör. A time-optimal Delaunay refinement algorithm
in two dimensions. In 21st Symposium on Computational Geometry, pages 228–236,
2005.
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