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Abstract

We present early results on a dynamic mesh re-
finement algorithm. Using a variant of the Sparse
Voronoi Refinement algorithm and applying the tech-
nique of Self-Adjusting Computation, we find that
we expect to run in O(polylog n) time per update
on points sets in arbitrary dimension. This is based
on some theoretical results, along with experimental
results from an implementation.

1 Sparse Voronoi Refinement

Mesh refinement solves the following problem: given
a point set P ∈ Rd, add additional Steiner points
such that the Delaunay tessellation of the augmented
set creates only simplices of good quality. The quality
metric usually used, because it is tractable to theoret-
ical analysis, is the radius-edge condition: given the
radius of the circumscribing ball around s, and the
length of its shortest edge. If the ratio is less than√

2, the simplex is said to be of good quality.

The problem has seen significant study in the past
20 years, driven by graphics and scientific computing
applications. The current state of the theoretical art
is the Sparse Voronoi Refinement (SVR) algorithm of
Hudson, Miller, and Phillips [HMP06], which solves
the problem outputting only a constant factor more
vertices m than is optimal, in output-sensitive time
O(n lg n + m) assuming polynomial spread1.

The basic operation of SVR is to try to insert the
circumcenter of a simplex s. Before actually per-
forming the insertion and incrementally retriangulat-
ing using the Bowyer-Watson method, SVR checks
whether there is any uninserted point “near” the cir-
cumcenter being inserted, where near is defined being
within as a constant fraction 0 < k < 1 of the circum-
radius of s. If not, SVR inserts the circumcenter; but
if there is such a point, it instead yields to the input
point. This yielding ensures that the input points
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are all eventually recovered, but not so early that the
input points would cause any arbitrarily bad-quality
simplices.

By controlling the quality, SVR controls the run-
time. Each point insertion takes constant time (hence
the O(m) term), while checking for yielding takes
O(lg n) time per vertex.

2 Self-Adjusting Computation

Acar [Aca05] described the self-adjusting computa-
tion (SAC) model as a method to automatically dy-
namize static algorithms. In this model, we first per-
form an initial run by running the static algorithm on
a fixed input. During the initial run, an underlying
run-time system generates an execution trace of the
computation. The trace contains information about
the memory locations read, the operations executed
on the values read, writes to memory, and the control
dependences between executed operations.

After the initial run, we can change the input by
mutating the contents of memory locations, then up-
date the output and the trace by running a change-

propagation algorithm. The change propagation algo-
rithm starts by re-executing the first operation that
depends on the value of a changed memory location.
When re-executed, the operation may change the con-
tents of other memory locations and invoke a differ-
ent next operation. The change-propagation algo-
rithm recursively propagates the changes, stopping
a thread of propagation when it writes the same re-
sult as it had written in the previous run, or when
it finds a previously computed result via memoiza-
tion. Change propagation simulates rerunning from
scratch, producing the same output and the trace as
would have been produced by a from-scratch execu-
tion with the changed input.

For certain computations, change propagation
takes time linear in the size of the symmetric dif-
ference between initial and final traces. More pre-
cisely, define an algorithm O(f(n))-stable for a class
of (input) changes, if the size of the symmetric set
difference between the traces of that algorithm on in-
puts related by the changes is bound by O(f(n)).
It is shown that if a static algorithm is O(f(n))-
stable, then self-adjusting computation can respond
in O(f(n)) time [Aca05].



3 Stability of SVR

Three basic properties of SVR indicate that it is
O(polylog n)-stable:

1. At every step of the algorithm, the mesh has con-
stant degree per vertex. Thus insertions always
take O(1) time to perform (that is, insertions
perform O(1) operations).

2. Second, a corollary of Ruppert’s proof of optimal
output size implies that at most, a newly-added
vertex requires O(lg n) Steiner vertices to achieve
a quality mesh.

3. Hudson et al. prove that the point location
charges (to check for yielding in tryInsert) sum
to O(lg n) per vertex.

The remaining barrier to a full stability proof for
SVR is that an attempted insertion may yield dif-
ferently after a new input point is inserted. We can
(and, in the implementation, do) somewhat mitigate
this by picking a random vertex to yield to when
given the option. However, eventually tryInsert

must change its result: after all, the new input must
ultimately appear in the mesh.

4 Experimental Validation

Given the high likelihood of SVR being dynamically
stable, but in the absence of hard proof, we produced
an SML implementation using the self-adjusting-
computation library developed by Acar, Blelloch,
Blume, Harper, Tangwongsan [ABBT06, ABB+06].
The experiment we ran was the following: we ini-
tialized SVR with an empty input. Then we added
to the initially empty input, one by one, 200 points
around a circle. During each addition to the input
list, we counted the number of line-side primitives
performed during point location, and the number of
Steiner points inserted into the mesh.

The results for line-side tests are summarized in
Figure 4. First, notice that the number of line-side
tests grows only slightly faster than linearly; approx-
imately O(lg3 n) per incremental addition to the in-
put. This confirms our suspicions that we should see
polylogarithmic behaviour. The number of point in-
sertions appear to scale linearly on this point set, as
it does in the static case.

5 Conclusions

Our experiments indicate that SVR, a time-optimal
static algorithm, likely retains its properties in the
dynamic case up to logarithmic factors. This remains
to be formally proved, but appears tractable.

The real problem we want to solve with a dy-
namic mesh refiner is that of producing a fast mov-
ing mesh code. Acar, Blelloch, Tangwongsan, and
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Figure 1: Plot showing the number of line-side tests
performed against the number of input points added
during the incremental insertion of 200 points around
a circle. For comparison, the plot shows the curve
40n lg3(n), which tracks the experimental data well.

Vittes [ABTV06] have shown how to use the self-
adjusting-computation framework to automatically
kinetize self-adjusting code. A fast and correct ki-
netic mesher would be of huge benefit to Lagrangian
finite element simulations, and to the graphics com-
munity.
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