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Abstract

Sequencing by Hybridization (SBH) has been proposed as a means of
automating the task of DNA sequencing. The original SBH proposal was
able to sequence DNA of length about 2* nucleotides with a cost O(4*) (in
linear time). Preparata and Upfal have recently proposed a new method,
which was predicted to be able to sequence DNA of length 0(411“)7 still for
a cost O(4k). This work describes a simulation of the method developed
to test the theoretical results.

1 Introduction

Sequencing by Hybridization was proposed independently by several research
teams (for an overview, see Pevzner and Lipshutz [5]). In these proposals, the
target DNA is replicated and presented to a so-called chip which contains all
strings of DNA of & nucleotides; each of these fragments is termed a probe. The
probes will hybridize to the target if a substring of the target is the Watson-
Crick complement to the probe; the probes which do hybridize are said to have
fired. From the set of fired probes, we know the set of overlapping substrings
of the target. The problem of reconstructing these into the target sequence has
been well studied: the set of fired probes induces a graph, and reconstructing
the sequence corresponds to traveling an Fulerian tour of said graph.

Using this method, sequences of length up to about 2¥ can be sequenced. In
practice, k is usually 8 or 10 because of the physical limitations of putting 4*
probes on a chip. The technique can therefore be applied to DNA sequences up
to 1000 nucleotides long; [4] gives a “realistic” limit of 600 nucleotides.

Preparata, Frieze, and Upfal [6] describe a gapped chip which greatly out-
performs the classical chip. In a gapped chip, the probes are made such that
only one nucleotide can hybridize at some of the positions on the probe, while
at others, any of the four can hybridize. Thus, we have a probe where some
of the bases are known, and others are “don’t cares”, or gaps. The chip uses
gapped probes which have first s contiguous bases which we term the body,

*This work was done under the supervision of Franco Preparata and Eli Upfal.



followed by r non-contiguous bases which
are separated by s—1 bases from each other,
collectively termed the tail. Within this
family of chips, a chip is denoted as a (s, r)
chip, and the cost parameter, k, is defined
as k = s+r. Each probe is s+ rs bases long,
but only s+ r vary on the chip. Note that the (k,0) chip and the (1, k—1) chip
are identical to the classical chip C'(k).

The cost of this chip remains O(4%): each probe is longer than in the classical
chip, but there are exactly as many as before. The advantage of this method
becomes evident when we consider the reconstruction algorithm. At the highest
level of abstraction, the algorithm starts with a certain substring of the sequence,
and tries to extend it by one character at a time, until it has reached the end
of the sequence. In doing this with a classical probing scheme, we span k — 1
characters of the known substring to find the next character: we have no probes
which span the new character and any part of the string before that. With an
(s,r) probing scheme, we span ¢t = s + rs — 1 nucleotides. Although no single
probe covers that many bases (in fact, each covers at most k¥ — 1 known bases),

acag...g...t...c

Figure 1: Example (4,3) probe.
Dots are don’t-cares.

we can use all the information by using several probes at once. This increased
power allows us to apply the technique to sequences asymptotically O(4%) bases
long.

1.1 Overview

This paper describes an implementation of the algorithm, a simulation package,
and experimental results. First, in section 2, we outline the reconstruction
algorithm and provide extensive pseudo-code. Sections 3 and 4 describe the
implementation of the simulation. Section 5 documents some of the results
gotten using the simulation package. Finally, section 6 offers user manuals for
all programs in the simulation package.



2 Reconstruction Algorithm

The reconstruction algorithm for the Preparata-Upfal technique is quite simple
in concept. Unlike in the case of classical chips, which cleverly translates the
problem to the graph traversal domain, we remain in the text processing domain.
The main loop of the algorithm simply takes a leading known substring of the
target sequence, and extends it by one character. This is done until it becomes
impossible to extend it anymore, at which point success is declared. It may also
be the case that there is more than one character with which we can extend; if
so, the algorithm fails and the sequence is said to be ambiguous (since it is not
unambiguously reconstructible). Almost all of the complexity of the algorithm
lies in trying to reduce the number of possible extensions.

To extend a given known substring, we consider the final ¢-gram of the string.
A probe is said to extend the string if it matches the first s characters of the
t-gram in all s characters of its body, and every sth character thereafter by the
corresponding character of its tail. The last character of the tail is the extension
character, since it is just beyond the known part of the string, and may indeed
be the character which extends the known substring by one base. If there is
only one such probe, then we know exactly which character is the only one
which extends our substring. If there is no such probe, then we know we have
reached the end. A difficulty arises if there are multiple such probes, each with
a different possible extension character.

To handle this possibility, we
“shift” the probes. A probe extends acggaact cggttacX
the string with shift (or offset) ¢ if acgg...t...t...X
the first s characters of the body

. aact...t... X ..c
match the s characters starting at
offset sz in the ¢-gram, and an ap- cggt... X ..c...t
propriate number of the tail char- tacX...c...t...g
acters match corresponding charac-
ters in the t-gram; and further, that Figure 2: In a (4,3) probe, four probes
the characters of the tail which do can be used to check the extension char-
not correspond to any characters in acter, denoted here by ‘X’; the four probes
the t-gram match a corresponding match appropriate characters in the ¢-
character in some probe which ex- gram at top, as well as appropriate char-
tends the string with offset i — 1. acters in the other probes. Dots are don’t-
The base case is offset 0, which cares.
corresponds exactly to our previous
definition of extension.

There is a boundary condition we have to contend with at the start of se-
quencing. The simulation results assume that we are given a primer—the first
t-gram in the sequence. This can be achieved by prepending a known sequence
to the target before replicating it. Another option is to pick an arbitrary probe,
and extend using only the body, until we have ¢ contiguous characters. This
will often give several different possibilities; we choose the one which yields the
longest sequence.



The simulation also appends randomly chosen characters at the end of the se-
quence. This was necessary in a previous version in order to handle a boundary
condition at the end. The algorithm described here should not have that bound-
ary condition; however, the simulation continues to attach an ending primer.
Some testing should show whether it is still necessary; if so, there is probably a
bug in the simulation code (but probably not in the algorithm code).

2.1 Pseudo-Code conventions

The pseudo-code presented below mostly adheres to the conventions in [2]. In
particular, all calls are by value: modifying a parameter or any part of the pa-
rameter has no effect from the caller’s point of view. All variables are local,
except for the follwing global values: M, an array of sets of probes; s, r, and ¢,
which retain their meanings in the discussion above; i, which will be defined in
section 2.3; and P, the set of fired probes. We depart from the standard conven-
tion in having 0-based arrays. This is largely an artefact of the implementation
being in C++.

M is an array M[0..r] of sets of probes; each M; contains the probes which
extend the sequence with a shift :—they match with the ¢-gram in the body and
the appropriate number of characters of the tail, and match with some probe in
M;_;.

2.2 Pseudo-Code

SEQUENCE is the top-level algorithm. It simply proceeds by building a dic-
tionary from the set of fired probes P, then repeatedly extending the known
substring, starting from the primer, until we can no longer extend.
SEQUENCE (P, primer)
1 seq < primer
2 BUILD-DICTIONARY (P)
3 while GETEXTENSION(seq) succeeds
4 do ¢ « GETEXTENSION(seq)
5 seq < seq + e
6 switch cause of failure
7 case no extensions found :
8 return seq
9 case multiple possible extensions found :
10 error “multiple extensions”
GETEXTENSION returns the single character which unambiguously extends
the sequence, or an error if there was no such character.
GETEXTENSION(seq)
1 i+ F1LL-M(seq)
2 if size[M;] =0
3 then return no extensions found
4 else if UNIQUEEXTENSION (%)



5 then return the extension character
6 else return multiple extensions found

FiLL-M is where we do most of the work. Its output is the index of the array
M of sets of fired probes.
FILL-M(seq)
1 tgram < FINALTGRAM(seq)
2 fori+0tor
3 do M; « )
A < Lookup (tgram, i)
for eachpec A
do if CHECKINM (p, i)
then M; « M; Up
if size[M;] <1 or UNIQUEEXTENSION({)
9 then > The extension character is unambiguously in M;
10 return ¢
11 > The extension character is ambiguous
12 return r

00 ~] S OV s

UNIQUEEXTENSION (i)
1 > Return whether all probes in M; have the same extension character

CHECKINM returns whether the probe p matches at least one probe in M;.
CHECKINM(p, 1)
1 ifi=0
2 then return true
3 for each p' € M;_;
4 do if CHECKP(p,/, )
5 then return true
6 © If we are here, no pair p and p’ matched
7 return false

CHECKP’ returns whether the probe p (in M;_1) and p’ (in M;) are com-
patible.
CHECKP’(p, p/, 1)
1 ifi<r

2 then start « (r—1) — 4

3 else start + 0

4 if body[p|[s — 1] # tail[p'][0]

5 then return false

6 for j « start tor—2

7 do if taillp][j + 1] # tail[p'][J]

8 then return false

9 > If we got here, no characters were different
10 return true



Lookup returns all probes which match the ¢-gram with shift <. This is
an extremely naive implementation; the simulation cuts down the number of
comparisons needed dramatically by using a hashtable keyed on s—1 characters,
then checking linearly the remaining characters. Much better could be done with
a trie.

LooKUP (tgram, i)
1 R«0
2 for each pe P
3 do 1 Check whether the body matches the {-gram

4 for j <« 0tos—2
5 do if body[pl[j] # tgram[si + j]
6 then next p
7 ifi<r
8 then if body[p][s — 1] # tgram[si + s — 1]
9 then next p
10 > Check whether the tail also matches
11 for j=0tor—i—2
12 do if tail[p][j] # tgram[si + 2s + js — 1]
13 then next p
14 > Once here, we know p matches tgram in all positions
15 R+ RUp
16 return R

2.3 Extended Algorithm

The original algorithm fails if, after r shifts, we still cannot disambiguate the
extension character. When this situation occurs, we say that we have found
a branching point; only one of the possible characters to append can be the
correct one, and all other possibilities are spurious. Declaring failure in this case
is correct: there are now at least two possible reconstructions of the sequence—
one which is correct, and the other which uses the spurious branch. Without
any other a priori knowledge of the system, we cannot distinguish between the
two possibilities.

However, the probability that a spurious branch is longer than A > ¢ char-
acters long falls exponentially with h. Therefore, one heuristic which improves
the performance of the algorithm is to try to extend using all of the possible
extensions, to a limit of h characters. We expect that only one of them (the
correct branch) can be extended to that length, and that the spurious branches
will die off quickly. Only if more than one branch can be extended & characters
do we declare failure. If h < ¢, then the extra work expended is wasted: we have
found extensions to exactly length ¢, so we know that all the possible extensions
are warranted to this length.

The danger with this heuristic is that, in very rare cases, we return an
incorrect sequence. In particular, if we are within A characters of the true end
of the sequence when we find a branching point, and a spurious branch can



be extended h characters, we will follow the spurious branch. When it ends,
we will report the spurious path as the correct one. Another (even less likely)
possibility is that we have a loop near the end. A loop occurs when we have a
t-gram which can be extended by two possibilities: one of them leads to the end
of the sequence, and the other leads to an extension which eventually yields the
same t-gram again. If a loop occurs within the last A characters, the algorithm
will dismiss the ending as a spurious path, and will instead follow the loop. This
will happen infinitely (or rather, until the machine runs out of resources).

We take two measures to help reduce the probability of an error. If we are
near the end of a sequence, and we have a branching point, it is possible that no
extension can reach h characters. In this case, we return that the extension was
ambiguous. In the case of an infinite loop, we declare failure if the length of the
sequence exceeds the estimated length of the target. We can get, biochemically,
an estimate within a certain error bound. This technique will work as long as
the estimate is an overestimate. In the simulation, we use an estimate of twice
the actual length.

2.4 Pseudo-Code

The extended algorithm only requires some minor changes to a few functions.
The parameter A is assumed to have been set at the same time as the parameters
s and r. The special case h = 0 is the original algorithm.
GETEXTENSION(seq)

1 i+ F1LL-M(seq)

2 if size[M[{]] =0

3 then return no extensions found

4 else if UNIQUEEXTENSION (%)

5 then return the extension character

6 else if h=10

7 then return multiple extensions

8 else best +— ¢

9 for each extension ¢
10 do if PEEKFORWARD (h, seq + ¢)
11 then if best # €
12 then best «+ ¢
13 else return multiple extensions
14 if best = ¢
15 then return multiple extensions
16 return best

PEEKFORWARD takes the depth to which it is still allowed to extend, and a
primer of the last ¢ — 1 characters of the known substring, plus a possible exten-
sion character. If we have extended past hleft characters, then this extension
character is still a candidate; otherwise, it is to be eliminated from consideration.
PEEKFORWARD (hle ft, primer)

1 seq + FINALTGRAM(primer)



while GETEXTENSION(seq) succeeds and hleft > 0
do e + GETEXTENSION(seq)
seq < seq + ¢
hleft < hleft — 1
if hleft =0
then return true
else return false

O =1 O O = Lo o

SEQUENCE, finally, has to take into account the possibility of an infinite
loop.
SEQUENCE (P, primer)

1 seq < primer
2 mazlen < 2m > Use some overestimate of the length
3 BUILD-DICTIONARY (P)
4 while GETEXTENSION(seq) succeeds
5 do ¢ « GETEXTENSION(seq)
6 seq < seq + e
7 if length[seq] > maxlen
8 then error “infinite loop”
9 switch cause of failure
10 case no extensions found :
11 return seq
12 case multiple possible extensions found :
13 error “multiple extensions”



3 Simulation Architecture

The simulation is a suite of related programs. One set of programs prepares
a sequence or a number of sequences to use to test the algorithm; one other
program-—gap— implements both splitting the target into the set of fired probes
and reconstructing the original sequence from the fired probes, and outputs some
information regarding the success of the operation; a final set of programs inter-
pret the data. See section 6 for specifics regarding the use of the programs. This
section deals mainly with the implementation philosophy of the gap program and
the related scripts.

The main program (gap) was written in C++, the other programs in either
Perl or C.

3.1 Overview of the program suite

The programs my_seqgen and proc_dna both produce as output a list of se-
quences in the format used in the simulation. my_seggen produces random se-
quences, while proc_dna splits a file describing a long sequence into a set of
non-overlapping sequences.

The program gap implements the SBH scheme. It reads a file containing a
set of sequences, and attempts to sequence each one. Section 4 discusses the
implementation at greater length.

Programs tester.pl and real_dna.pl are scripts that generate sequences
(randomly in the first case, from a file describing real DNA in the second case),
have gap attempt to sequence them, and interpret the success rate and some
other statistics.

Finally, a set of scripts in the graph directory interpret and plot the results
from tester.pl and real dna.pl.

3.2 Design philosophy

The design is intended to allow easily testing of very large numbers of sequenc-
ing, in various configurations. The package is intended to be general enough
to support various analyses of the program and algorithm, and to allow adding
extensions with relative ease.

Internally, there is a very clear separation of the setup code and the algo-
rithm code. The setup code simulates the SBH chip: it is presented the actual
sequence, and gives the algorithm just the set of fired probes. Great care has
been taken to ensure the algorithm code does not “cheat,” or use information
that would not be available in a real implementation. In fact, the algorithm code
is intended to be usable with only very minor changes in a real implementation
of the method.



4 Implementation details

Most of the code for gap is well-documented. This section should serve as an
introduction to the organization of the code. It is split into two functional
objects: the setup code, invoked from the mainline and entirely in main.C; and
the algorithm code, invoked from the setup code and entirely in the Algo class.

In addition, we have four utility classes. One, Pattern, represents an (s, r)
probe as two strings (one s characters long, the other r characters long). Both
setup and algorithm code use this class to represent a fired probe. The other
two, Hashtable and Array, provide data structures used in the program. Finally,
SGramHash is a specialization of Hashtable, its hash function defined by the first
s — 1 characters of the key Pattern.

4.1 Setup Code

The setup code deals with the work of reading in an input file which contains a
set of sequences. A sequence is represented as a string of characters in {a, ¢, g,t}.
It immediately translates this to a string of bytes [0123], which simplifies the
hash functions for hash tables keyed by a probe; then appends ¢ random bases.
The translated sequence is then used to create an array of Patterns, taking care
not to allow duplicates. This array is passed on to the algorithm, along with a
copy of the first ¢ characters of the sequence (it is copied to reassure ourselves
that the algorithm only uses the first ¢ characters). Finally, h—the number of
characters by which to extend in the extended algorithm—is also passed along.
By default, h = 2¢, but the user can set it differently, notably to A = 0, which
disables the extended algorithm. Having passed this information along, it lets
the algorithm run. Once the algorithm has finished running, the setup code
outputs some information which was collected during the run of the algorithm.
Namely:

e The length of the input.
e The length of the output.
o Whether the algorithm claims to have succeeded.

o Whether its claim is correct—the sequence output by the algorithm is
identical to the one input to the program.

e How many extensions took 0, 1, ..., r shifts before they were resolved.

4.2 Algorithm Code

The algorithm code is responsible for implementing the algorithm, as described
in section 2. The code is in fact almost a transliteration, as the code and
algorithm were developed in parallel. It is in an object of its own, Algo, in order
to better encapsulate all of the algorithm, and disallow having the setup code
and algorithm code depend on each other excessively. As we have mentioned, the
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intent is to have the algorithm code work equally well whether in the simulation
or in a real application.

Asinput, Algo gets both the set of fired probes, and the initial ¢-gram. It also
gets a buffer into which to write the sequence, merely for the sake of speeding up
the simulation: it could just as easily allocate itself its own buffer, but dynamic
memory allocation was a performance bottleneck in the simulations.

Note that the array gotten from the setup code is in fact in order of ap-
pearance of the probes in the sequence. However, the algorithm does not use
this information. Similarly, the precise length is available, but the algorithm
does not use it. To know whether we have fallen into an infinite loop, however,
we use an estimate of m. As implemented, that estimate is 2m, but any value
greater than m could be used instead.

The set of fired probes is put into a dictionary to find appropriate probes
in FiLLM. In this implementation, we use hashtables keyed by the first s — 1
characters of the body. We only use s—1 characters because of the need to shift:
after r shifts, the extension character is the last character of the body. This
forces us, when we know more characters, to do a linear scan over the probes
which match the first s — 1 characters and eliminate those that do not match
further characters. Ideally, we would use a dictionary which allows searching by
a variable-length key such as a trie. The limitation of using only s — 1 characters
is most clear when s = 1; here, the hashtable degenerates to a linked list.

We then proceed to the main loop of the algorithm, extending the initial
given {-gram one character at a time. We also do the additional step of keeping
track of how many shifts each extension required. The algorithm implemented
is the extended one, although this is disabled if A (named peekLimit_ in the
code) is set to 0.

Having run the algorithm, we set a few variables relating which can be used
to see if the algorithm failed, what the sequence it output was, and so on.

4.3 Other Programs

To prepare input for gap, either my_seqgen or proc.dna is used. The former
(whose name is modified from the more flexible program seqgen by Belyi and
Pevzner [1]) prepares a random sequence, while the latter takes a given, long
sequence and cuts it into non-overlapping substrings of a given length; it is used
to process real DNA.

The output is interpreted in a rudimentary fashion by interp. More useful
are the scripts tester.pl and real dna.pl which feed gap ever-larger sequences,
and collect statistics for each sequence length they tried to have gap reconstruct.
These can then be used by the graph suite of scripts to output the graphs shown
in the following section.
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5 Experimental Results

Several tests were run using the simulation package to gauge the value of the
method and check that the theoretical results were borne out in practice. Some
of the data were acquired using randomly generated DNA, others using real
DNA. This section describes the results from these tests. Two main quantities
were measured: the probability of successfully sequencing DNA of a given length
(that is, the quality of the method), and the number of shifts done when se-
quencing that DNA (that is, the time cost of the method). The former quantity
is the most important metric for the quality of this sequencing method, since
the processing time is fairly small: from milliseconds to about half a minute on
a desktop PC.

5.1 Data Acquisition

The data points for these graphs are generated by setting m to a given value,
generating a number of sequences of length m, and calculating what percentage
of the sequences were correctly reconstructed by the algorithm. The curves
have points at exponentially (base 1.05) increasing m: they start at m = 40
and increase m by 5% per point. The exceptions are some of the classical chip
examples, where they start at m = 20, and figure 8 b, where the step value is
1% per point.

The results obviously depend on several parameters in addition to the se-
quence length m: namely, s, r, and h. They also depend on the sequence itself:
the analysis of the algorithm is a probabilistic one, and some sequences will be
harder or impossible to sequence with a given chip.

The randomly generated DNA is generated using my_seqgen. Each data point
is 1,000 sequences, except the & = 10 graphs, where each data point is only 250
sequences. The “uniform” data set has the distribution of each base be uniform;
the “skewed” data set has the probability of a being 0.4, and that of the other
three bases each 0.2. Both data sets were regenerated for each data point,
separately for each graph.

The real DNA is taken from the National Center for Biotechnology Informa-
tion genome data bank [3]. Sequences were gotten for the bacteria Escherichia
coli, Haemophilus influenzae, and Methanobacterium thermoautotrophicum. These
are respectively 4.5, 1.8, and 1.7 million bases long. These data were split into
non-overlapping substrings of the given length; the number of sequences there-
fore varies according to the sequence length. Note that in the H. influenzae
genome, some of the bases were not yet known, and denoted by letters other
than {a,c,g,1}. In the processing which split the sequences, these unknown
bases were ignored.

5.2 Probability of Success

The graphs in this section describe the probability that a given chip will succeed
in sequencing the target DNA. The goal is to discuss the tradeoff of cost (chip
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size) to quality (success probability). The cost is assumed to be O(4*)—that is,
the chip area depends only on the number of probes.

Each graph is for a given value of k and h, and given data set (uniform,
skewed, or real). Each curve on each graph is for a given (s,r). Note that the

(k,0) and (1,%k — 1) chips are identical (they both are the Cj classical chip), so
only the (k,0) chip is displayed on these graphs. The top figure has h = 0; the
bottom has h = 2¢.

The graphs (figures 4 to 23) make it clear that the algorithm does in prac-
tice almost exactly as well as had been theoretically expected for uniformly
distributed data; figure 3 is especially striking in that perspective. However,
they also make it abundantly clear that real DNA is not uniformly distributed,
as the curves for real DNA far below those for random DNA. Still, this tech-

nique does several orders of magnitude better than previous techniques. With

k = 8, the classical chips claimed to be able to sequence length of up to about
600. The new method can get that far on real DNA with &k = 7.

Note that in the & = 7 examples, some of the classical chip curves do not

show up, because already at m = 40, the success rate is below 90%. This is the
reason some of the classical chips were run starting at m = 20.
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5.3 Number of extensions

Another metric was the number of shifts needed to disambiguate the extension
character. This serves as a metric for the computation time cost of the method.
Each shift requires a call to LooKUP, and some calls to CHECKINM and so
on. The cost model is that an extension that required 7 shifts costs ¢ + 1 time;
in the extended algorithm, we count what would have been a failure in the
basic algorithm as r shifts, and also add the number of shifts in each branch we
followed thereafter.

The same sets of DNA were used as in the previous metric; indeed, the
data were acquired at the same time as those used in the success rate metric
were acquired. Each call to FILLM generated one count, of a shift of ¢ (the
return value). Since FILLM is called recursively in the extended algorithm, this
correctly counts the total number of shifts. Unfortunately, only the randomly
generated data is available, as real dna.pl does not give trustworthy results for
the number of shifts. The graphs which do not have this property were limited
to success rates only as low as 90%.

This metric indicates that the number of extensions grows about linearly
with sequence length, for reasonable values of m. The i = 2t cases grow slightly
faster than linearly, which would be accounted for by the cost of extending
multiple possibilities. With the O(k + n) implementation of LooKUP, and with
n (the number of probes found) typically small, this implies that the algorithm
runs in linear time—at least in most useful cases. With the implementation in
the simulation, LOOKUP is O(k 21 ), so the algorithm runs in quadratic time.

The spikes apparent on the skewed data set are puzzling. The height is
indicated on the graphs when they are clipped. Note they only occur on the
h = 2t cases, and when k is small (the most dramatic is k = 7, while £ = 10 is
smooth).
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Figure 31: skewed data, &k = 10. For the top figure, i = 0; for the bottom,
h = 2t.
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Figure 32: Effect of & on the performance of the method using a (3,4) chip.

5.4 Effect of &

All of the data above chose & as either 0 or 2¢. These were chosen respectively
to show the power of the basic algorithm, and to show that of the extended
algorithm. Below A = ¢ — 1, the extended algorithm has no more power than
the basic one, since any fooling probe must already have remained a fooling
probe for that many characters. However, above that, the extended algorithm
gives a great benefit. It is intuitive that the method should do increasingly
better as h increases.

Figure 32 shows that, at least for a (3,4) chip and uniform random data,
the success rate (and the maximum length) does increase with . However, this
increase is most marked as h ranges from 0 to 2¢t = 30; after that point, we
get almost no benefit by increasing h. More testing would have to be done to
get a conclusive answer on this point, but it seems that h = 2¢ was in fact well
chosen.
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6 User Manuals

This section offers user manuals for all programs in the software package. The
programs are in C/C++, Perl, Awk, or sh. A makefile is provided which should
allow compiling the C and C+4++ programs on any platform with GNU make and
the GNU C/C++ compiler. It has been tested on Linux 2.0.31 and Solaris 2.6.
The scripts may need to have an updated path for Perl or Awk, but otherwise
should be platform-independent.

6.1 Compiling

The makefile provided with the package automates compilation of the programs
written in C and C4++. Currently, the compiler used is gec. This can easily be
changed by modifying the CCDEBUG, CC, FASTOPTS, and PROFOPTS lines; there are
sample such lines for egec and ¢ (the Sun Workshop compiler).

Most of the makefile is applicable to gap, as the other programs are all very
simple (a single file).

The makefile has the following targets:

all: Default; compile a version with debugging information into gap.new.
The defines APPEND_CHARS, DEBUG, and DEALLOCATE ALL are turned on.

opt: Optimized build. Use the flags which yield the fastest executable.
Note the Sun Workshop compiler yields much faster code than does
gcc. The define NDEBUG is on.

prof: Profiled build. Include the compiler flags to collect profiling informa-
tion. The optimization flags are also on, so that the profile is that of
the optimized build.

clean:  Remove temporary object files created during the compilation.

backup: Create a backup of the current source code. The backup file is in the
backups directory, with a name corresponding to the current time.

depend: Discover the dependencies using makedepend(1).

6.2 gap

Usage: gap [-x <h>] <s> <r> <file>
Takes as input a sequence, and simulates trying to sequence it using
an (s,r) gapped chip.

Input:  The input format is a standard ASCII text file. Each sequence is
bracketed by the lines “ORIGIN” and “//”. There can be multiple
sequences in a single file. A sequence consists of characters in [acgt]
or [0123] (that is, ASCIT 0x30 through 0x33). Whitespace (as denoted
by isspace(3)) is ignored; characters outside of the admissible set of
characters are translated to ‘a.’
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Output: The output format is one line per input sequence, where each line is a
colon-separated list of fields. The fields are as follows:

1. length of the input (m)

2. 1 if the algorithm’s output matches the program’s input, 0 oth-
erwise

3. 1 if the algorithm reported a failure, 0 otherwise.

This is followed by r + 1 fields, where field 7 denotes the number of
times an extension required exactly ¢ shifts (r if we had to invoke the
extended algorithm).

For example, a line 300:1:0:277:14:3:0:1 means we were trying to
sequence a 300-base sequence, that we succeeded, and that we invoked
the extended algorithm once. A line 2000:0:1:1110:369:154:83:86
means that we failed to sequence a 2000-base sequence, and that the
algorithm noticed this.

Options: -x h: Specify the parameter h to the extended algorithm. The de-
fault is 2¢.

Examples: gap 4 6 -
Reads input from stdin, sequences it using a (4, 6) chip.
gap -x0 3 4 test

Reads input from test, sequences it using a (3,4) chip using the basic
algorithm.

Compiling: See section 6.1 for information about compiling the package using the
makefile. In the makefile, except for NO_BOOLEAN, the following options
should be included in GLOBDEFS to be used in all compilations, and in
DEFINES if only for the debug compilation. NO_BOOLEAN should be set in
CC and CCDEBUG as it depends on the compiler.

The following preprocessor defines apply:

APPEND_CHARS: Append sr random characters at the end of the
sequence. Otherwise, no characters are added.

DEBUG: Include some debugging information and commands.

NDEBUG: Turn off assert(3) and some other debugging aids.

INCLUDE_STDOUT: Output very verbose information about the se-

quencing process.

DEALLOCATE_ALL: Deallocate all memory at the end of the program,
instead of trusting the operating system to do this.

NO_BOOLEAN: Define a boolean data type, for compilers that do not
have one (such as the Sun Workshop 4.2 compiler).
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Bugs:  The lookup function does not exist, and has instead been inlined by

hand.

The implementation of LOOKUP takes time O(kft); this makes the
algorithm be quadratic-time, when it should be linear-time. Using a
trie would take O(k) time.

6.3 tester.pl

Usage: tester.pl [opts] <k> <s> <mlow>:<mhigh> <iter>
Run gap on uniformly distributed random sequences of varying lengths,
from m = mlow to m = mhigh. iter sequences are generated for
each length. Uses an (s,7) chip where r = k — s. Leaves output
in file “output.k s mlow:mhigh iter.” The run is stopped if the
algorithm recognizes too few sequences, or when the sequence length
exceeds mhigh.

Options: -q: Send no output to stdout. Otherwise, a new line of output is
printed when m is increased.

-m: Send mail when the job is finished.

-I: Increase m linearly by the step value rather than exponen-
tially.

-s step: Specify the step value. Default is 1.1 for exponential growth,
10 for linear growth.

-d pct: Die if the success rate falls below pct. Default is 50%.

-x h: Specify the parameter to the extended algorithm, h. Default
is 2¢; 0 disables the extended algorithm.

-o file: Write output to file instead of to output.k.s.h.mlow.mhigh.iter

Examples: tester.pl -qm -s1.05 -d88 8 3 50:50000 1000
Uses a (3,5) chip on sequences of length 50 and higher, increasing in
length by 5% until the success rate falls below 88% — that is, until
fewer than 880 of the 1000 sequences of a given length cannot be re-
constructed. The run will also stop if we exceed 50000 bases in length
(but that will almost certainly not happen). h is the default of 2¢.

tester.pl -x0 -d0 -1 -s1 7 4 30:1000 100
Uses a (4, 3) chip on sequences of every length from 30 to 1000. The
basic algorithm is used, since h = 0.

Output: The output is intended to be used as input to a later script, such as
splitfiles, rather than to be read by a human operator. There is one
line for each m run. The format is a colon-separated list, with the

following fields:
1. s
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r
m

Number of sequences of length m

Number correctly reconstructed

Percent correctly reconstructed (that is, 100%[4]/[5])

Number of failures Followed by r + 1 fields, where field ¢ is the
number of times we did exactly ¢ shifts when extending.

=~ O Ot = W N

6.4 real_dna.pl

Usage:

Options:

real_dna.pl [opts] <file> <min> <max> <s> <r>

Run gap on real sequences of varying lengths, from m = min to
m = maz. The real sequences are non-overlapping substrings of
the string held in file. Uses an (s,r) chip. Leaves output in file
“file.min:max.s.r.” The run is stopped if the algorithm recognizes
too few sequences, or when the sequence length exceeds max. The file
is assumed to have been encoded using comp_dna.

-m: Send mail when the job is finished.

-s step: Specify the step value. Default is 1.1 for exponential growth,
10 for linear growth.

-d pct: Die if the success rate falls below pct. Default is 50%.

Examples: real dna.pl -m -s1.05 -d88 sequences/ecoli.cmp 50 50000 3

Output:

Bugs:

Uses a (3,5) chip on sequences of length 50 and higher, increasing in
length by 5% until the success rate falls below 88%. The run will also
stop if we exceed 50000 bases in length (but that will almost certainly
not happen).

The output is similar but slightly different from that of tester.pl.
Use split.real instead of splitfiles. There is one line for each m
run. The format is a colon-separated list, with the following fields:

m

. Number of sequences of length m

Number correctly reconstructed

. Percent correctly reconstructed (that is, 100*[4]/[5])

. Time spent (in seconds) Followed by r + 1 fields, where field ¢ is
the number of times we did exactly ¢ shifts when extending.

O o= W N =

There is no error field in the output; this field should be added for
completeness.

It seems the last line has its  + 1 shift-counting fields cut out.

There are other problems with the shift-counting fields.
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6.5 my_seqgen

Usage:

Options:

Example:

Notes:

my_seqgen [probabilities] <m> <iter> [seed]

Randomly generates tter sequences each of length m, in the format
used by gap. By default, the distribution is uniform, but each base
can be given a different probability if needed. The random number
generator is random(3); the seed is by default time xor pid, but can be
specified by the user.

-x prob: Set the probability (in percent) of getting the base ‘@’ to prob,
where © € a,c, g,t. The probability of multiple bases can be
set; those of any unmentioned base are set to be equal, and
such that the sum of the probabilities is 100%. prob can be
neither negative nor greater than 100%.

my_seqgen 3241 1000
Generates 1000 sequences each of length 3241. The data is uniformly
distributed.

my_seqgen —a40 3241 1000
Generates 1000 sequences each of length 3241. The probability of
generating ‘a’ is 40%, while those of ‘c’, ‘g’, and ‘t” are 20% each.

Pevznar and Belyi [1] included with their sbhpack package a similar
program called seqgen. It provides more functionality, but it has a race
condition which shows up when running in a distributed environment:
occasionally, it falls into an infinite loop.

6.6 basecount

Usage:

Example:

Bugs:

basecount <n> <file>
Reads a file and outputs the n-symbol entropy. The file is assumed to
have been compressed by comp_dna.

basecount 7 ecoli.cmp
Outputs the 7-symbol entropy of the E. coli genome.

The dictionary used is direct-mapped. Therefore, the amount of mem-
ory used by the program is O(4"). In addition, the n-grams must fit
within an int; each nucleotide is 2 bits, so with a 32-bit int, n < 16.
Finally, the program assumes we are on a big-endian machine.

6.7 comp_dna, dcomp_dna

Usage:

comp_dna <fna-file>

Compresses the FNA-format file by representing each nucleotide by
only 2 bits rather than 8. Any characters not in [acgt] are ignored.
The compressed file is output to stdout; this should be redirected to a
file.
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dcomp_dna <cmp-file>

Decompressed the file to stdout. The output is simply a long string of
characters in [ACGT]; there is no whitespace, or any other characters.
This is suitable e.g. as input to proc_dna.

Example: comp_dna haemo.fna < haemo.cmp
Compresses haemo.fna into haemo.cmp. The file size should fall to
about a quarter. However, we will get warnings that haemo.fna con-
tains characters not in [acgt]; these are simply ignored.

dcomp_dna haemo.cmp | proc.dna - 1000 Uncompresses haemo.cmp
and splits it into fragments of length 1000 (using proc.dna).

File format: The input format is:

1. 1-line comment (this is a bug: we should allow any number of
comment-lines, each starting with a greater-than character).

2. list of nucleotides, in ASCII. Whitespace is allowed. Characters
not in {A,C,G, T} are allowed, to denote as-yet undetermined
nucleotides.

The file format is:

1. 4-byte magic cookie (big-endian): { Oxac, ‘g’, ‘t’, ‘\n’ }
2. 1-line (until new-line, or up to 256 bytes) comment
3. list of 2-bit nucleotides, {a,c,g,1} — {0,1,2,3}

Note the file is a whole number of bytes long; if we do not have a
multiple of four nucleotides in the file, then the file will end with several
‘a’ characters.

Installation: comp_dna and dcomp.dna are actually one and the same. If the pro-
gram is invoked as dcomp_dna, the file argument is decompressed; other-
wise, it is compressed. To do this, simply create a link from dcomp_dna
to comp_dna:

In -s comp_dna dcomp_dna

6.8 dna_loop.pl

Usage: dna_loop.pl [opts] <file> <ki> [<k2> ...]
Wraps around real dna.pl. Sets up to run all combinations of (s,r)
chips (except s = 1) for each value of k. m starts at (r + 1)(s + 1)
and ends at 50000. File is assumed to be compressed using comp.dna.
No action is actually taken, except to print out the list of commands
which would actually run all the tests. This can be redirected to a file
to be run later.

Options: Options are exactly those of real dna and are passed on without being
interpreted.
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Example:

dna_loop.pl -s1.05 ecoli.cmp 9 | sh
Runs a test of sequencing FE. coli using chips with & = 9, and increasing
the fragment length by 5% per point.

dna loop.pl -s1.05 -d90 -m ecoli.cmp 8 9 10 | prun -

Uses prun to schedule a test of E. coli using chips with & = §, 9,
and 10, increasing the fragment length by 5%, and stopping when the
recognition rate falls below 90%. Mail is sent when a job (all tests for
a particular (s,r) chip) is done.

6.9 interp, interp.words

Usage:

Example:

6.10
Usage:

Options:

Example:

interp or interp.words

Interprets the output of gap. interp prints out a line of output in
colon-separated format: total number of sequences, number correct,
percentage correct, and number of failures. interp.words prints out
about the same information, in more easily readable format.

my_seqgen 500 500 | gap 3 4 - | interp.words

Run gap over 500 random sequences of 500 nucleotides each, using a
(3,4) chip; use interp to tell us how many of them it correctly se-
quenced.

printtable.pl

printtable.pl [opts] <filel> [<file2> ...]

Prints one row of a table, suitable for inclusion in a KTEX document.
Each file contributes one column. The table contains the value of m
in each file which was the first time at which the success rate fell be-
low 95%. The files are assumed to be in the format of the output of
real dna.pl, although other colon-separated formats can be accommo-

dated.
d pct:  Use pet rather than 95% as the threshold.

m index: Use index for the index of the field whose value is m. The
fields must be colon-separated. The index number is 0-based.

s index: Use index for the index of the field whose value is the success
rate. The fields must be colon-separated. The index number

is 0-based.

printtable.pl -m2 -s5 output.7*
Print a table with one column per value of s and r, for k = 7 using the
output format of tester.pl.

printtable.pl -d90 haemo.cmp.*

Print a table with one column per value of s and r, for all chips tested
using real dna.pl on H. influenzae. This row corresponds to the value
of m at which less than 90% of the sequences were successfully recon-
structed.
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6.11 proc_dna

Usage: proc_dna <file> <m>
Splits an input file into multiple sequences each of length m. The
output is in the format gap expects.

Example: dcomp_dna ecoli.cmp | proc_dna - 1000

Splits the E. coli genome into about 4500 sequences, each of length
1000.

6.12 display_graph

Usage: display_graph <file>
Displays the file using gv -landscape, which it forks into the back-
ground.

Example: display_graph output.8.ps

6.13 listall

Usage: 1listall <k> [<k2> ...]
List all files output.s.r where s +r = k.

Options: i name: Specify a name other than “output”.

Example: tar cf all9.tar ‘listall 9°
Creates a tar archive of all files created by splitfiles, with & = 9.

6.14 plotall

Usage: plotall [options] <k> [<k2> ...]
Generates plots for the data in postscript format.
Options: i name: specify name to include (default ’output’)
n file: don’t run gnuplot; store the commands in file
o name: specify output name
t title:  specify the plot title
x range: specify a range (don’t include brackets)

y range: same as above, for y coordinate

b: label the graph
c: output to color postscript (rather than B/W)
e: output to eps; uses .eps extension rather than .ps
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Examples: plotall -cb -y90:100 -ihaemo 8

Bugs:

6.15
Usage:

Generates a color plot for the & = 8 run of H. influenzae. The plot
will only include data with a success rate of 90% or above; there will
be labels on each curve at the last point before the curve falls outside
of the graph.

plotall -b -o'[lpr" 9

Generates a plot for the ¥ = 9 run of uniformly distributed data,
including labels on the curves. The plot is immediately printed.

plotall -be —-t" " -y90:100 -n uniform.h0 7 8 9 10

Write a file uniform.h0 containing the gnuplot commands to generate
plots “output.7.eps” and so on in eps format. These will have labels
on the curves; the title is blank; the success rate is at least 90%. We
can then modify 9. gnu to change, for example, the precise locations of
the labels. The easiest way to generate the graphs is to run gnuplot
< 9.gnu; we can also, within gnuplot, do load ’uniform.h0’.

There is no way to specify we don’t want a title.

The -o option only applies either if it’s a pipe to some other program,
or if we’re plotting only a single value of k.

After specifying the y axis, the z axis should be made to be only large
enough to fit the data.

Labels are put at the last point at which the curve has not yet dropped
below the y axis. However, they do not take account of the z axis.

rmall

listall <k> [<k2> ...]
Remove all files output.s.r where s + » = k. Such files are created
by splitfiles.

Options: i name: Specify a name other than output.

Example: rmall -iecoli 8 9 10

6.16
Usage:

Remove all files related to E. coli, with k = 8, 9, or 10.

sortall

listall <k> [<k2> ...]
Sort all files output.s.r where s + r = k. Such files are created by
splitfiles. Useful as the last step before using plotall.

Options: i name: Specify a name other than output.

Example: sortall -ihaemo 9

Sort all files related to H. influenzae, k = 9.
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6.17
Usage:

Example:

6.18
Usage:

Example:

6.19
Usage:

Example:

split_extend

split_extend <files>

Splits the shift counts of the given files into distinct files. A directory
should exist for each shift value. Files are deposited in those directories
with name o.s.r, where s and r are taken from the input files. The
output is assumed to be that of tester.pl.

split_extend ../output.*
Splits all output files of tester.pl.

split_real

split_real <filel> [<file2> ...]
Splits files which are the output of real dna.pl into input for plotall
et al. The filenames are assumed to be in the form <name>.*.s.r

split_real haemo.cmp.*
Splits all of the files output from running real_ dna.pl on the H. in-
fluenzae sequence into files haemo.8.0 and so on.

splitfiles

splitfiles <field> <list of files>

Splits the files listed into a format appropriate for plotall (and gnuplot).
Will produce files called “output.s.r” (varying s and r), with lines of
form m value where value is taken from the specified field.

The input format is colon-separated, starting with s:r:m

The field number is 0-based (s is field 0)

splitfiles 5 ../output.8*

Splits all the files output by tester.pl, with £ = 8. Field 5 in those
files is the percent success rate, so plotall 8 after this will plot the
success rate of the last run of k& = 8. Note the output may not be
sorted; use sortall.
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7

Further Work

Some of the work that remains to be done has been alluded to already. These
are some possible directions for further work.

e The algorithm code should be made to comply to the division of labour
as outlined in the algorithm section. Currently, LoOOKUP is only implicitly
implemented. This would make it easier to reimplement LOOKUP as a
lookup in a trie rather than in a hash table.

e Throughout this work, we have assumed perfect hybridization. In practice,
some errors occur; in fact, this has been a problem with previous SBH
schemes. The behavior of the algorithm with real sets of fired probes

should be studied.

e Some of the graphs have unexplained characteristics. For instance, the
graphs of success rates for some of the real data look rather linear, unlike
those for random data. Similarly with the spikes in the graphs of calls to
LooKUP in skewed data.
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