
CCCG 2008, Montréal, Québec, August 13–15, 2008

An Efficient Query Structure for Mesh Refinement

Benoı̂t Hudson∗ Duru Türkoğlu†

Abstract

We are interested in the following mesh refinement problem:
given an input set of points P in Rd, we would like to pro-
duce a good-quality triangulation by adding new points in
P . Algorithms for mesh refinement are typically incremen-
tal: they compute the Delaunay triangulation of the input,
and insert points one by one. However, retriangulating after
each insertion can take linear time. In this work we develop
a query structure that maintains the mesh without paying the
full cost of retriangulating. Assuming that the meshing al-
gorithm processes bad-quality elements in increasing order
of their size, our structure allows inserting new points and
computing a restriction of the Voronoi cell of a point, both in
constant time.

1 Introduction

A central task in scientific computing is to discretize a do-
main of interest into a simplicial mesh. Concretely, we in-
vestigate the following setting: we are given a point cloud P
in [0, 1]d, typically d = 2 or 3. A meshing algorithm must
produce a simplicial decomposition of [0, 1]d (a triangulation
in d = 2), in which all of the input points appear as vertices
of the decomposition. Each simplex should have good aspect
ratio (quality), since that is a necessary or at least sufficient
condition for many scientific computing applications. To en-
sure this, the algorithm must refine the point set, creating
new (Steiner) vertices. But it should not add too many ver-
tices: if the smallest possible mesh of good aspect ratio has
m vertices, the algorithm should output O(m) vertices.

There are two categories of mesh refinement algorithms
with provable guarantees: those based on quadtrees [BEG94,
MV00], and those based on Delaunay triangulations [Rup95,
She98]. Quadtrees can be constructed in O(n log n + m)
time [BET99]. Traditional Delaunay methods produce sub-
stantially smaller meshes in practice, but are quadratically
slow in the worst case. The runtime behaviour of these
algorithms is dominated by the cost of maintaining the
mesh as the output is incrementally computed. Two Delau-
nay refinement algorithms sidestep this cost and match the
quadtree runtime: Har-Peled and Üngör [HPÜ05] hybridize
Delaunay and quadtree methods, while Hudson, Miller, and
Phillips [HMP06] carefully maintain a triangulation that is
always sparse. Here, we extend the hybrid approach to three
or more dimensions.

∗Toyota Technological Institute at Chicago
†University of Chicago

INITIALIZE(P) O(n log n + m)
APPROXIMATENN(v) O(1)
CLIPPEDVORONOI(v, β) O(1)
ADDVERTEX(p, v) O(1)

Fig. 1: The interface of our data structure, and runtimes
assuming a bottom-up mesh refinement algorithm.

Mesh quality: In a mesh where all simplices have good
aspect ratio, the vertices of the mesh are well-spaced in the
following sense [Tal97]. Denote by NN(v) the distance from
v to its nearest neighbour, and by R(v) the distance from v
to the farthest node of its Voronoi cell. Then we say that v is
ρ-well-spaced if R(v) ≤ ρNN(v).

Mesh spacing: The local feature size lfs(x) is the dis-
tance from x to its second-nearest input point [Rup95]. In
a size-conforming mesh, at every output vertex v, NN(v) ∈
Θ(lfs(v)). A size-conforming mesh has O(m) vertices.

Bottom-up meshing: We say that a mesh refinement
algorithm is bottom-up if it incrementally ensures that
small Voronoi cells are well-shaped before processing large
Voronoi cells. That is, there are constants ρ and γ such
that before the algorithm inserts a new Steiner point p with
a nearest other mesh vertex at distance NN(p), every mesh
vertex v with NN(v) < γ NN(p) is ρ-well-spaced.

Our contribution: Expanding upon the idea of Har-Peled
and Üngör, we provide a data structure for a meshing algo-
rithm to use as a black box to maintain information about the
partial mesh as it is constructed. After initializing our struc-
ture, the algorithm has access to two queries and an update
routine (see Figure 1). CLIPPEDVORONOI(v, β) computes
the nearby portion of the Voronoi cell of a vertex v. We
show in Section 2 that this clipped version of the Voronoi
cell is sufficient to determine where to insert a Steiner vertex
near v. Upon deciding to insert a new Steiner vertex at p,
the algorithm can call ADDVERTEX(p, v) to effect the inser-
tion. We prove in Theorem 7 that both CLIPPEDVORONOI
and ADDVERTEX run in constant time, assuming the al-
gorithm is a bottom-up meshing algorithm that produces
a size-conforming mesh. To help the algorithm produce
the bottom-up ordering, we provide APPROXIMATENN(v),
which returns an approximation of the true distance from v
to its nearest neighbour. Using our structure, a bottom-up
mesh refinement algorithm can mesh a point cloud in Rd in
O(n log n + m) time.

20th Canadian Conference on Computational Geometry, 2008

βNN(v)

u1

u2
u3

u4

v

Fig. 2: The β-clipped Voronoi cell of v and its certificate
region, bounded by neighbours u1 through u4.

2 Choosing Steiner Points

Regardless of runtime considerations, the fundamental ques-
tion in mesh refinement is about where to put the Steiner
points. Traditional solutions compute Steiner points based
on the Delaunay triangulation, which is too expensive to
maintain, so we need a more local way of choosing a Steiner
point. The following region includes the points defined by
two prior proposals for Steiner point choices — the off-
center [Üng04] in 2D, and the CoreDisk [JÜ07] in 3D:

Definition 1 The β-clipped Voronoi cell of a vertex v, de-
noted V β(v), is the intersection of the Voronoi cell of v, and
the ball centered at v with radius β NN(v).

Any point x in V β(v) is in the Voronoi cell of v; therefore,
the open ball centered at x with radius |vx| is empty of any
mesh vertices. We call these certificate balls, and define the
certificate region of V β(v) as the union of these balls (Fig-
ure 2). An algorithm that correctly computes V β(v) must
have verified that the entire certificate region is empty; oth-
erwise, the algorithm could falsely report x as being in the
clipped Voronoi when it lies outside. Furthermore, an algo-
rithm must verify that for all x on the boundary, either x is
equidistant to v and another vertex, or x is at the clipping
distance β NN(v) from v; otherwise, the algorithm could
falsely report the clipped Voronoi cell is smaller than it is.

3 Data structure

Our data structure is based on the leaves of a quadtree. Each
leaf square (or hypercube) stores the set of vertices contained
in the square, and pointers to the neighbouring squares. Also,
each vertex v stores a pointer to the square in which it lies,
which we denote square(v). Our proofs of fast runtime de-
pend on the quadtree having certain properties: (A) Each
leaf square should only have a bounded number of neigh-
bours. (B) Each leaf square should be sized in proportion
to the local feature size of the points in the cell. That is,
if a quadtree square has sides of length l, then for all x in

the square, lfs(x) ∈ Θ(l). The balanced quadtree of Bern,
Eppstein, and Gilbert [BEG94] satisfies our requirements,
though in practice it will be preferable to split the squares
more coarsely.

It takes INITIALIZE O(n log n + m) time to compute the
quadtree leaves [BET99]. The mesh spacing requirement on
the meshing algorithm, and requirement (B) on the quadtree,
together guarantee that the square size is within a constant
factor of NN(v). This allows APPROXIMATENN(v) to re-
turn the size of square(v), in constant time. To implement
ADDVERTEX(p, v), we first look up square(v), then walk
from square to square along the segment pv. Upon reaching
the square that contains p, we add p to its list of vertices. The
description of CLIPPEDVORONOI merits its own section.

4 Clipped Voronoi Computation

We represent the β-clipped Voronoi cell of a vertex v us-
ing a set U of mesh vertices (e.g. U = {u1, u2, u3, u4} in
Figure 2). To find them, we perform a scan starting at v
and growing a ball outward up to a maximum radius: at
time t the ball has radius t < tmax = β NN(v). When
our scan reaches a vertex u at time t, we add u to Ut if
it is a Voronoi neighbour, and |uv| ≤ 2tmax — i.e. u is
on the boundary of the certificate region. At time tmax,
we will know that we have covered the entire certificate re-
gion, and that Utmax is an accurate representation of V β(v).

vd

q

p

u2

u1

Fig. 3: The thick curve
is the set of points p with
distance dU

v (p) = d. No
empty ball reaches q, so
dU

v (q) =∞.

For efficiency, we need to
ensure that the scan does
not exceed the certificate
region. Therefore, we use
a distance function differ-
ent from the Euclidean one.
For any point p, we de-
fine the distance dM

v (p) as
the diameter of the small-
est certificate ball for p. If
no such ball exists then we
say dM

v (p) =∞.
Computing dM

v (p) ex-
actly is inefficient. How-
ever, we can relax the re-

quirement that the balls be empty of any mesh vertices, and
instead at time t compute dUt

v (p) — the diameter of the
smallest ball with v and p on its surface that includes no
vertex of Ut in its interior. This distance function is non-
decreasing in time: adding vertices can only make it harder
for a ball to be empty. Therefore, dUt

v (p) ≤ dM
v (p) for all

t. Interestingly, when the scan reaches p, the efficiently-
computed lower bound is tight:

Lemma 2 If point p has dUt
v (p) ≤ t, then dUt

v (p) = dM
v (p).

Proof. The assumption of the lemma implies that there ex-
ists a ball B of diameter dUt

v (p) that contains no vertex of Ut.
Consider a point q strictly inside B. It has a strictly smaller

CCCG 2008, Montréal, Québec, August 13–15, 2008

CLIPPEDVORONOI(v, β)
1: Let Q← {square(v)}, tmax ←∞, and U ← ∅
2: while Q contains an element q with dU

v (q) < tmax do
3: q ←Minimum of Q with respect to dU

v

4: if q is a vertex then
5: Add q to U
6: if q is the first vertex then tmax ← β|vq|
7: if q is a quadtree square then
8: Add each vertex in the square to Q
9: Add every unvisited neighbouring square to Q

10: return U

Fig. 4: The CLIPPEDVORONOI algorithm, which performs
a scan through the quadtree and mesh vertices.

ball that is empty: dUt
v (q) < t. Because the computed dis-

tance function is nondecreasing in t, we must already have
visited q, and discovered whether or not q is a vertex of M .
In fact, we know it is not because if it were it would be both a
vertex in Ut and inside B, contradicting that B is empty. This
applies for all q ∈ B: all of B is in fact empty of vertices
of M . Monotonicity further implies that B is the smallest
empty ball, which proves dUt

v (p) = dM
v (p). �

As a corollary, this shows that the Utmax computed by the
scan faithfully represents the β-clipped Voronoi cell: The
scan visits the entire certificate region, because all points in
the certificate region have distance less than tmax. It also
visits no more than the certificate region, because any point
we visit has an empty ball with its center in V β(v).

Implementation (see Figure 4): We discretize the scan
using quadtree squares. Starting at square(v), we explore
outward from v using a queue Q of events — vertices and
squares. Upon processing a vertex, we update the current
Voronoi cell U ; and upon processing a square, we enqueue
the vertices it contains, and the squares it neighbours. We
compute dU

v (p) using a convex program: we find a point c
that is the center of an empty ball of minimum radius.

minimize |cv|
subject to |cv| = |xp|

|cv| ≥ |cui| for all ui ∈ U
For a quadtree square, the distance is the minimum distance
to any p in the square; this corresponds to letting p be free
variables in the above program, and, in dimension d, adding
2d constraints on the coordinates of p.

5 Runtime Proof

We prove that CLIPPEDVORONOI and ADDVERTEX are fast
in two parts. First, we present a basic geometric fact about
empty balls in partially-constructed meshes. This then im-
plies that the certificate region intersects a bounded number
of quadtree squares. From there it is an easy corollary to
show that CLIPPEDVORONOI and ADDVERTEX run in con-
stant time.

5.1 Points in an empty ball have large lfs

Fig. 5: Setup for the
proofs of Section 5.1.

We first show that empty
balls do not contain points
with small local feature
size. We adapt a prior
argument that assumed
the entire mesh was well-
spaced [HMP06]; in the
present version, we only
require that vertices with
small nearest neighbour
distance are well-spaced,
so that our result will apply
in the intermediate stages of a bottom-up algorithm. For
clarity, we define a local mesh size function induced by the
set of vertices the algorithm has output so far (including all
of the input points). We say that lmsM (p) is the distance
from p to the second-nearest vertex of the partial mesh M .
This differs from the local feature size lfs(p) in that the local
feature size only considers input points, not output vertices.
In particular, lfs(p) ≥ lmsM (p).

Theorem 3 Given a mesh M and an empty ball of radius
r, assume every vertex u in M with NN(u) ≤ γr is ρ-well-
spaced. Then there is a constant ε that depends only on γ and
ρ such that at any point p in the empty ball, lmsM (p) ≥ εr.

Proof. If p is at distance at least εr from all vertices, we
are done. Otherwise, we have the situation in Figure 5. Let
c be the center of the empty ball in question. We identify
two points on the ray from c to p: q is at distance r/2 from
the center, and b is on the boundary. Finally, u is the vertex
nearest q: q is in the Voronoi cell of u. Lemma 4 will show
that NN(u) ≥ min(γ, 1

2ρ)r. This then implies Lemma 5: for
appropriate ε, u is also the vertex nearest p. The distance
from any point in the Voronoi cell of u to a second vertex
is minimized at the point x equidistant between u and its
nearest neighbour; there, lmsM (x) = NN(u)/2. Therefore,
lmsM (p) ≥ η

2 r. Since η/2 > ε, the result holds. �

Lemma 4 The vertex nearest u is at distance NN(u) ≥ ηr,
where η = min(γ, 1

2ρ).

Proof. If NN(u) ≥ γr, we are done. Otherwise, we know
that u is well-spaced: NN(u) ≥ R(u)/ρ. At the same time,
we know that R(u) ≥ |qu| since q is in the Voronoi cell; and
that |qu| ≥ r/2 because u is outside the empty ball. �

Lemma 5 If there is some vertex within εr of p, then u, the
nearest vertex to q, is also the nearest vertex to p.

Proof. We know there is a vertex u′ within distance εr of
p, and we know that |pq| ≤ r/2. By the triangle inequality,
|qu′| ≤ (1/2 + ε)r. Then u lies somewhere within the ball
centered at q, of radius (1/2 + ε)r, since u is nearer to q
than is u′. We also know that u must be outside the ball

20th Canadian Conference on Computational Geometry, 2008

centered at c, of radius r. These two constraints define a
crescent, shown shaded in Figure 5. Consider the plane that
goes through c, b, and u. Said plane also contains q since
c, b, and q are collinear. We can conformally transform the
plane so that c is the origin, q = 〈0.5, 0〉, b = 〈1, 0〉, and u =
〈x, y〉. Under this transformation, r = 1. The farthest u can
be while still lying in the crescent is the point of the crescent
where |cu| = 1 and |qu| = 1/2 + ε. We rewrite the first
equality as x2 + y2 = 1, while the second gives us that x =
1−ε−ε2. Then we can conclude that |bu|2 ≤ 2−2x = 2(ε+
ε2). Recall from the prior lemma that the nearest neighbour
of u is at distance η; therefore, every point at distance η/2
from u is within the Voronoi cell of u. Solving for |bu| =
η/2 we see that by setting ε = 1

4

√
4 + 2η2−1/2, we ensure

that b lies in the Voronoi cell of u. Since both b and q lie in
the same convex set, p also lies in it. �

5.2 Queries and updates are fast

Lemma 6 Assume we are given a size-conforming mesh M ,
a value r with the guarantee that every vertex u in M with
NN(u) ≤ γr is ρ-well-spaced, and a quadtree that satisfies
condition (B). Then the certificate region of any vertex v with
NN(v) ≤ r intersects O(1) leaf squares of the quadtree.

Proof. At any x in the certificate region, there is an empty
ball containing x that has diameter at least NN(v). There-
fore, Theorem 3 shows that lfs(x) ∈ Ω(NN(v)). Any
quadtree square that intersects the query region necessarily
includes at least one such x, which, conjoined with condi-
tion (B) on the quadtree, implies that the squares each have
side length in Ω(NN(v)). Finally, a volume packing argu-
ment applies: within a ball of volume O(β NN(v))d, every
visited quadtree square consumes Ω(NN(v))d volume. �

Theorem 7 When a bottom-up mesh refinement algorithm
calls ADDVERTEX or CLIPPEDVORONOI, our data struc-
ture responds in constant time.

Proof. In ADDVERTEX(p, v), if p lies within the β-clipped
Voronoi cell of v, then every square visited by the call in-
tersects the certificate region. Upon finding the destina-
tion square, ADDVERTEX simply appends to a list. Thus
ADDVERTEX does constant work. When the CLIPPED-
VORONOI algorithm visits a quadtree square, that square ei-
ther intersects the certificate region, or is a neighbour of a
square that intersects the certificate region. Thanks to the
guarantee that squares have a bounded number of neigh-
bours, the latter outnumber the former by at most a constant
factor. Thus CLIPPEDVORONOI visits only O(1) squares.
The function also does work iterating over the vertices each
square contains. By the mesh spacing requirement, a mesh
vertex v has a nearest neighbour no closer than Ω(lfs(x));
meanwhile, the quadtree square that contains v has sides of
length O(lfs(v)). Therefore, each square only hosts O(1)
mesh vertices, and the total work is O(1). �

6 Higher-dimensional input features

In the present work, we showed how to support a class
of mesh refinement algorithms with a search structure that
could find appropriate new Steiner points in constant time,
assuming the input is a point cloud. Typically, engineers and
graphic artists will want the mesh to respect more than just a
point cloud: it should respect some meaningful segments and
polygons, and perhaps also curves and curved surfaces. Of
course, the client application could simply specify a denser
packing of points on the surfaces, but ideally the meshing
algorithm could handle the features directly. Nothing fun-
damental blocks the extension of our structure to handle the
case of higher-dimensional features (even curved, and with
small input angles), although we would need need to enrich
the interface our data structure presents.

References

[BEG94] Marshall Bern, David Eppstein, and John R.
Gilbert. Provably good mesh generation. J. Com-
puter and System Sciences, 48(3):384–409, 1994.

[BET99] Marshall Bern, David Eppstein, and Shang-Hua
Teng. Parallel construction of quadtrees and qual-
ity triangulations. IJCGA, 9(6):517–532, 1999.

[HMP06] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips.
Sparse Voronoi Refinement. In IMR, pages 339–
356, 2006.

[HPÜ05] Sariel Har-Peled and Alper Üngör. A time-
optimal Delaunay refinement algorithm in two di-
mensions. In SoCG, pages 228–236, 2005.

[JÜ07] Ravi Jampani and Alper Üngör. Construction of
sparse well-spaced point sets for quality tetrahe-
dralizations. In IMR, pages 63–80, 2007.

[MV00] Scott A. Mitchell and Stephen A. Vavasis. Quality
mesh generation in higher dimensions. SIAM J.
Computing, 29(4):1334–1370, 2000.

[Rup95] Jim Ruppert. A Delaunay refinement algorithm
for quality 2-dimensional mesh generation. J. Al-
gorithms, 18(3):548–585, 1995.

[She98] Jonathan Richard Shewchuk. Tetrahedral Mesh
Generation by Delaunay Refinement. In SoCG,
pages 86–95, 1998.

[Tal97] Dafna Talmor. Well-Spaced Points for Numerical
Methods. PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, August 1997.

[Üng04] Alper Üngör. Off-centers: A new type of
Steiner point for computing size-optimal quality-
guaranteed Delaunay triangulations. In LATIN,
pages 152–161, 2004.

