Effectiveness of Query Types and Policies for Preference iltation in
Combinatorial Auctions *

Benoit Hudson Tuomas Sandholm
Carnegie Mellon University
Computer Science Department
5000 Forbes Avenue
Pittsburgh, PA 15213
{bhudson, sandhol mf@s. cnu. edu

Abstract to evaluate and communicate a bid; (2) determining one’s
valuation for any given bundle can be computationally in-

Com_bmatonal auctions, where agents can bid on bun- tractable [9, 13, 16]; and (3) agents may prefer not to reveal
dles of items (resources, tasks, etc.), are desirable scau . o . .
all of their valuation information due to reasons of privacy

the agents can express complementarity and substitutabil- o . -
. . . , or long-term competitiveness [15]. Appropriate bidding-la
ity among the items. However, expressing one’s preferences

? - guages [6,7,11,17, 18] can solve the communication over-
can require bidding on all bundles. We evaluate an ap- ; . \ . o
. o head in some cases (when the bidder’s valuation function is
proach known as incremental preference elicitation [3] and | . . : .
)) ighly compressible). However, they still require the agen
show that as the number of items increases, the amoun : : .)
:) : o . o completely determine and reveal their valuation funtio
of information required to clear the auction is a vanish- ; : .
. . : . o . and as such do not solve all the issues. So in practice, when
ing fraction of the information collected in direct revetat

: . L ..the number of items for sale is even moderate, the bidders
mechanisms. Most of the elicitors also maintain the benefit_ . : .
. will not bid on all bundles. Instead, they may wastefully bid
as the number of agents increases. We prove that random-)
N) o T . on bundles which they will not win, or fail to bid on bun-
ization helps, in that no deterministic elicitor is a univer

. s dles they would have won.

sal revelation reducer. Finally, we present a new query type

. : : Incremental preference elicitation by the auctioneer was
that allows agents to use anytime algorithms to give approx-
. : recently proposed to address these problems [3], but the
imate answers that are refined only as needed.

idea was not evaluated. We implemented the most promis-
1. Introduction ing elicitation schemes from that paper, starting from alrig
search-based scheme, continuing to a general flexible elic-
itation framework. We then developed a host of new elici-
tation policies. We also provide theoretical results tadgui
the design of elicitation policies. Finally, we introduagda
evaluate a new query type that takes the incremental nature
of elicitation to a new level by allowing agents to give ap-

h proximate answers that are refined only as needed.

Combinatorial auctions (CAs), where agents can submit
bids onbundlesof items, are economically efficient mech-
anisms for selling: items ton bidders, and are attractive
when the bidders’ valuations on bundles exhitmmple-
mentarity (a bundle of items is worth more than the sum
of its parts) and/osubstitutability(a bundle is worth less
than the sum of its parts). Determining the winners in suc . . i .
auctions is a complex optimization problem, but recent re- I_t is known tha’F even W'_th free disposal and even with un-
search has delivered winner determination algorithms that“,mlteOI comr_)utatlon,_flndmg an (e\{en approxmat_ely) op-
can optimally solve the problem for quite large numbers of Flmal allocation requires exponential commumcauon [12]
items and bids in practice. in the WOFSt case. Nevertheless our_expenmt_ants show that

An equally important problem, which has received much " practice e"C'tat'Of‘ reduces rev_elann drasticalfydahe
less attention, is that of bidding. There &f%— 1 bundles, be”e“F INcreases with _proble_m size.
and each agent may need to bid on all of them to fully ex- It eI|C|t§1t_|on is used in conjunction W|thf|ck_re_y-C’Iarke- .
press its preferences. This can be undesirable for any OfGrovesprlcmg, each agent answering the elicitor's queries

several reasons: (1) there are a huge number of bundlegmhfu”y is an ex postequilibrium [3]. Determining the
payments generally requires some additional elicitatiom,

* This material is based upon work supported by the National Sc eXpe“m_e_ntS (omitted here du_e t(_) limited space) show that
ence Foundation under CAREER Award IRI-9703122, Grant 1IS- the additional number of queries is only about 20%.

9800994, ITR 11S-0081246, and ITR 11S-0121678. Prior vensi of . [P . :
this paper appeared at AAMAS’'02 workshop on Agent-Mediated 2. Auction and elicitation Settlng

Electronic Commerce and as Carnegie-Mellon Universityhfiezal We model the auction as having a single auctioneer sell-
Report CMU-CS-02-124. ing a setK of items ton bidder agents (let = | K|). Each

agent has a finitevaluation functiory; : 2% — N that de-
termines a private value; (b) for each bundlé C K. We

We define the relation = b (read ‘@ dominate9”) to
be true if we can prove that(a) > v;(b). This is the case

make the usual assumption that the agents have free diseitherifLB;(a) > UB;(b), or if there is a directed path from
posal, thatis, adding items to an agent’s bundle never makes: to b in the graph.
the agent worse off because, at worst, the agent can dis-

pose of extra items for free. Formallys C K,S' C S,
vi(S) > v;(S"). Many of the techniques of the paper can

also be used without free disposal, although more elicita-

tion is required due to lesspriori structure.

At the start of the auction, the auctioneer knows the items
and the agents, but has no information about the agents

value functions over the bundles—except that the agent

have free disposal. The auction proceeds by having the

auctioneer incrementallglicit value function information

from the agents one query at a time until the auctioneer
has enough information to determine an optimal allocation
of items to agents. Therefore, we also call the auctioneer

theelicitor. An allocation is optimal if it maximizes social
WelfareZ?:] v;(b;), whereb; is the bundle that agente-
ceives in the allocation.The goal of the elicitor is to deter
mine an optimal allocation with as little elicitation as pds
ble, ideally without regard to computation. Clearly, thie-€l

4. Certificates

The auctioneer clears the auction if, given the informa-
tion it has received, the auctioneer can infer that one allo-
cation is worth at least as much as any other. That alloca-
tion is an optimal allocation. If the information the auctio
eer has allows this inference, the information forneesa

S

tificate for that allocation. The certificate contains a set of
gueries and their answers.minimal certificates a certifi-
cate that would cease to be a certificate if any query were re-
moved from it. Ashortest certificatés a certificate that has
the smallest number of queries among all certificates.

5. Rank lattice based elicitation

In this section we study the effectiveness of a technique
proposed earlier [3, 4tank lattice based elicitationwhere
the elicitor makes use of rank information about the bidders

itor could conduct a straight-forward game tree search+to de bundles. Leb;(j), 1 < j < 2*, be the bundle that ageit
cide what queries to ask. Against an adversary, we’ll show has at rankj. In other wordsp;(1) is the agent’s most pre-
that the adversary can force a bad outcome, but against naferred bundlep;(2) is its second most preferred, and so on

ture (a random distribution), this search would be an opti-

mal policy. Unfortunately, this is totally intractable. -

down tob;(2*), which is the empty bundle. The elicitor can
put bounds om;(b;(7)) using the constraint networks. Even

der to be able to run experiments, we devise heuristic algo-without knowingp; (5) (which bundle itis that agenvalues

rithms that run in time exponential in the number of items,
and polynomial in the number of agents.

3. Elicitor’s inference and constraint network
To minimize the number of queries, the elicitor must

jth), itknows thaw; (b;(j—1)) < v;(b;(5)) < v;(b;(j+1)).
Thus an upper bound aR(b;(j — 1)) is an upper bound on
v;(b;(4)), and a lower bound om;(b;(j + 1)) is a lower

bound orw; (b;(j)).

never ask a query whose answer could be inferred from The elicitor uses aank vectorr = (ri,r2,...,7,) t0
the answers to previous queries. As per [3], to supportepresent allocating;(r;) to each agent. Not all rank

the storing of information received from the agents, we
have the elicitor store its information in a constraint net-
work.Specifically, the elicitor stores a graph for each agen
In each graph, there is one node for each buhdlabeled

by an intervalLB;(b), UB;(b)], which are respectively the

vectors are feasible: thi (r;)’'s might overlap in items,
which would correspond to giving the same item to mul-
tiple agents.

The set of all rank vectors definesrank lattice The
root of the lattice is the all-ones rank vector; a chitdof

tightest lower and upper bounds the elicitor can prove ona noder has all elements equal except one, which is in-

the truev;(b) given the answers received to queries so far.
We say a bound isght when it is equal to the true value.

A directed edg€a, b) in the graph encodes the knowl-
edge that the agent prefers bundlever bundleb (that
is, vi(a) > wv;(b)). The elicitor may know this even with-
out knowingu;(a) or v;(b): for example, the free disposal
assumption creates implicit edges from every bundte
every subbundle of. An edge(a, b) lets the elicitor infer
thatLB;(a) > LB;(b), which allows it to tighten the lower
bound ona and on any ofi’s ancestors in the graph when
the elicitor learns a new, tighter bound. Similarly, theceli
itor can inferUB;(a) > UB;(b), which allows it to tighten
the upper bound ohand its descendants in the graph.

cremented by one. A key observation in the lattice is that
the children of a node have lower (or equal) value to the
node. Given the rank lattice, we can employ search algo-
rithms to find an optimal allocation. In particular, by start
ing from the root and searching in best-first order (always
expanding the fringe node of highest value), we are guar-
anteed that the first feasible node that is reached is optimal
To know which rank vector in the fringe has highest value,
the elicitor use the its constraint network to find bounds on
the value of each rank vector. If it yet determine that one
rank vector is worth more or at least as much as any other,
it picks an arbitrary rank vector and queries each agent
for b; (7“1) andvi(bi(ri)).

6. Experimental setup elicitation ratio

To evaluate the usefulness of elicitation, we conducted a e — S.agents
host of experiments. We generated 50 instances of each size 08! 3 Zggmg """"""""
and ran the elicitation algorithms on those instances. Each 2 agents~

point on the plots corresponds to the average performance 0.6
over the 50 runs. The plots show results for those instance 04l
sizes on which the algorithms could solve every instance in '
under 2 minutes on a 2.8 GHz Intel machine. 0.2+
Unfortunately, real data for CAs are not publicly avail- o - number of jtems
able. Therefore, as in all of the other academic work on CAs 2 3 4 5 6 7 8 9 10 11

so far, we used randomly generated data. Existing problem riq e 1. performance of rank lattice based elicita-
generators output instances with sparse bids, that is, each
agent bids on a relatively small number of bundles. This is
the case for the CATS suite of economically-motivated ran-
dom problem instances [10] as well as for many other prior
benchmarks[1,6,17]. This is not necessarily realistialevh

the bidders may far prefer some items and bundles to others
they will often have non-zero value on almost every bundle,
at least due to reselling possibilities and, in some domains
(such as spectrum or real estate auctions), renting. In addi

tion, the instances generated by many of the earlier bench should be asked from which agents). Furthermore, a recent

marks d_o not exhibit free disposal. I result [4] implies that no rank lattice based elicitatiogal
The instances were generated by assigning, for each

. : . . . rithm is better on all instances than the elicitor teste&her
agentin turn, integer valuations using the routine below. W
impose an arbitrary maximum bid valdéAXBID = 107 8. General elicitation framework
in order to avoid integer arithmetic overflow issues, while
at the same time allowing a wide range of values to be ex-
pressed. Valuations generated with this routine exhikit bo
complementarity and substitutability and observe the free
disposal assumption.
GENERATEBIDS(K)

tion. The curves for 4 and 5 agents are barely visible,
at elicitation ratio almost 1.

smaller, lower-ranked bundles. Because rank lattice based
elicitors require the agents to reveal all high-rank busdle
before any low-rank bundles, as the number of agents in-
treases, each agent reveals a greater number of bundle val-
ues. This holds not only for the specific elicitor described
above, but any elicitor that asks queries in order of rank
(evenifthe elicitor had an oracle for deciding which querie

Due to these limitation of rank lattice based elicitors, we
now move to a more general elicitation framework. As we
show, this enables one to develop algorithms that ask signif
icantly fewer queries and scale well in the number of agents.

The framework allows a richer set of query types (to

1 @ <« new constraint network accommodate for different settings where answering some
2 S« 2K (the set of all bundles) types of queries is easier than answering other types); al-
3 impose free disposal constraints@n lows more flexible ordering of the queries at run time; and
4 UB(K) + MAXBID never considers infeasible solutions. The general eficito
5 while S # 0 template is a slightly modified version of that of Conen &

6 pickd uniformly at random fromt Sandholm [3]:

7 S« S-b SOLVE()

8 pickuv(b) uniformly at random fromLB(b), UB(b)] 1 C < INITIAL CANDIDATES(n, k)

9 propagatéB(b) = UB(b) = v(b) throughG 2 while not DONE(C)

7. Rank lattice experiments 3 ¢+« SELECTQUERY(C)

We ran experiments to evaluate the efficiency of rank lat- 4 gSKQF?ERY(‘%
tice based elicitation. Define ttedicitation ratio to be the < _RUNE() _)
number of queries asked divided by the number of queries Here,C' is a set of candidates allocations, whereaa-

asked in full revelation. In full revelation, the number of didateis a vectorc = (cy, ¢z, .. ., ¢n) of bundles where the
queries is1(2% — 1) (that is, for each agent, one value query Pundles contain no items in common. Unlike with rank vec-

for each of the2* bundles except the empty bundle). Fig- tors, all candidates are feasible. The value of a candidate i

ure 1 shows that as the number of items in the auction in-v(¢) = >_; vi(ci); UB(c) = 3, UB;(c;) is an upper bound,
creases, the elicitation ratio decreases quickly. andLB(c) = >, LB;(c;) is a lower bound.

Unfortunately, Figure 1 also shows that as the number of ~ INITIAL CANDIDATES generates the set of all candidates,
agents: grows, the advantage from rank lattice based elic- Which is the set of alh* allocations of thet items to then
itation decreases. This can be explained as follows. As theagents (some agents might get no items).
number of agents increases, the average number of items PRUNE removes, one candidate at a time, each candidate
that an agent wins decreases. Thus agents will usually winthat is dominated by a remaining candidate (a candidate

dominates another candidatef the elicitor can prove that elicitation ratio
the value of is at least as high as that dj. 1 S
DonE returns true if all remaining candidates hare 0.8
provably optimal. This is the case eitherGfhas only one
element, or if all candidates ifi have known value (that is, 0.6 r
Ve € C,UB(c) = LB(c)). Because the algorithm has just

. random query

0.4 | 2 agents &, Fandom allocatable
pruned, it knows that if all candidates have known value, '
then they have equal value. 0.2t
SELECTQUERY selects the next query to be asked. This number of items
. O L L L L | 7 h h
function can be instantiated in different ways to implement > 3 4 5 6 7 8 9 10 11

different elicitation policies, as we will show. Figure 2. Top lines: Random query policy. Bottom

AskQUERY takes a query, asks the corresponding agent |ines: Random allocatable policy. Each plot line cor-
for the information, and appropriately updates the coirdtra responds to the elicitation ratio of a given number of

network. The details of updating the network are discussed agents as the number of items increases.
in conjunction with each query type below.

as it turns out, are not useful. We will now present a use-

8.1. Value queries ful restriction on the set of queries from which the elicita-
The most basic query asks an agettt revealv; (c;) ex- tion policy should choose. The key observation is that the

actly. We call such querieglue queriesUpon receiving elicitor might already know that a bundiewill not be allo-

the answerAskQUERY setsLB;(c;) = UB;(¢;) = vi(c) cated to a particular biddér- even before the elicitor knows

and propagates the new bounds upstream and downstreagrecisely the bidder’s valuation for the bundle. This oscur

through the constraint network as described earlier. when the elicitor knows of a different allocation which it

o _ _ _ . can prove will generate at least as much value as any allo-
8.1.1. Random elicitation policy A naive policy simply cation that allocates to agenti. On the other hand, if the

asks random value queries, ignoring those it has alreadyelicitor cannot (yet) determine this, then the bundle-agen
asked or for which the value can already be inferred. If it pair is deemedllocatable

is possible to save elicitation on the CA instance at hand, pqfinition 1 A bundle-agent pair(b, i) is allocatableif

then on average this policy does: there exists a remaining candidate allocatiere C' such
Proposition 1 Let@Q = n(2" — 1) be the total number of that, = b,

queries, and leg,i, be the number of queries in the short- Ngw we refine the random elicitation policy to ask
est certificate. For any given problem instance, the expecte queries on allocatablg, i) only (and queries that have al-
number of queries that the random elicitation policy asks is ready been asked or whose answer can be inferred are

at mOStq:ifZ'll(Q"' 1_)' o still never asked). This restriction is intuitively appeal
Most proofs are omitted due to limited space. ing, but sometimes hurts:

The upper bound given in the above proposition only py,,qsition 2 There exist cases where, given the queries
guarantees relatively minor savings in elicitation (esplgc asked so far in the elicitation process, the minimal set of

becauseym» increases when thbe nun;]ber of fagen';]s and queries to complete the elicitation is smaller than the min-
items increases). However, we base the proof on the pes;y | set of queries to complete the elicitation when queries
simistic assumption that there is only one minimal certifi- are restricted to allocatables.

cate (namely, the shortest certificate), and that all oteer ¢ However, the restriction cannot hurt arbitrarily much:

tificates are extensions of the shortest one. When there are .
several minimal certificates, it is more likely that the next Theorem 1 No matter what queries have been asked so far,

the smallest number of value queries to complete a certifi-
cate when restricted to allocatable queries is at most twice
present. Therefore, we ran an experiment to see how wellthe numlber of vaqug gueries the random elicitor would need
this policy does in practice. Figure 2 shows that the elicita to complete a ce_rtl icate.))

tion ratio ¢/Q is indeed less than 1. Also, the ratio slowly e ran experiments (Figure 2) to determine whether the
falls as the number of items increases, proving that indeed restriction helps in practice, and found that it clearly sloe
the number of minimal certificates increases with the num- FOr €xample, at: = 8 items andn = 3 agents, the elici-
ber of items. Nevertheless, we would hope to do better: thistation ratio of the unrestricted random policy7s’% while

elicitor still asks about 80% of all the queries. that of the allocatable-only policy is mere39%. Also, un-
like in rank lattice based elicitation, the benefit from elic

8.1.2. Random allocatable elicitation policyEssentially, tation does not go away as the number of agents increases.
the random elicitation policy is asking many queries which,

query will complete a certificate. We do not know how to
analyse how many minimal certificates we expect to be

8.1.3. Stronger restrictions We analyzed several policies Representing candidates implicitiy:he policy of the pre-
which restricted the query set more strongly than simply to vious section works well in terms of elicitation, but in tesm
allocatable queries, trying to cleverly account for margrfe of time it scales poorly with the number of agents. The chief
tures. A list of negative results includes: the policy previ cost is due to representing the candidates explidfiyne
ously proposed in [3], namely counting the number of allo- runs in time quadratic in the number of candidates, while
cations that includéb, i); counting the expected amount by SeLecTQUERY and DoNE run in time linear in the number
which bounds will change in the constraint networks when of candidates, of which there are as many:4sSince the
we elicit (b,7); counting the expected number of bounds policy chooses among a set of size at mae®t, we might
that will change; counting the expected number of candi- hope to save work by implicitly representing the candidates
dates that will be pruned. For the policies that count the ex- (as long as:. > 2).
pected value of a quantity, we also tried the minimum and We accomplish this by repeatedly solving an integer pro-
maximum value. All of these policies fared worse or no bet- gram (IP) every time a query is to be selected—rather than
ter than the random allocatable policy. explicitly representing the set of candidates. We use the fo
Under the random allocatable policy, if we track the lowing IP to compute the value of the highest-valued candi-
number of candidates i@ over time, we see three distinct date:
phases: initially, almost no candidates are pruned regard- maximize >, x ,cox UB;(b)zi(b)

less of what query was asked; then there is a brief phase subject to zi(b) € Zy Vi e N,Vb e 2K
where almost all candidates get pruned; and finally there is Y opeax Ti(h) <1 Vie N
a phase where almost every query needs to be asked. This dien 2ps; Ti(D) <1 VjEK

suggests (but does not prove) that any policy based on max- The first constraint of the IP states that each bundle is ei-
imizing the number of pruned candidates should fail to sig- ther allocated or not. The second constraint states that eac
nificantly improve upon the random allocatable policy: the agent only gets one bundle, and the third constraint states
only time when any query could prune more than another isthat each item is allocated to only one agent. This is an as-
in the brief middle phase. signment problem and can thus be solved quite quickly.

Upon solving the IP, the elicitor will know the value
UB,,.x Of the candidates with greatest upper bound. Then,
for each pair(b, i) in turn, we forcez;(b) = 1 and solve
again. This returns the valudB,,,. (b, i) of the candidates
with greatest upper bound, constrained to only those candi-
dates which allocatkto agenti. If UB,,ax(b,7) = UBpax,
then(b,) is in a high-value candidate. The elicitor now has
the set of(b, i) that are in high-value candidates, and can
proceed as before (that is, for each syéhi), count the
subbundles(b, ¢) and pick a randonfb, i) among the ones
yith the greatest number of subbundles).

Implemented naively, the policy solves the IP for each
pair (b, 1) in each call taSELECTQUERY. One can sometimes
avoid solving the IP by cachingiche(b, i) = UBp.x (b,).
Since the IP uses the current upper bounds on the true valu-
ations, and upper bounds only decrease, the value of the IP
solutions will only decrease. That is, in a later calsta Ec-
TQUERY, it will be the case that)B,,,.x (b,7) < cache(b, i).
Therefore, ifcache(b,i) < UBax, the elicitor can infer
that(b,) is not in a high-value candidate, without comput-
ing UBmax(b, Z)

Our experiments show that in our implementation, the
implicit representation of candidates is faster than the ex
plicit one already with three agents & 3). With 5 agents,
the implicit approach is several orders of magnitude faster

8.1.4. High-value candidate elicitation policyWe did
find one policy that significantly outperforms the random
allocatable elicitation policy. This policy is a modificati
of the elicitation policy that was recently used in a combi-
natorial exchange for allocating tasks in a multi-robotsys
tem [20]. The intuition is that to prove an allocation optima
we must prove a sufficient high lower bound on it, while at
the same time proving sufficient low upper bounds on all
other allocations. By only picking from high-value candi-
dates, we expect to be biasing toward asking questions th
will need to be asked anyway. In addition, by picking from
those queries that will reduce as many values as possible
we bias toward reducing upper bounds, which is desirable
since there is typically only one optimum out of thé to-
tal candidates (the latter restriction was not presentén th
previous work).

Specifically, letC,.x be the set of candidates of great-
est upper bound (“high-value candidates”). Thatlga, =
{c € C s.t. UB(¢) = max. cc UB(c¢')}. For each(d,i) €
Cmax definesubbundles(b, i) to be the number of other
bundles in high-value candidates whose value might be
affected upon elicitingv;(b). The subbundles are those
(0',4) € Cmax for whichbd D b' andLB;(b) < UB;(b'). Fi-
nally, pick uniformly at random among thé, i) with the

mostsubbundles.
This is the best policy we have yet developed. It achieves8.1.5. The grand bundle should be queriedntuitively
an elicitation ratio of only 24% witlk = 8 items andh = 3 it is appealing to elicit from every agent the value for the

agents, as opposed to 30% for the random allocatable pol-grand bundle (i.e., the bundle that consists of all items) be
icy and 78% for the unrestricted random policy. cause that sets an upper bound on all bundle-agent pairs via

e'i1°itati0” ratio more than 4 items. With 3 agents and 4 items, the high-value

2 agents candidate elicitation policy launches 50% of all queries} a
08 the omniscient elicitor launches 33% of all queries. This
means there is some room for improvement. However, it is
0.6 1 highly unlikely that any non-omniscient policy could do as
o4l well as the omniscient algorithm.
8.1.7. Universal revelation reducersSo far we have pre-
0.2¢ sented elicitors that, on average over instances, savge lar
0 ‘ ‘ ‘ number of items amount of preference revelation. Now we ask the question:
2 3 4 5 6 7 8 9 10 Do there exisuniversalelicitors, that is, elicitors that save
Figure 3. High-value candidate elicitation policy, with revelation on all instances (excepting those where even the
implicit candidate set representation. The legend is omniscient elicitor must reveal everything)?
in the order of the plot lines at 2 items; the order Definition 2 A universal revelation reduces an elicita-
reverses as the number of items grows. The elicita- tion policy with the following property: given a problem in-
tion ratio falls with increasing number of items, but stance, it can guarantee (always in the deterministic case;
grows with increasing number of agents, when there in expectation over the random choices in the randomized
are more items than agents. case) saving some elicitation over full revelation—predd

the free disposal assumption. We present here a proof thathe shortest certificate is shorter than full revelation.glo
this is in fact almost always required. Namely, almost all formally, ifgnmin < @, the policy makeg < @ queries.
instances require this upper bound from every agent, andProposition 4 The unrestricted random elicitation policy is
those few instances that do not require it from every agenta universal revelation reducer. (Immediate from Prop. 1).
still require it from all but one agent. Therefore, the first ~ However, interestingly:

thing all our elicitation policies query is the value of the Theorem 3 No deterministic value query policy is a uni-

grand bundle (or a bound on the value). versal revelation reducer.

Proposition 3 To determine an optimal allocation, any We prove that no deterministic policy can guarantee sav-

elicitation policy must prove an upper bound on(K) ing any elicitation by constructing a fooling set. A mini-

for every ageni to which the grand bundI& is not allo- mal fooling set can be built for the case where there are 2

cated. items and 2 agents; we show a somewhat more general re-
Furthermore: sult, that an equivalent fooling set can also be built for the

Theorem 2 Assume there are at least 2 bidders. There is ¢ase where there are 2 items, but 2 agents.

a policy (possibly requiring an oracle for choosing the The fooling setRfooll consists of valuation functions of
queries) using value queries that ask&K) for everyagent the form: V? €N wifab) =2

i and that asks the fewest possible queries (among all elici- , Vae K.Vie N wvi(a) €{0,1}

tors that use value queries only). And either (a):

Jae Kst. Y ,vi(a)=2 and
8.1.6. Omniscience and instance-specific lower bounds > vi(b) =
So far we have shown that the elicitors that we designedOr (b): 3i € N s.t. w;(a) =wv;(b) =1 and
save most of the preference revelation compared to a di- Vj#i, vi(a) =v;(b) =0

rect revelation mechanism. However, it is perhaps more in- That is, either (a) one of the items has value 1 to two
teresting to compare to the best possible performance ordgents, and no agent wants the other item; or one of the
each instance. To bound this this, we examineoami- agents is happy with either item and no other agent wants
scientelicitor: it knows every agent’s valuation function only asingle item. Thus, there are exactly two 1 values. The
exactly. However, it must prove to a non-omniscient ob- optimal allocation is to give the entire set of itedisto one
server (say, the Federal Trade Commission) that it is con-Of the agents. Otherwise, we can only get value 1 from the
ducting the auction correctly. That is, it must provide a cer allocation.
tificate consisting of value queries and their answers. TheLemma 1 Each instance i, has a certificate that does
elicitor tries to minimize the length of the certificate. The not fully reveal the agents’ valuations.
number of queries asked by the omniscient elicitor provides Proof: Any instance in the fooling set can be solved by re-
an instance-specific lower bound on the number of queriesvealing all the zero values and no 1 values. If we have an
asked by any real elicitor. instance of type (a), we have now revealed that any alloca-
We implemented an IDA* search to find the shortest cer- tion of itema to an agent, and itemb to another agent,
tificate. Unfortunately, the search space is double exponen has value at mosiB; (a) + UB; (b) = 2+ 0 < v;(ab). Sim-
tial in the number of items, so we could not scale this to ilarly for instances of type (b). Thus, we have a certificate.

We necessarily have two bundles of value 1, and after re-ing between the two (starting with an order query). When
vealing the zeros, an observer knows only that those twoan order query is to be asked, the elicitor computes all tu-
bundles have value at most two. Therefore, we have not reples(a, b,i) wherea andb are each allocated to agenin
vealed the values of all bundles. m some candidate, and where the elicitor knows neitherb

Lemma 2 Every deterministic algorithm has at least one Norb = a. The elicitor then picks randomly. When a value
instance in R0 that makes it query every bundle and duery is to be asked, it is chosen using the random allocat-
agent. able policy.

Proof: The proof operates under the model that the adver- ~ The policy described above is able to reduce the num-
sary can choose the instance during the execution of the polPer of precise values it elicits, by about 10%, over asking
icy. Because the policy is deterministic, this is equivaten ~ Only value queries. Depending on the cost model, this may
having the adversary examine the policy and choose an in-0f May not be an improvement: it is an improvement if or-

stancea priori. der queries cost less than 0.1 units (where value queriés cos
To the first quenyw; (S) wheresS is eithera or b, the ad- 1). Thig seems like a not uqreasonable assumption: in many

versary will return 1. From then on, the adversary will retur C@S€s it should be far easier to compare two bundles than

0, until the policy asks either;(S) or until it asksv;(S) to find their exact value. More work needs to be done to

having already asked al} (S) for i # [# j, at which point choose better order queries, and to combine value and or-
the adversary will return 1. In other words, the adversary d€r queries.

forces the policy to ask both 1 values. Another advantage of the mixed value-order query pol-
If the certificate thus chosen reveals bothS) = 1 and icy is that it does not depend as critically on free disposal.
v;(S) = 1, then it must reveat; (S) = v;(S) = 0 for all Without free disposal, the policy that uses value queries
j% i. Otherwise, the aIIocatioricﬁ‘(resp.]S) to agent and only would have to elicit all values. The order queries in
S (resp.S) to agentj has value up t@B;(S) + UB;(S) = the mixed policy, on the other hand, can create useful edges
142 > 2 which contradicts that we have a certifijcate. Thus N the constraint network which the elicitor can use to prune
the certificate must reveal the value of all bundles. candidates.
If the certificate instead reveals boti(S) = 1 and 8.4. Bound-approximation queries
vj(S) = 1, then it must reveal,(S) = 0 for all I. Oth- In many settings, the bidders can roughly estimate valu-

erwise, we do not have a certificate. In addition, if the ad- ations easily, but the more accurate the estimate, the more
versary chose to answej(S) = 1, then the policy asked costly it is to determine. In this sense, the bidders deteemi

v (S) forall i # 1 # j. Thus, the certificate reveals the theijr valuations using anytime algorithms [9]. For this-rea
value of all bundles. = son, we introduce a new query typég@und-approximation
Proof:[of Proposition 3] Lemma 1 shows that any instance query. the elicitor asks an agentto spend some timeto

of Rioo1 haSqmin < @. Meanwhile, Lemma 2 shows that tighten the agent's upper bouridB;(b) (or lower bound

any deterministic algorithm will mak@ queries. Hence,no LB;(b)) on the value of a given bundle This query type
deterministic algorithm is a universal reducerm leads to more incremental elicitation in that queries arte no
8.2. Order queries a}nswgred with exact information, and the. information is re-
fined incrementally on an as-needed basis.

Using randomly chosen bound-approximation queries as
the elicitation policy would work, but the more sophisti-
cated elicitation policy that we developed chooses theyquer
that maximizes the benefit of receiving the information
from that query. The benefitis defined to be the sum over all
. : . ; bundles in remaining candidates of the amount by which the
which of the two it prefers). The agent will answerz- c; bounds on each bundle will change given the new informa-

N i i .. .
ore; = ¢ or pOth'ASKQUERY will then create new edges tion. The elicitor optimistically hopes that the new bound
in the constraint network to represent these new dominates

relations. By asking only order queries, the elicitor canno Is such that it will change the most possible bounds: that is,

. ; when computing the benefit of a lower bound query, it as-
compare the valuations of one agent against those of an- puting query

. . i .~ 'sumes: = UB;(b) while when computing the benefit of an
other, so it cannot determine a social welfare maximizing

allocation. However, order queries can be helpful when in- Upper gueryz = LB;(b) (t_he ch_a_nge in upper bound is al-
.) ways finite because we first elicit the grand bundle, as mo-
terleaved with other types of queries.

tivated Proposition 3). In this work, we did not intelliggnt
8.3. Interleaving value and order queries choose a time bound: instead, we simply pass 0.2 for

We developed an elicitor that uses both value and orderevery query. Computing the expected benefit rather than the
gueries. It mixes them in a straightforward way, alternat- optimistic benefit gave very similar results. It is interest

In some applications, agents might not know the values
of bundles, and might need to expend a lot of effort to de-
termine them [9, 16], but might easily be able to see that
one bundle is preferable over another. In such settings, it
would be sensible for the elicitor to askder queriesthat
is, ask an ageritto order two given bundles and¢, (to say

elicitation ratio

1 | ‘
> agents
3 agents

0.8 - Sgens
5 agentS"

ol 220

0.4

0.2}

0 number of items

2 3 4 5 6 7 8
Figure 4. Elicitation using bound-approximation

queries. [1

ing to note that, as we saw in Section 8.1.3, this policy did [2]
poorly at choosing value queries.

In the experiments, we needed a way of determining 3]
what answer an agentmight give to a query that asked 4
it to spendt time refining a bound oh. We want to model
diminishing returns to computation, as is usually the case [5]
with anytime algorithms. We therefore decided on the fol- [6]
lowing (arbitrary) function: After spending a total of time
0 < t < 1, the agent will report a lower bound of(b)/#
or an upper bound of2 — v/#)v;(b). Furthermore, we as-]
sume that the bound-tightening algorithm can be restarted (8]
without penalty. It is important to note that the elicitatio
algorithm does not know the details of this experiment: oth- [9]
erwise, it could spend time on a bound and immediately
solve foru;(b), which is unrealistic.

Figure 4 shows that as the number of items increases, thg11]
fraction of the overall computation cost actually incurdad
minishes: the optimal allocation is determined while query
ing only very approximate valuations on most bundle-agent
pairs. The method also maintains its benefit as the numbei13]
of agents increases.

9. Conclusions and future research

We presented the first experimental evaluation of prefer-[15)
ence elicitation in CAs. We developed a method for eval-
uation: against direct revelation, or against an omnigcien
elicitor. Through several theoretical and experimental ad (;;,
vances, we developed the most effective elicitor to date, fo
general CAs. In all of the elicitors in this paper (except the [18]
unrestricted random one), as the number of items for sale in-
creases, the amount of information elicited is a small frac- 19
tion of the information needed for a traditional direct reve
tion mechanism. Each of the elicitation schemes (except the
rank lattice based one) also maintains its benefit as the numIZO]
ber of agents increases.

Current work includes studying new query types and [21]
elicitation policies, as well as applying elicitation tonze 22]
binatorial reverse auctions and exchanges [20], both with
and without free disposal. Future work also includes devel-
oping a better understanding of the relationship between
preference elicitation and ascending CAs where the auc-

[20]

[12]

[14]

[16]

tion proceeds in rounds, and in each round the bidders re-
act to price feedback by revealing demand (e.g., [14, 21]).
This can be viewed as falling within our general preference
elicitation framework, but with a different query claske-
mand queriesVery recently, interesting theoretical results
on this connection have been proven [2, 8]: in some (but
not other) restricted classes of CAs, a polynomial number
of queries suffices when both demand and value queries are
used. Such results have recently also been derived for value
queries alone [5,19, 22].

References

A. Andersson, M. Tenhunen, and F. Ygge. Integer programgrfor
combinatorial auction winner determinatiof€MAS 2000.

A. Blum, J. Jackson, T. Sandholm, and M. Zinkevich. Prefee
elicitation and query learningCOLT, 2003.

W. Conen and T. Sandholm. Preference elicitation in cowtorial
auctions: Extended abstra&dCM-EC 2001.

W. Conen and T. Sandholm. Partial-revelation VCG medrarfor
combinatorial auctionsAAAI, 2002.

V. Conitzer, T. Sandholm, and P. Santi. Combinatoriatauns with
k-wise dependent valuations. Draft, Oct. 2003.

Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming twmpu-
tational complexity of combinatorial auctions: Optimabaapproxi-
mate approache$JCAI, 1999.

H. Hoos and C. Bouitilier. Bidding languages for combaral auc-
tions. IJCAI, 2001.

S. Lahaie and D. Parkes. Applying learning algorithmpreference
elicitation. ACM-EG 2004.

K. Larson and T. Sandholm. Costly valuation computatiorauc-
tions. TARK VIII, 2001.

K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards irarsal
test suite for combinatorial auction algorithmsCM-EC 2000.

N. Nisan. Bidding and allocation in combinatorial doos. ACM-
EC, 2000.

N. Nisan and |. Segal. The communication requiremehtffiient
allocations and supporting Lindahl prices, 2003. Workiagé? (ver-
sion: March 2003).

D. C. Parkes. Optimal auction design for agents wittdhaalua-
tion problems. Agent-Mediated Electronic Commerce Workshop at
1JCAI, 1999.

D. C. Parkes and L. Ungar. Iterative combinatorial &unst: Theory
and practice AAAI, 2000.

M. H. Rothkopf, T. J. Teisberg, and E. P. Kahn. Why arekvéy
auctions raredournal of Political Economy98(1):94-109, 1990.
T. Sandholm. An implementation of the contract net pcot based
on marginal cost calculation®AAI, 1993.

T. Sandholm. Algorithm for optimal winner determiratiin combi-
natorial auctionsaAtrtificial Intelligence 135:1-54, Jan. 2002.

T. Sandholm. eMediator: A next generation electrorienmerce
server. Computational Intelligencel8(4):656—-676, 2002. Special
issue on Agent Technology for Electronic Commerce.

P. Santi, V. Conitzer, and T. Sandholm. Towards a cheraation
of polynomial preference elicitation with value queriescombina-
torial auctions.COLT, 2004.

T. Smith, T. Sandholm, and R. Simmons. Constructing cledr-
ing combinatorial exchanges using preference elicitatidiAl-02
workshop on Preferences in Al and CP: Symbolic Approaches?2.
P. R. Wurman and M. P. Wellman. AkBA: A progressive,
anonymous-price combinatorial auctiohCM-EC 2000.

M. Zinkevich, A. Blum, and T. Sandholm. On polynomiahe pref-
erence elicitation with value querieBCM-EC 2003.

