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Abstract

Combinatorial auctions, where agents can bid on bun-
dles of items (resources, tasks, etc.), are desirable because
the agents can express complementarity and substitutabil-
ity among the items. However, expressing one’s preferences
can require bidding on all bundles. We evaluate an ap-
proach known as incremental preference elicitation [3] and
show that as the number of items increases, the amount
of information required to clear the auction is a vanish-
ing fraction of the information collected in direct revelation
mechanisms. Most of the elicitors also maintain the benefit
as the number of agents increases. We prove that random-
ization helps, in that no deterministic elicitor is a univer-
sal revelation reducer. Finally, we present a new query type
that allows agents to use anytime algorithms to give approx-
imate answers that are refined only as needed.

1. Introduction
Combinatorial auctions (CAs), where agents can submit

bids onbundlesof items, are economically efficient mech-
anisms for sellingk items ton bidders, and are attractive
when the bidders’ valuations on bundles exhibitcomple-
mentarity(a bundle of items is worth more than the sum
of its parts) and/orsubstitutability(a bundle is worth less
than the sum of its parts). Determining the winners in such
auctions is a complex optimization problem, but recent re-
search has delivered winner determination algorithms that
can optimally solve the problem for quite large numbers of
items and bids in practice.

An equally important problem, which has received much
less attention, is that of bidding. There are2k � 1 bundles,
and each agent may need to bid on all of them to fully ex-
press its preferences. This can be undesirable for any of
several reasons: (1) there are a huge number of bundles� This material is based upon work supported by the National Sci-

ence Foundation under CAREER Award IRI-9703122, Grant IIS-
9800994, ITR IIS-0081246, and ITR IIS-0121678. Prior versions of
this paper appeared at AAMAS’02 workshop on Agent-Mediated
Electronic Commerce and as Carnegie-Mellon University Technical
Report CMU-CS-02-124.

to evaluate and communicate a bid; (2) determining one’s
valuation for any given bundle can be computationally in-
tractable [9,13,16]; and (3) agents may prefer not to reveal
all of their valuation information due to reasons of privacy
or long-term competitiveness [15]. Appropriate bidding lan-
guages [6, 7, 11, 17, 18] can solve the communication over-
head in some cases (when the bidder’s valuation function is
highly compressible). However, they still require the agents
to completely determine and reveal their valuation functions
and as such do not solve all the issues. So in practice, when
the number of items for sale is even moderate, the bidders
will not bid on all bundles. Instead, they may wastefully bid
on bundles which they will not win, or fail to bid on bun-
dles they would have won.

Incremental preference elicitation by the auctioneer was
recently proposed to address these problems [3], but the
idea was not evaluated. We implemented the most promis-
ing elicitation schemes from that paper, starting from a rigid
search-based scheme, continuing to a general flexible elic-
itation framework. We then developed a host of new elici-
tation policies. We also provide theoretical results to guide
the design of elicitation policies. Finally, we introduce and
evaluate a new query type that takes the incremental nature
of elicitation to a new level by allowing agents to give ap-
proximate answers that are refined only as needed.

It is known that even with free disposal and even with un-
limited computation, finding an (even approximately) op-
timal allocation requires exponential communication [12]
in the worst case. Nevertheless our experiments show that
in practice elicitation reduces revelation drastically, and the
benefit increases with problem size.

If elicitation is used in conjunction withVickrey-Clarke-
Grovespricing, each agent answering the elicitor’s queries
truthfully is an ex postequilibrium [3]. Determining the
payments generally requires some additional elicitation,but
experiments (omitted here due to limited space) show that
the additional number of queries is only about 20%.

2. Auction and elicitation setting
We model the auction as having a single auctioneer sell-

ing a setK of items ton bidder agents (letk = jKj). Each



agenti has a finitevaluation functionvi : 2K 7! N that de-
termines a private valuevi(b) for each bundleb � K. We
make the usual assumption that the agents have free dis-
posal, that is, adding items to an agent’s bundle never makes
the agent worse off because, at worst, the agent can dis-
pose of extra items for free. Formally,8S � K;S0 � S,vi(S) � vi(S0). Many of the techniques of the paper can
also be used without free disposal, although more elicita-
tion is required due to lessa priori structure.

At the start of the auction, the auctioneer knows the items
and the agents, but has no information about the agents’
value functions over the bundles—except that the agents
have free disposal. The auction proceeds by having the
auctioneer incrementallyelicit value function information
from the agents one query at a time until the auctioneer
has enough information to determine an optimal allocation
of items to agents. Therefore, we also call the auctioneer
theelicitor. An allocation is optimal if it maximizes social
welfare

Pni=1 vi(bi), wherebi is the bundle that agenti re-
ceives in the allocation.The goal of the elicitor is to deter-
mine an optimal allocation with as little elicitation as possi-
ble, ideally without regard to computation. Clearly, the elic-
itor could conduct a straight-forward game tree search to de-
cide what queries to ask. Against an adversary, we’ll show
that the adversary can force a bad outcome, but against na-
ture (a random distribution), this search would be an opti-
mal policy. Unfortunately, this is totally intractable. Inor-
der to be able to run experiments, we devise heuristic algo-
rithms that run in time exponential in the number of items,
and polynomial in the number of agents.

3. Elicitor’s inference and constraint network
To minimize the number of queries, the elicitor must

never ask a query whose answer could be inferred from
the answers to previous queries. As per [3], to support
the storing of information received from the agents, we
have the elicitor store its information in a constraint net-
work.Specifically, the elicitor stores a graph for each agent.
In each graph, there is one node for each bundleb, labeled
by an interval[LBi(b);UBi(b)], which are respectively the
tightest lower and upper bounds the elicitor can prove on
the truevi(b) given the answers received to queries so far.
We say a bound istight when it is equal to the true value.

A directed edge(a; b) in the graph encodes the knowl-
edge that the agent prefers bundlea over bundleb (that
is, vi(a) � vi(b)). The elicitor may know this even with-
out knowingvi(a) or vi(b): for example, the free disposal
assumption creates implicit edges from every bundlea to
every subbundle ofa. An edge(a; b) lets the elicitor infer
thatLBi(a) � LBi(b), which allows it to tighten the lower
bound ona and on any ofa’s ancestors in the graph when
the elicitor learns a new, tighter bound. Similarly, the elic-
itor can inferUBi(a) � UBi(b), which allows it to tighten
the upper bound onb and its descendants in the graph.

We define the relationa � b (read “a dominatesb”) to
be true if we can prove thatvi(a) � vi(b). This is the case
either ifLBi(a) � UBi(b), or if there is a directed path froma to b in the graph.

4. Certificates

The auctioneer clears the auction if, given the informa-
tion it has received, the auctioneer can infer that one allo-
cation is worth at least as much as any other. That alloca-
tion is an optimal allocation. If the information the auction-
eer has allows this inference, the information forms acer-
tificate for that allocation. The certificate contains a set of
queries and their answers. Aminimal certificateis a certifi-
cate that would cease to be a certificate if any query were re-
moved from it. Ashortest certificateis a certificate that has
the smallest number of queries among all certificates.

5. Rank lattice based elicitation

In this section we study the effectiveness of a technique
proposed earlier [3,4]:rank lattice based elicitation, where
the elicitor makes use of rank information about the bidders’
bundles. Letbi(j), 1 � j � 2k, be the bundle that agenti
has at rankj. In other words,bi(1) is the agent’s most pre-
ferred bundle,bi(2) is its second most preferred, and so on
down tobi(2k), which is the empty bundle. The elicitor can
put bounds onvi(bi(j)) using the constraint networks. Even
without knowingbi(j) (which bundle it is that agenti valuesjth), it knows thatvi(bi(j�1)) � vi(bi(j)) � vi(bi(j+1)).
Thus an upper bound onvi(bi(j� 1)) is an upper bound onvi(bi(j)), and a lower bound onvi(bi(j + 1)) is a lower
bound onvi(bi(j)).

The elicitor uses arank vectorr = hr1; r2; : : : ; rni to
represent allocatingbi(ri) to each agenti. Not all rank
vectors are feasible: thebi(ri)’s might overlap in items,
which would correspond to giving the same item to mul-
tiple agents.

The set of all rank vectors defines arank lattice. The
root of the lattice is the all-ones rank vector; a childr0 of
a noder has all elements equal except one, which is in-
cremented by one. A key observation in the lattice is that
the children of a node have lower (or equal) value to the
node. Given the rank lattice, we can employ search algo-
rithms to find an optimal allocation. In particular, by start-
ing from the root and searching in best-first order (always
expanding the fringe node of highest value), we are guar-
anteed that the first feasible node that is reached is optimal.
To know which rank vector in the fringe has highest value,
the elicitor use the its constraint network to find bounds on
the value of each rank vector. If it yet determine that one
rank vector is worth more or at least as much as any other,
it picks an arbitrary rank vectorr and queries each agenti
for bi(ri) andvi(bi(ri)).



6. Experimental setup
To evaluate the usefulness of elicitation, we conducted a

host of experiments. We generated 50 instances of each size
and ran the elicitation algorithms on those instances. Each
point on the plots corresponds to the average performance
over the 50 runs. The plots show results for those instance
sizes on which the algorithms could solve every instance in
under 2 minutes on a 2.8 GHz Intel machine.

Unfortunately, real data for CAs are not publicly avail-
able. Therefore, as in all of the other academic work on CAs
so far, we used randomly generated data. Existing problem
generators output instances with sparse bids, that is, each
agent bids on a relatively small number of bundles. This is
the case for the CATS suite of economically-motivated ran-
dom problem instances [10] as well as for many other prior
benchmarks [1,6,17]. This is not necessarily realistic: while
the bidders may far prefer some items and bundles to others,
they will often have non-zero value on almost every bundle,
at least due to reselling possibilities and, in some domains
(such as spectrum or real estate auctions), renting. In addi-
tion, the instances generated by many of the earlier bench-
marks do not exhibit free disposal.

The instances were generated by assigning, for each
agent in turn, integer valuations using the routine below. We
impose an arbitrary maximum bid valueMAXBID = 107
in order to avoid integer arithmetic overflow issues, while
at the same time allowing a wide range of values to be ex-
pressed. Valuations generated with this routine exhibit both
complementarity and substitutability and observe the free
disposal assumption.
GENERATEBIDS(K)
1 G new constraint network
2 S  2K (the set of all bundles)
3 impose free disposal constraints onG
4 UB(K) MAXBID
5 while S 6= ;
6 pick b uniformly at random fromS
7 S  S � b
8 pickv(b) uniformly at random from[LB(b);UB(b)]
9 propagateLB(b) = UB(b) = v(b) throughG
7. Rank lattice experiments

We ran experiments to evaluate the efficiency of rank lat-
tice based elicitation. Define theelicitation ratio to be the
number of queries asked divided by the number of queries
asked in full revelation. In full revelation, the number of
queries isn(2k�1) (that is, for each agent, one value query
for each of the2k bundles except the empty bundle). Fig-
ure 1 shows that as the number of items in the auction in-
creases, the elicitation ratio decreases quickly.

Unfortunately, Figure 1 also shows that as the number of
agentsn grows, the advantage from rank lattice based elic-
itation decreases. This can be explained as follows. As the
number of agents increases, the average number of items
that an agent wins decreases. Thus agents will usually win
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Figure 1. Performance of rank lattice based elicita-
tion. The curves for 4 and 5 agents are barely visible,
at elicitation ratio almost 1.

smaller, lower-ranked bundles. Because rank lattice based
elicitors require the agents to reveal all high-rank bundles
before any low-rank bundles, as the number of agents in-
creases, each agent reveals a greater number of bundle val-
ues. This holds not only for the specific elicitor described
above, but any elicitor that asks queries in order of rank
(even if the elicitor had an oracle for deciding which queries
should be asked from which agents). Furthermore, a recent
result [4] implies that no rank lattice based elicitation algo-
rithm is better on all instances than the elicitor tested here.

8. General elicitation framework
Due to these limitation of rank lattice based elicitors, we

now move to a more general elicitation framework. As we
show, this enables one to develop algorithms that ask signif-
icantly fewer queries and scale well in the number of agents.

The framework allows a richer set of query types (to
accommodate for different settings where answering some
types of queries is easier than answering other types); al-
lows more flexible ordering of the queries at run time; and
never considers infeasible solutions. The general elicitor
template is a slightly modified version of that of Conen &
Sandholm [3]:
SOLVE()
1 C  INITIAL CANDIDATES(n; k)
2 while not DONE(C)
3 q  SELECTQUERY(C)
4 ASKQUERY(q)
5 C  PRUNE(C)

Here,C is a set of candidates allocations, where acan-
didateis a vectorc = hc1; c2; : : : ; cni of bundles where the
bundles contain no items in common. Unlike with rank vec-
tors, all candidates are feasible. The value of a candidate isv(c) =Pi vi(ci); UB(c) =Pi UBi(ci) is an upper bound,
andLB(c) =Pi LBi(ci) is a lower bound.

INITIAL CANDIDATES generates the set of all candidates,
which is the set of allnk allocations of thek items to then
agents (some agents might get no items).

PRUNE removes, one candidate at a time, each candidate
that is dominated by a remaining candidate (a candidatec



dominates another candidatec0 if the elicitor can prove that
the value ofc is at least as high as that ofc0).

DONE returns true if all remaining candidates inC are
provably optimal. This is the case either ifC has only one
element, or if all candidates inC have known value (that is,8c 2 C;UB(c) = LB(c)). Because the algorithm has just
pruned, it knows that if all candidates have known value,
then they have equal value.

SELECTQUERY selects the next query to be asked. This
function can be instantiated in different ways to implement
different elicitation policies, as we will show.

ASKQUERY takes a query, asks the corresponding agent
for the information, and appropriately updates the constraint
network. The details of updating the network are discussed
in conjunction with each query type below.

8.1. Value queries
The most basic query asks an agenti to revealvi(ci) ex-

actly. We call such queriesvalue queries. Upon receiving
the answer,ASKQUERY setsLBi(ci) = UBi(ci) = vi(ci)
and propagates the new bounds upstream and downstream
through the constraint network as described earlier.

8.1.1. Random elicitation policy A naive policy simply
asks random value queries, ignoring those it has already
asked or for which the value can already be inferred. If it
is possible to save elicitation on the CA instance at hand,
then on average this policy does:
Proposition 1 LetQ = n(2k � 1) be the total number of
queries, and letqmin be the number of queries in the short-
est certificate. For any given problem instance, the expected
number of queries that the random elicitation policy asks is
at most qminqmin+1 (Q+ 1).
Most proofs are omitted due to limited space.

The upper bound given in the above proposition only
guarantees relatively minor savings in elicitation (especially
becauseqmin increases when the number of agents and
items increases). However, we base the proof on the pes-
simistic assumption that there is only one minimal certifi-
cate (namely, the shortest certificate), and that all other cer-
tificates are extensions of the shortest one. When there are
several minimal certificates, it is more likely that the next
query will complete a certificate. We do not know how to
analyse how many minimal certificates we expect to be
present. Therefore, we ran an experiment to see how well
this policy does in practice. Figure 2 shows that the elicita-
tion ratio q=Q is indeed less than 1. Also, the ratio slowly
falls as the number of items increases, proving that indeed,
the number of minimal certificates increases with the num-
ber of items. Nevertheless, we would hope to do better: this
elicitor still asks about 80% of all the queries.

8.1.2. Random allocatable elicitation policyEssentially,
the random elicitation policy is asking many queries which,
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Figure 2. Top lines: Random query policy. Bottom
lines: Random allocatable policy. Each plot line cor-
responds to the elicitation ratio of a given number of
agents as the number of items increases.

as it turns out, are not useful. We will now present a use-
ful restriction on the set of queries from which the elicita-
tion policy should choose. The key observation is that the
elicitor might already know that a bundleb will not be allo-
cated to a particular bidderi – even before the elicitor knows
precisely the bidder’s valuation for the bundle. This occurs
when the elicitor knows of a different allocation which it
can prove will generate at least as much value as any allo-
cation that allocatesb to agenti. On the other hand, if the
elicitor cannot (yet) determine this, then the bundle-agent
pair is deemedallocatable.

Definition 1 A bundle-agent pair(b; i) is allocatableif
there exists a remaining candidate allocationc 2 C such
thatci = b.

Now we refine the random elicitation policy to ask
queries on allocatable(b; i) only (and queries that have al-
ready been asked or whose answer can be inferred are
still never asked). This restriction is intuitively appeal-
ing, but sometimes hurts:

Proposition 2 There exist cases where, given the queries
asked so far in the elicitation process, the minimal set of
queries to complete the elicitation is smaller than the min-
imal set of queries to complete the elicitation when queries
are restricted to allocatables.

However, the restriction cannot hurt arbitrarily much:

Theorem 1 No matter what queries have been asked so far,
the smallest number of value queries to complete a certifi-
cate when restricted to allocatable queries is at most twice
the number of value queries the random elicitor would need
to complete a certificate.

We ran experiments (Figure 2) to determine whether the
restriction helps in practice, and found that it clearly does.
For example, atk = 8 items andn = 3 agents, the elici-
tation ratio of the unrestricted random policy is78% while
that of the allocatable-only policy is merely30%. Also, un-
like in rank lattice based elicitation, the benefit from elici-
tation does not go away as the number of agents increases.



8.1.3. Stronger restrictions We analyzed several policies
which restricted the query set more strongly than simply to
allocatable queries, trying to cleverly account for many fea-
tures. A list of negative results includes: the policy previ-
ously proposed in [3], namely counting the number of allo-
cations that include(b; i); counting the expected amount by
which bounds will change in the constraint networks when
we elicit (b; i); counting the expected number of bounds
that will change; counting the expected number of candi-
dates that will be pruned. For the policies that count the ex-
pected value of a quantity, we also tried the minimum and
maximum value. All of these policies fared worse or no bet-
ter than the random allocatable policy.

Under the random allocatable policy, if we track the
number of candidates inC over time, we see three distinct
phases: initially, almost no candidates are pruned regard-
less of what query was asked; then there is a brief phase
where almost all candidates get pruned; and finally there is
a phase where almost every query needs to be asked. This
suggests (but does not prove) that any policy based on max-
imizing the number of pruned candidates should fail to sig-
nificantly improve upon the random allocatable policy: the
only time when any query could prune more than another is
in the brief middle phase.

8.1.4. High-value candidate elicitation policyWe did
find one policy that significantly outperforms the random
allocatable elicitation policy. This policy is a modification
of the elicitation policy that was recently used in a combi-
natorial exchange for allocating tasks in a multi-robot sys-
tem [20]. The intuition is that to prove an allocation optimal,
we must prove a sufficient high lower bound on it, while at
the same time proving sufficient low upper bounds on all
other allocations. By only picking from high-value candi-
dates, we expect to be biasing toward asking questions that
will need to be asked anyway. In addition, by picking from
those queries that will reduce as many values as possible,
we bias toward reducing upper bounds, which is desirable
since there is typically only one optimum out of thenk to-
tal candidates (the latter restriction was not present in the
previous work).

Specifically, letCmax be the set of candidates of great-
est upper bound (“high-value candidates”). That is,Cmax =fc 2 C s:t: UB(c) = maxc02C UB(c0)g. For each(b; i) 2Cmax definesubbundles(b; i) to be the number of other
bundles in high-value candidates whose value might be
affected upon elicitingvi(b). The subbundles are those(b0; i) 2 Cmax for which b � b0 andLBi(b) < UBi(b0). Fi-
nally, pick uniformly at random among the(b; i) with the
mostsubbundles.

This is the best policy we have yet developed. It achieves
an elicitation ratio of only 24% withk = 8 items andn = 3
agents, as opposed to 30% for the random allocatable pol-
icy and 78% for the unrestricted random policy.

Representing candidates implicitly:The policy of the pre-
vious section works well in terms of elicitation, but in terms
of time it scales poorly with the number of agents. The chief
cost is due to representing the candidates explicitly:PRUNE

runs in time quadratic in the number of candidates, while
SELECTQUERY andDONE run in time linear in the number
of candidates, of which there are as many asnk. Since the
policy chooses among a set of size at mostn2k, we might
hope to save work by implicitly representing the candidates
(as long asn > 2).

We accomplish this by repeatedly solving an integer pro-
gram (IP) every time a query is to be selected—rather than
explicitly representing the set of candidates. We use the fol-
lowing IP to compute the value of the highest-valued candi-
date:maximize Pi2N;b22K UBi(b)xi(b)subject to xi(b) 2 Z2 8i 2 N;8b 2 2KPb22K xi(b) � 1 8i 2 NPi2NPb3j xi(b) � 1 8j 2 K

The first constraint of the IP states that each bundle is ei-
ther allocated or not. The second constraint states that each
agent only gets one bundle, and the third constraint states
that each item is allocated to only one agent. This is an as-
signment problem and can thus be solved quite quickly.

Upon solving the IP, the elicitor will know the value
UBmax of the candidates with greatest upper bound. Then,
for each pair(b; i) in turn, we forcexi(b) = 1 and solve
again. This returns the valueUBmax(b; i) of the candidates
with greatest upper bound, constrained to only those candi-
dates which allocateb to agenti. If UBmax(b; i) = UBmax,
then(b; i) is in a high-value candidate. The elicitor now has
the set of(b; i) that are in high-value candidates, and can
proceed as before (that is, for each such(b; i), count thesubbundles(b; i) and pick a random(b; i) among the ones
with the greatest number of subbundles).

Implemented naively, the policy solves the IP for each
pair(b; i) in each call toSELECTQUERY. One can sometimes
avoid solving the IP by cachingcache(b; i) = UBmax(b; i).
Since the IP uses the current upper bounds on the true valu-
ations, and upper bounds only decrease, the value of the IP
solutions will only decrease. That is, in a later call toSELEC-
TQUERY, it will be the case thatUBmax(b; i) � cache(b; i).
Therefore, ifcache(b; i) < UBmax, the elicitor can infer
that(b; i) is not in a high-value candidate, without comput-
ing UBmax(b; i).

Our experiments show that in our implementation, the
implicit representation of candidates is faster than the ex-
plicit one already with three agents (n = 3). With 5 agents,
the implicit approach is several orders of magnitude faster.

8.1.5. The grand bundle should be queriedIntuitively
it is appealing to elicit from every agent the value for the
grand bundle (i.e., the bundle that consists of all items) be-
cause that sets an upper bound on all bundle-agent pairs via
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Figure 3. High-value candidate elicitation policy, with
implicit candidate set representation. The legend is
in the order of the plot lines at 2 items; the order
reverses as the number of items grows. The elicita-
tion ratio falls with increasing number of items, but
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the free disposal assumption. We present here a proof that
this is in fact almost always required. Namely, almost all
instances require this upper bound from every agent, and
those few instances that do not require it from every agent
still require it from all but one agent. Therefore, the first
thing all our elicitation policies query is the value of the
grand bundle (or a bound on the value).
Proposition 3 To determine an optimal allocation, any
elicitation policy must prove an upper bound onvi(K)
for every agenti to which the grand bundleK is not allo-
cated.

Furthermore:
Theorem 2 Assume there are at least 2 bidders. There is
a policy (possibly requiring an oracle for choosing the
queries) using value queries that asksvi(K) for everyagenti and that asks the fewest possible queries (among all elici-
tors that use value queries only).

8.1.6. Omniscience and instance-specific lower bounds
So far we have shown that the elicitors that we designed
save most of the preference revelation compared to a di-
rect revelation mechanism. However, it is perhaps more in-
teresting to compare to the best possible performance on
each instance. To bound this this, we examine anomni-
scient elicitor: it knows every agent’s valuation function
exactly. However, it must prove to a non-omniscient ob-
server (say, the Federal Trade Commission) that it is con-
ducting the auction correctly. That is, it must provide a cer-
tificate consisting of value queries and their answers. The
elicitor tries to minimize the length of the certificate. The
number of queries asked by the omniscient elicitor provides
an instance-specific lower bound on the number of queries
asked by any real elicitor.

We implemented an IDA* search to find the shortest cer-
tificate. Unfortunately, the search space is double exponen-
tial in the number of items, so we could not scale this to

more than 4 items. With 3 agents and 4 items, the high-value
candidate elicitation policy launches 50% of all queries, and
the omniscient elicitor launches 33% of all queries. This
means there is some room for improvement. However, it is
highly unlikely that any non-omniscient policy could do as
well as the omniscient algorithm.

8.1.7. Universal revelation reducersSo far we have pre-
sented elicitors that, on average over instances, save a large
amount of preference revelation. Now we ask the question:
Do there existuniversalelicitors, that is, elicitors that save
revelation on all instances (excepting those where even the
omniscient elicitor must reveal everything)?
Definition 2 A universal revelation reduceris an elicita-
tion policy with the following property: given a problem in-
stance, it can guarantee (always in the deterministic case;
in expectation over the random choices in the randomized
case) saving some elicitation over full revelation—provided
the shortest certificate is shorter than full revelation. More
formally, if qmin < Q, the policy makesq < Q queries.
Proposition 4 The unrestricted random elicitation policy is
a universal revelation reducer. (Immediate from Prop. 1).

However, interestingly:
Theorem 3 No deterministic value query policy is a uni-
versal revelation reducer.

We prove that no deterministic policy can guarantee sav-
ing any elicitation by constructing a fooling set. A mini-
mal fooling set can be built for the case where there are 2
items and 2 agents; we show a somewhat more general re-
sult, that an equivalent fooling set can also be built for the
case where there are 2 items, butn � 2 agents.

The fooling setRfool consists of valuation functions of
the form: 8i 2 N vi(ab) = 28a 2 K;8i 2 N vi(a) 2 f0; 1g
And either (a):9a 2 K s:t: Pi vi(a) = 2 andPi vi(b) = 0
Or (b): 9i 2 N s:t: vi(a) = vi(b) = 1 and8j 6= i; vj(a) = vj(b) = 0

That is, either (a) one of the items has value 1 to two
agents, and no agent wants the other item; or one of the
agents is happy with either item and no other agent wants
only a single item. Thus, there are exactly two 1 values. The
optimal allocation is to give the entire set of itemsK to one
of the agents. Otherwise, we can only get value 1 from the
allocation.
Lemma 1 Each instance inRfool has a certificate that does
not fully reveal the agents’ valuations.
Proof: Any instance in the fooling set can be solved by re-
vealing all the zero values and no 1 values. If we have an
instance of type (a), we have now revealed that any alloca-
tion of itema to an agenti, and itemb to another agentj,
has value at mostUBi(a)+UBj(b) = 2+0 � vi(ab). Sim-
ilarly for instances of type (b). Thus, we have a certificate.



We necessarily have two bundles of value 1, and after re-
vealing the zeros, an observer knows only that those two
bundles have value at most two. Therefore, we have not re-
vealed the values of all bundles.

Lemma 2 Every deterministic algorithm has at least one
instance inRfool that makes it query every bundle and
agent.
Proof: The proof operates under the model that the adver-
sary can choose the instance during the execution of the pol-
icy. Because the policy is deterministic, this is equivalent to
having the adversary examine the policy and choose an in-
stancea priori.

To the first queryvi(S) whereS is eithera or b, the ad-
versary will return 1. From then on, the adversary will return
0, until the policy asks eithervi( �S) or until it asksvj(S)
having already asked allvl(S) for i 6= l 6= j, at which point
the adversary will return 1. In other words, the adversary
forces the policy to ask both 1 values.

If the certificate thus chosen reveals bothvi(S) = 1 andvi( �S) = 1, then it must revealvj(S) = vj( �S) = 0 for allj 6= i. Otherwise, the allocation ofS (resp.�S) to agenti and�S (resp.S) to agentj has value up toUBi(S) + UBj( �S) =1+2 > 2 which contradicts that we have a certificate. Thus
the certificate must reveal the value of all bundles.

If the certificate instead reveals bothvi(S) = 1 andvj(S) = 1, then it must revealvl( �S) = 0 for all l. Oth-
erwise, we do not have a certificate. In addition, if the ad-
versary chose to answervj(S) = 1, then the policy askedvl(S) for all i 6= l 6= j. Thus, the certificate reveals the
value of all bundles.

Proof:[of Proposition 3] Lemma 1 shows that any instance
of Rfool hasqmin < Q. Meanwhile, Lemma 2 shows that
any deterministic algorithm will makeQ queries. Hence, no
deterministic algorithm is a universal reducer.

8.2. Order queries
In some applications, agents might not know the values

of bundles, and might need to expend a lot of effort to de-
termine them [9, 16], but might easily be able to see that
one bundle is preferable over another. In such settings, it
would be sensible for the elicitor to askorder queries, that
is, ask an agenti to order two given bundlesci andc0i (to say
which of the two it prefers). The agent will answerci � c0i
or c0i � ci or both.ASKQUERY will then create new edges
in the constraint network to represent these new dominates
relations. By asking only order queries, the elicitor cannot
compare the valuations of one agent against those of an-
other, so it cannot determine a social welfare maximizing
allocation. However, order queries can be helpful when in-
terleaved with other types of queries.

8.3. Interleaving value and order queries
We developed an elicitor that uses both value and order

queries. It mixes them in a straightforward way, alternat-

ing between the two (starting with an order query). When
an order query is to be asked, the elicitor computes all tu-
ples(a; b; i) wherea andb are each allocated to agenti in
some candidate, and where the elicitor knows neithera � b
nor b � a. The elicitor then picks randomly. When a value
query is to be asked, it is chosen using the random allocat-
able policy.

The policy described above is able to reduce the num-
ber of precise values it elicits, by about 10%, over asking
only value queries. Depending on the cost model, this may
or may not be an improvement: it is an improvement if or-
der queries cost less than 0.1 units (where value queries cost
1). This seems like a not unreasonable assumption: in many
cases it should be far easier to compare two bundles than
to find their exact value. More work needs to be done to
choose better order queries, and to combine value and or-
der queries.

Another advantage of the mixed value-order query pol-
icy is that it does not depend as critically on free disposal.
Without free disposal, the policy that uses value queries
only would have to elicit all values. The order queries in
the mixed policy, on the other hand, can create useful edges
in the constraint network which the elicitor can use to prune
candidates.

8.4. Bound-approximation queries
In many settings, the bidders can roughly estimate valu-

ations easily, but the more accurate the estimate, the more
costly it is to determine. In this sense, the bidders determine
their valuations using anytime algorithms [9]. For this rea-
son, we introduce a new query type, abound-approximation
query: the elicitor asks an agenti to spend some timet to
tighten the agent’s upper boundUBi(b) (or lower bound
LBi(b)) on the value of a given bundleb. This query type
leads to more incremental elicitation in that queries are not
answered with exact information, and the information is re-
fined incrementally on an as-needed basis.

Using randomly chosen bound-approximation queries as
the elicitation policy would work, but the more sophisti-
cated elicitation policy that we developed chooses the query
that maximizes the benefit of receiving the information
from that query. The benefit is defined to be the sum over all
bundles in remaining candidates of the amount by which the
bounds on each bundle will change given the new informa-
tion. The elicitor optimistically hopes that the new boundz
is such that it will change the most possible bounds: that is,
when computing the benefit of a lower bound query, it as-
sumesz = UBi(b) while when computing the benefit of an
upper query,z = LBi(b) (the change in upper bound is al-
ways finite because we first elicit the grand bundle, as mo-
tivated Proposition 3). In this work, we did not intelligently
choose a time bound: instead, we simply passt = 0:2 for
every query. Computing the expected benefit rather than the
optimistic benefit gave very similar results. It is interest-
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Figure 4. Elicitation using bound-approximation
queries.

ing to note that, as we saw in Section 8.1.3, this policy did
poorly at choosing value queries.

In the experiments, we needed a way of determining
what answer an agenti might give to a query that asked
it to spendt time refining a bound onb. We want to model
diminishing returns to computation, as is usually the case
with anytime algorithms. We therefore decided on the fol-
lowing (arbitrary) function: After spending a total of timet,0 � t � 1, the agent will report a lower bound ofvi(b)pt
or an upper bound of(2 � pt)vi(b). Furthermore, we as-
sume that the bound-tightening algorithm can be restarted
without penalty. It is important to note that the elicitation
algorithm does not know the details of this experiment: oth-
erwise, it could spend� time on a bound and immediately
solve forvi(b), which is unrealistic.

Figure 4 shows that as the number of items increases, the
fraction of the overall computation cost actually incurreddi-
minishes: the optimal allocation is determined while query-
ing only very approximate valuations on most bundle-agent
pairs. The method also maintains its benefit as the number
of agents increases.

9. Conclusions and future research
We presented the first experimental evaluation of prefer-

ence elicitation in CAs. We developed a method for eval-
uation: against direct revelation, or against an omniscient
elicitor. Through several theoretical and experimental ad-
vances, we developed the most effective elicitor to date, for
general CAs. In all of the elicitors in this paper (except the
unrestricted random one), as the number of items for sale in-
creases, the amount of information elicited is a small frac-
tion of the information needed for a traditional direct revela-
tion mechanism. Each of the elicitation schemes (except the
rank lattice based one) also maintains its benefit as the num-
ber of agents increases.

Current work includes studying new query types and
elicitation policies, as well as applying elicitation to com-
binatorial reverse auctions and exchanges [20], both with
and without free disposal. Future work also includes devel-
oping a better understanding of the relationship between
preference elicitation and ascending CAs where the auc-

tion proceeds in rounds, and in each round the bidders re-
act to price feedback by revealing demand (e.g., [14, 21]).
This can be viewed as falling within our general preference
elicitation framework, but with a different query class:de-
mand queries. Very recently, interesting theoretical results
on this connection have been proven [2, 8]: in some (but
not other) restricted classes of CAs, a polynomial number
of queries suffices when both demand and value queries are
used. Such results have recently also been derived for value
queries alone [5,19,22].
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