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An Experimental Study of SBH withGapped Probes �Benô�t HudsonApril 20, 1999AbstractSequencing by Hybridization (SBH) has been proposed as a means ofautomating the task of DNA sequencing. The original SBH proposal wasable to sequence DNA of length about 2k nucleotides with a cost O(4k) (inlinear time). Preparata and Upfal have recently proposed a new method,which was predicted to be able to sequence DNA of length O(4k), still fora cost O(4k). This work describes a simulation of the method developedto test the theoretical results.1 IntroductionSequencing by Hybridization was proposed independently by several researchteams (for an overview, see Pevzner and Lipshutz [5]). In these proposals, thetarget DNA is replicated and presented to a so-called chip which contains allstrings of DNA of k nucleotides; each of these fragments is termed a probe. Theprobes will hybridize to the target if a substring of the target is the Watson-Crick complement to the probe; the probes which do hybridize are said to have�red. From the set of �red probes, we know the set of overlapping substringsof the target. The problem of reconstructing these into the target sequence hasbeen well studied: the set of �red probes induces a graph, and reconstructingthe sequence corresponds to traveling an Eulerian tour of said graph.Using this method, sequences of length up to about 2k can be sequenced. Inpractice, k is usually 8 or 10 because of the physical limitations of putting 4kprobes on a chip. The technique can therefore be applied to DNA sequences upto 1000 nucleotides long; [4] gives a \realistic" limit of 600 nucleotides.Preparata, Frieze, and Upfal [6] describe a gapped chip which greatly out-performs the classical chip. In a gapped chip, the probes are made such thatonly one nucleotide can hybridize at some of the positions on the probe, whileat others, any of the four can hybridize. Thus, we have a probe where someof the bases are known, and others are \don't cares", or gaps. The chip usesgapped probes which have �rst s contiguous bases which we term the body,�This work was done under the supervision of Franco Preparata and Eli Upfal.1



acag...g...t...cFigure 1: Example (4; 3) probe.Dots are don't-cares.followed by r non-contiguous bases whichare separated by s�1 bases from each other,collectively termed the tail. Within thisfamily of chips, a chip is denoted as a (s; r)chip, and the cost parameter, k, is de�nedas k � s+r. Each probe is s+rs bases long,but only s+ r vary on the chip. Note that the (k; 0) chip and the (1; k�1) chipare identical to the classical chip C(k).The cost of this chip remainsO(4k): each probe is longer than in the classicalchip, but there are exactly as many as before. The advantage of this methodbecomes evident when we consider the reconstruction algorithm. At the highestlevel of abstraction, the algorithm starts with a certain substring of the sequence,and tries to extend it by one character at a time, until it has reached the endof the sequence. In doing this with a classical probing scheme, we span k � 1characters of the known substring to �nd the next character: we have no probeswhich span the new character and any part of the string before that. With an(s; r) probing scheme, we span t � s + rs � 1 nucleotides. Although no singleprobe covers that many bases (in fact, each covers at most k� 1 known bases),we can use all the information by using several probes at once. This increasedpower allows us to apply the technique to sequences asymptoticallyO(4k) baseslong.1.1 OverviewThis paper describes an implementation of the algorithm, a simulation package,and experimental results. First, in section 2, we outline the reconstructionalgorithm and provide extensive pseudo-code. Sections 3 and 4 describe theimplementation of the simulation. Section 5 documents some of the resultsgotten using the simulation package. Finally, section 6 o�ers user manuals forall programs in the simulation package.
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2 Reconstruction AlgorithmThe reconstruction algorithm for the Preparata-Upfal technique is quite simplein concept. Unlike in the case of classical chips, which cleverly translates theproblem to the graph traversal domain, we remain in the text processing domain.The main loop of the algorithm simply takes a leading known substring of thetarget sequence, and extends it by one character. This is done until it becomesimpossible to extend it anymore, at which point success is declared. It may alsobe the case that there is more than one character with which we can extend; ifso, the algorithm fails and the sequence is said to be ambiguous (since it is notunambiguously reconstructible). Almost all of the complexity of the algorithmlies in trying to reduce the number of possible extensions.To extend a given known substring, we consider the �nal t-gram of the string.A probe is said to extend the string if it matches the �rst s characters of thet-gram in all s characters of its body, and every sth character thereafter by thecorresponding character of its tail. The last character of the tail is the extensioncharacter, since it is just beyond the known part of the string, and may indeedbe the character which extends the known substring by one base. If there isonly one such probe, then we know exactly which character is the only onewhich extends our substring. If there is no such probe, then we know we havereached the end. A diÆculty arises if there are multiple such probes, each witha di�erent possible extension character.
            tacX...c...t...g

acggaactcggttacX
acgg...t...t...X
    aact...t...X...c
        cggt...X...c...tFigure 2: In a (4; 3) probe, four probescan be used to check the extension char-acter, denoted here by `X'; the four probesmatch appropriate characters in the t-gram at top, as well as appropriate char-acters in the other probes. Dots are don't-cares.

To handle this possibility, we\shift" the probes. A probe extendsthe string with shift (or o�set) i ifthe �rst s characters of the bodymatch the s characters starting ato�set si in the t-gram, and an ap-propriate number of the tail char-acters match corresponding charac-ters in the t-gram; and further, thatthe characters of the tail which donot correspond to any characters inthe t-gram match a correspondingcharacter in some probe which ex-tends the string with o�set i � 1.The base case is o�set 0, whichcorresponds exactly to our previousde�nition of extension.There is a boundary condition we have to contend with at the start of se-quencing. The simulation results assume that we are given a primer|the �rstt-gram in the sequence. This can be achieved by prepending a known sequenceto the target before replicating it. Another option is to pick an arbitrary probe,and extend using only the body, until we have t contiguous characters. Thiswill often give several di�erent possibilities; we choose the one which yields thelongest sequence. 3



The simulation also appends randomly chosen characters at the end of the se-quence. This was necessary in a previous version in order to handle a boundarycondition at the end. The algorithm described here should not have that bound-ary condition; however, the simulation continues to attach an ending primer.Some testing should show whether it is still necessary; if so, there is probably abug in the simulation code (but probably not in the algorithm code).2.1 Pseudo-Code conventionsThe pseudo-code presented below mostly adheres to the conventions in [2]. Inparticular, all calls are by value: modifying a parameter or any part of the pa-rameter has no e�ect from the caller's point of view. All variables are local,except for the follwing global values: M , an array of sets of probes; s, r, and t,which retain their meanings in the discussion above; h, which will be de�ned insection 2.3; and P , the set of �red probes. We depart from the standard conven-tion in having 0-based arrays. This is largely an artefact of the implementationbeing in C++.M is an array M [0::r] of sets of probes; each Mi contains the probes whichextend the sequence with a shift i|they match with the t-gram in the body andthe appropriate number of characters of the tail, and match with some probe inMi�1.2.2 Pseudo-CodeSequence is the top-level algorithm. It simply proceeds by building a dic-tionary from the set of �red probes P , then repeatedly extending the knownsubstring, starting from the primer, until we can no longer extend.Sequence(P; primer)1 seq  primer2 Build-Dictionary(P )3 while GetExtension(seq) succeeds4 do e GetExtension(seq)5 seq  seq + e6 switch cause of failure7 case no extensions found :8 return seq9 case multiple possible extensions found :10 error \multiple extensions"GetExtension returns the single character which unambiguously extendsthe sequence, or an error if there was no such character.GetExtension(seq)1 i Fill-M(seq)2 if size[Mi] = 03 then return no extensions found4 else if UniqueExtension(i) 4



5 then return the extension character6 else return multiple extensions foundFill-M is where we do most of the work. Its output is the index of the arrayM of sets of �red probes.Fill-M(seq)1 tgram FinalTgram(seq)2 for i 0 to r3 do Mi  ;4 A Lookup(tgram; i)5 for each p 2 A6 do if CheckInM(p; i)7 then Mi  Mi [ p8 if size[Mi] � 1 or UniqueExtension(i)9 then . The extension character is unambiguously in Mi10 return i11 . The extension character is ambiguous12 return rUniqueExtension(i)1 . Return whether all probes in Mi have the same extension characterCheckInM returns whether the probe p matches at least one probe in Mi.CheckInM(p; i)1 if i = 02 then return true3 for each p0 2Mi�14 do if CheckP'(p; p0; i)5 then return true6 . If we are here, no pair p and p0 matched7 return falseCheckP' returns whether the probe p (in Mi�1) and p0 (in Mi) are com-patible.CheckP'(p; p0; i)1 if i < r2 then start (r � 1)� i3 else start 04 if body[p][s� 1] 6= tail[p0][0]5 then return false6 for j  start to r � 27 do if tail[p][j + 1] 6= tail[p0][j]8 then return false9 . If we got here, no characters were di�erent10 return true 5



Lookup returns all probes which match the t-gram with shift i. This isan extremely naive implementation; the simulation cuts down the number ofcomparisons needed dramatically by using a hashtable keyed on s�1 characters,then checking linearly the remaining characters. Much better could be done witha trie.Lookup(tgram; i)1 R ;2 for each p 2 P3 do . Check whether the body matches the t-gram4 for j  0 to s � 25 do if body[p][j] 6= tgram[si + j]6 then next p7 if i < r8 then if body[p][s� 1] 6= tgram[si + s � 1]9 then next p10 . Check whether the tail also matches11 for j = 0 to r � i � 212 do if tail[p][j] 6= tgram[si + 2s+ js � 1]13 then next p14 . Once here, we know p matches tgram in all positions15 R R [ p16 return R2.3 Extended AlgorithmThe original algorithm fails if, after r shifts, we still cannot disambiguate theextension character. When this situation occurs, we say that we have founda branching point; only one of the possible characters to append can be thecorrect one, and all other possibilities are spurious. Declaring failure in this caseis correct: there are now at least two possible reconstructions of the sequence|one which is correct, and the other which uses the spurious branch. Withoutany other a priori knowledge of the system, we cannot distinguish between thetwo possibilities.However, the probability that a spurious branch is longer than h > t char-acters long falls exponentially with h. Therefore, one heuristic which improvesthe performance of the algorithm is to try to extend using all of the possibleextensions, to a limit of h characters. We expect that only one of them (thecorrect branch) can be extended to that length, and that the spurious brancheswill die o� quickly. Only if more than one branch can be extended h charactersdo we declare failure. If h < t, then the extra work expended is wasted: we havefound extensions to exactly length t, so we know that all the possible extensionsare warranted to this length.The danger with this heuristic is that, in very rare cases, we return anincorrect sequence. In particular, if we are within h characters of the true endof the sequence when we �nd a branching point, and a spurious branch can6



be extended h characters, we will follow the spurious branch. When it ends,we will report the spurious path as the correct one. Another (even less likely)possibility is that we have a loop near the end. A loop occurs when we have at-gram which can be extended by two possibilities: one of them leads to the endof the sequence, and the other leads to an extension which eventually yields thesame t-gram again. If a loop occurs within the last h characters, the algorithmwill dismiss the ending as a spurious path, and will instead follow the loop. Thiswill happen in�nitely (or rather, until the machine runs out of resources).We take two measures to help reduce the probability of an error. If we arenear the end of a sequence, and we have a branching point, it is possible that noextension can reach h characters. In this case, we return that the extension wasambiguous. In the case of an in�nite loop, we declare failure if the length of thesequence exceeds the estimated length of the target. We can get, biochemically,an estimate within a certain error bound. This technique will work as long asthe estimate is an overestimate. In the simulation, we use an estimate of twicethe actual length.2.4 Pseudo-CodeThe extended algorithm only requires some minor changes to a few functions.The parameter h is assumed to have been set at the same time as the parameterss and r. The special case h = 0 is the original algorithm.GetExtension(seq)1 i Fill-M(seq)2 if size[M [i]] = 03 then return no extensions found4 else if UniqueExtension(i)5 then return the extension character6 else if h = 07 then return multiple extensions8 else best �9 for each extension c10 do if PeekForward(h; seq + c)11 then if best 6= �12 then best c13 else return multiple extensions14 if best = �15 then return multiple extensions16 return bestPeekForward takes the depth to which it is still allowed to extend, and aprimer of the last t�1 characters of the known substring, plus a possible exten-sion character. If we have extended past hleft characters, then this extensioncharacter is still a candidate; otherwise, it is to be eliminated from consideration.PeekForward(hleft; primer)1 seq  FinalTgram(primer) 7



2 while GetExtension(seq) succeeds and hleft > 03 do e GetExtension(seq)4 seq  seq + e5 hleft  hleft � 16 if hleft = 07 then return true8 else return falseSequence, �nally, has to take into account the possibility of an in�niteloop.Sequence(P; primer)1 seq  primer2 maxlen 2m . Use some overestimate of the length3 Build-Dictionary(P )4 while GetExtension(seq) succeeds5 do e GetExtension(seq)6 seq  seq + e7 if length[seq] > maxlen8 then error \in�nite loop"9 switch cause of failure10 case no extensions found :11 return seq12 case multiple possible extensions found :13 error \multiple extensions"
8



3 Simulation ArchitectureThe simulation is a suite of related programs. One set of programs preparesa sequence or a number of sequences to use to test the algorithm; one otherprogram|gap|implements both splitting the target into the set of �red probesand reconstructing the original sequence from the �red probes, and outputs someinformation regarding the success of the operation; a �nal set of programs inter-pret the data. See section 6 for speci�cs regarding the use of the programs. Thissection deals mainly with the implementation philosophy of the gap program andthe related scripts.The main program (gap) was written in C++, the other programs in eitherPerl or C.3.1 Overview of the program suiteThe programs my seqgen and proc dna both produce as output a list of se-quences in the format used in the simulation. my seqgen produces random se-quences, while proc dna splits a �le describing a long sequence into a set ofnon-overlapping sequences.The program gap implements the SBH scheme. It reads a �le containing aset of sequences, and attempts to sequence each one. Section 4 discusses theimplementation at greater length.Programs tester.pl and real dna.pl are scripts that generate sequences(randomly in the �rst case, from a �le describing real DNA in the second case),have gap attempt to sequence them, and interpret the success rate and someother statistics.Finally, a set of scripts in the graph directory interpret and plot the resultsfrom tester.pl and real dna.pl.3.2 Design philosophyThe design is intended to allow easily testing of very large numbers of sequenc-ing, in various con�gurations. The package is intended to be general enoughto support various analyses of the program and algorithm, and to allow addingextensions with relative ease.Internally, there is a very clear separation of the setup code and the algo-rithm code. The setup code simulates the SBH chip: it is presented the actualsequence, and gives the algorithm just the set of �red probes. Great care hasbeen taken to ensure the algorithm code does not \cheat," or use informationthat would not be available in a real implementation. In fact, the algorithm codeis intended to be usable with only very minor changes in a real implementationof the method. 9



4 Implementation detailsMost of the code for gap is well-documented. This section should serve as anintroduction to the organization of the code. It is split into two functionalobjects: the setup code, invoked from the mainline and entirely in main.C; andthe algorithm code, invoked from the setup code and entirely in the Algo class.In addition, we have four utility classes. One, Pattern, represents an (s; r)probe as two strings (one s characters long, the other r characters long). Bothsetup and algorithm code use this class to represent a �red probe. The othertwo, Hashtable and Array, provide data structures used in the program. Finally,SGramHash is a specialization of Hashtable, its hash function de�ned by the �rsts � 1 characters of the key Pattern.4.1 Setup CodeThe setup code deals with the work of reading in an input �le which contains aset of sequences. A sequence is represented as a string of characters in fa; c; g; tg.It immediately translates this to a string of bytes [0123], which simpli�es thehash functions for hash tables keyed by a probe; then appends t random bases.The translated sequence is then used to create an array of Patterns, taking carenot to allow duplicates. This array is passed on to the algorithm, along with acopy of the �rst t characters of the sequence (it is copied to reassure ourselvesthat the algorithm only uses the �rst t characters). Finally, h|the number ofcharacters by which to extend in the extended algorithm|is also passed along.By default, h = 2t, but the user can set it di�erently, notably to h = 0, whichdisables the extended algorithm. Having passed this information along, it letsthe algorithm run. Once the algorithm has �nished running, the setup codeoutputs some information which was collected during the run of the algorithm.Namely:� The length of the input.� The length of the output.� Whether the algorithm claims to have succeeded.� Whether its claim is correct|the sequence output by the algorithm isidentical to the one input to the program.� How many extensions took 0, 1, . . . , r shifts before they were resolved.4.2 Algorithm CodeThe algorithm code is responsible for implementing the algorithm, as describedin section 2. The code is in fact almost a transliteration, as the code andalgorithm were developed in parallel. It is in an object of its own, Algo, in orderto better encapsulate all of the algorithm, and disallow having the setup codeand algorithm code depend on each other excessively. As we have mentioned, the10



intent is to have the algorithm code work equally well whether in the simulationor in a real application.As input, Algo gets both the set of �red probes, and the initial t-gram. It alsogets a bu�er into which to write the sequence, merely for the sake of speeding upthe simulation: it could just as easily allocate itself its own bu�er, but dynamicmemory allocation was a performance bottleneck in the simulations.Note that the array gotten from the setup code is in fact in order of ap-pearance of the probes in the sequence. However, the algorithm does not usethis information. Similarly, the precise length is available, but the algorithmdoes not use it. To know whether we have fallen into an in�nite loop, however,we use an estimate of m. As implemented, that estimate is 2m, but any valuegreater than m could be used instead.The set of �red probes is put into a dictionary to �nd appropriate probesin FillM. In this implementation, we use hashtables keyed by the �rst s � 1characters of the body. We only use s�1 characters because of the need to shift:after r shifts, the extension character is the last character of the body. Thisforces us, when we know more characters, to do a linear scan over the probeswhich match the �rst s � 1 characters and eliminate those that do not matchfurther characters. Ideally, we would use a dictionary which allows searching bya variable-length key such as a trie. The limitation of using only s�1 charactersis most clear when s = 1; here, the hashtable degenerates to a linked list.We then proceed to the main loop of the algorithm, extending the initialgiven t-gram one character at a time. We also do the additional step of keepingtrack of how many shifts each extension required. The algorithm implementedis the extended one, although this is disabled if h (named peekLimit in thecode) is set to 0.Having run the algorithm, we set a few variables relating which can be usedto see if the algorithm failed, what the sequence it output was, and so on.4.3 Other ProgramsTo prepare input for gap, either my seqgen or proc dna is used. The former(whose name is modi�ed from the more 
exible program seqgen by Belyi andPevzner [1]) prepares a random sequence, while the latter takes a given, longsequence and cuts it into non-overlapping substrings of a given length; it is usedto process real DNA.The output is interpreted in a rudimentary fashion by interp. More usefulare the scripts tester.pl and real dna.pl which feed gap ever-larger sequences,and collect statistics for each sequence length they tried to have gap reconstruct.These can then be used by the graph suite of scripts to output the graphs shownin the following section. 11



5 Experimental ResultsSeveral tests were run using the simulation package to gauge the value of themethod and check that the theoretical results were borne out in practice. Someof the data were acquired using randomly generated DNA, others using realDNA. This section describes the results from these tests. Two main quantitieswere measured: the probability of successfully sequencing DNA of a given length(that is, the quality of the method), and the number of shifts done when se-quencing that DNA (that is, the time cost of the method). The former quantityis the most important metric for the quality of this sequencing method, sincethe processing time is fairly small: from milliseconds to about half a minute ona desktop PC.5.1 Data AcquisitionThe data points for these graphs are generated by setting m to a given value,generating a number of sequences of length m, and calculating what percentageof the sequences were correctly reconstructed by the algorithm. The curveshave points at exponentially (base 1.05) increasing m: they start at m = 40and increase m by 5% per point. The exceptions are some of the classical chipexamples, where they start at m = 20, and �gure 8 b, where the step value is1% per point.The results obviously depend on several parameters in addition to the se-quence length m: namely, s, r, and h. They also depend on the sequence itself:the analysis of the algorithm is a probabilistic one, and some sequences will beharder or impossible to sequence with a given chip.The randomly generated DNA is generated using my seqgen. Each data pointis 1,000 sequences, except the k = 10 graphs, where each data point is only 250sequences. The \uniform" data set has the distribution of each base be uniform;the \skewed" data set has the probability of a being 0.4, and that of the otherthree bases each 0.2. Both data sets were regenerated for each data point,separately for each graph.The real DNA is taken from the National Center for Biotechnology Informa-tion genome data bank [3]. Sequences were gotten for the bacteria Escherichiacoli, Haemophilus in
uenzae, andMethanobacterium thermoautotrophicum. Theseare respectively 4.5, 1.8, and 1.7 million bases long. These data were split intonon-overlapping substrings of the given length; the number of sequences there-fore varies according to the sequence length. Note that in the H. in
uenzaegenome, some of the bases were not yet known, and denoted by letters otherthan fa; c; g; tg. In the processing which split the sequences, these unknownbases were ignored.5.2 Probability of SuccessThe graphs in this section describe the probability that a given chip will succeedin sequencing the target DNA. The goal is to discuss the tradeo� of cost (chip12



size) to quality (success probability). The cost is assumed to be O(4k)|that is,the chip area depends only on the number of probes.Each graph is for a given value of k and h, and given data set (uniform,skewed, or real). Each curve on each graph is for a given (s; r). Note that the(k; 0) and (1; k� 1) chips are identical (they both are the Ck classical chip), soonly the (k; 0) chip is displayed on these graphs. The top �gure has h = 0; thebottom has h = 2t.The graphs (�gures 4 to 23) make it clear that the algorithm does in prac-tice almost exactly as well as had been theoretically expected for uniformlydistributed data; �gure 3 is especially striking in that perspective. However,they also make it abundantly clear that real DNA is not uniformly distributed,as the curves for real DNA far below those for random DNA. Still, this tech-nique does several orders of magnitude better than previous techniques. Withk = 8, the classical chips claimed to be able to sequence length of up to about600. The new method can get that far on real DNA with k = 7.Note that in the k = 7 examples, some of the classical chip curves do notshow up, because already at m = 40, the success rate is below 90%. This is thereason some of the classical chips were run starting at m = 20.
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Figure 7: uniformly distributed data, k = 10. For the top �gure, h = 0; for thebottom, h = 2t.17
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Figure 8: skewed data, k = 7. For the top �gure, h = 0; for the bottom,h = 2t.18
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Figure 9: skewed data, k = 8. For the top �gure, h = 0; for the bottom,h = 2t.19
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Figure 10: skewed data, k = 9. For the top �gure, h = 0; for the bottom,h = 2t.20
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Figure 11: skewed data, k = 10. For the top �gure, h = 0; for the bottom,h = 2t.21
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Figure 12: M. thermoautotrophicum data, k = 7. For the top �gure, h = 0; forthe bottom, h = 2t.22
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Figure 13: M. thermoautotrophicum data, k = 8. For the top �gure, h = 0; forthe bottom, h = 2t.23
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Figure 14: M. thermoautotrophicum data, k = 9. For the top �gure, h = 0; forthe bottom, h = 2t.24
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Figure 15: M. thermoautotrophicum data, k = 10. For the top �gure, h = 0;for the bottom, h = 2t.25
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Figure 16: H. in
uenzae data, k = 7. For the top �gure, h = 0; for thebottom, h = 2t.26
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Figure 17: H. in
uenzae data, k = 8. For the top �gure, h = 0; for thebottom, h = 2t.27
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Figure 18: H. in
uenzae data, k = 9. For the top �gure, h = 0; for thebottom, h = 2t.28
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Figure 19: H. in
uenzae data, k = 10. For the top �gure, h = 0; for thebottom, h = 2t.29
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Figure 20: E. coli data, k = 7. For the top �gure, h = 0; for the bottom,h = 2t.30
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Figure 21: E. coli data, k = 8. For the top �gure, h = 0; for the bottom,h = 2t.31
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Figure 22: E. coli data, k = 9. For the top �gure, h = 0; for the bottom,h = 2t.32
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Figure 23: E. coli data, k = 10. For the top �gure, h = 0; for the bottom,h = 2t.33



5.3 Number of extensionsAnother metric was the number of shifts needed to disambiguate the extensioncharacter. This serves as a metric for the computation time cost of the method.Each shift requires a call to Lookup, and some calls to CheckInM and soon. The cost model is that an extension that required i shifts costs i + 1 time;in the extended algorithm, we count what would have been a failure in thebasic algorithm as r shifts, and also add the number of shifts in each branch wefollowed thereafter.The same sets of DNA were used as in the previous metric; indeed, thedata were acquired at the same time as those used in the success rate metricwere acquired. Each call to FillM generated one count, of a shift of i (thereturn value). Since FillM is called recursively in the extended algorithm, thiscorrectly counts the total number of shifts. Unfortunately, only the randomlygenerated data is available, as real dna.pl does not give trustworthy results forthe number of shifts. The graphs which do not have this property were limitedto success rates only as low as 90%.This metric indicates that the number of extensions grows about linearlywith sequence length, for reasonable values of m. The h = 2t cases grow slightlyfaster than linearly, which would be accounted for by the cost of extendingmultiple possibilities. With the O(k+n) implementation of Lookup, and withn (the number of probes found) typically small, this implies that the algorithmruns in linear time|at least in most useful cases. With the implementation inthe simulation, Lookup is O(k m4s�1 ), so the algorithm runs in quadratic time.The spikes apparent on the skewed data set are puzzling. The height isindicated on the graphs when they are clipped. Note they only occur on theh = 2t cases, and when k is small (the most dramatic is k = 7, while k = 10 issmooth).
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Figure 24: uniformly distributed data, k = 7. For the top �gure, h = 0; for thebottom, h = 2t.35
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Figure 25: uniformly distributed data, k = 8. For the top �gure, h = 0; for thebottom, h = 2t.36
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Figure 26: uniformly distributed data, k = 9. For the top �gure, h = 0; for thebottom, h = 2t.37
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Figure 27: uniformly distributed data, k = 10. For the top �gure, h = 0; forthe bottom, h = 2t.38
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Figure 28: skewed data, k = 7. For the top �gure, h = 0; for the bottom,h = 2t.39
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Figure 29: skewed data, k = 8. For the top �gure, h = 0; for the bottom,h = 2t.40
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Figure 30: skewed data, k = 9. For the top �gure, h = 0; for the bottom,h = 2t.41
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Figure 31: skewed data, k = 10. For the top �gure, h = 0; for the bottom,h = 2t.42



90

92

94

96

98

100

0 200 400 600 800 1000 1200 1400

se
qu

en
ce

s 
co

rr
ec

tly
 r

ec
on

st
ru

ct
ed

 (
%

)

sequence length (bases)

h=0

h=15
h=16

h=30h=45

h=60

h=150

h=200

h=0
h=15
h=16
h=30
h=45
h=60

h=150
h=200
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6 User ManualsThis section o�ers user manuals for all programs in the software package. Theprograms are in C/C++, Perl, Awk, or sh. A make�le is provided which shouldallow compiling the C and C++ programs on any platform with GNU make andthe GNU C/C++ compiler. It has been tested on Linux 2.0.31 and Solaris 2.6.The scripts may need to have an updated path for Perl or Awk, but otherwiseshould be platform-independent.6.1 CompilingThe make�le provided with the package automates compilation of the programswritten in C and C++. Currently, the compiler used is gcc. This can easily bechanged by modifying the CCDEBUG, CC, FASTOPTS, and PROFOPTS lines; there aresample such lines for egcc and CC (the Sun Workshop compiler).Most of the make�le is applicable to gap, as the other programs are all verysimple (a single �le).The make�le has the following targets:all: Default; compile a version with debugging information into gap.new.The de�nes APPEND CHARS, DEBUG, and DEALLOCATE ALL are turned on.opt: Optimized build. Use the 
ags which yield the fastest executable.Note the Sun Workshop compiler yields much faster code than doesgcc. The de�ne NDEBUG is on.prof: Pro�led build. Include the compiler 
ags to collect pro�ling informa-tion. The optimization 
ags are also on, so that the pro�le is that ofthe optimized build.clean: Remove temporary object �les created during the compilation.backup: Create a backup of the current source code. The backup �le is in thebackups directory, with a name corresponding to the current time.depend: Discover the dependencies using makedepend(1).6.2 gapUsage: gap [-x <h>] <s> <r> <file>Takes as input a sequence, and simulates trying to sequence it usingan (s; r) gapped chip.Input: The input format is a standard ASCII text �le. Each sequence isbracketed by the lines \ORIGIN" and \//". There can be multiplesequences in a single �le. A sequence consists of characters in [acgt]or [0123] (that is, ASCII 0x30 through 0x33). Whitespace (as denotedby isspace(3)) is ignored; characters outside of the admissible set ofcharacters are translated to `a.'44



Output: The output format is one line per input sequence, where each line is acolon-separated list of �elds. The �elds are as follows:1. length of the input (m)2. 1 if the algorithm's output matches the program's input, 0 oth-erwise3. 1 if the algorithm reported a failure, 0 otherwise.This is followed by r + 1 �elds, where �eld i denotes the number oftimes an extension required exactly i shifts (r if we had to invoke theextended algorithm).For example, a line 300:1:0:277:14:3:0:1 means we were trying tosequence a 300-base sequence, that we succeeded, and that we invokedthe extended algorithm once. A line 2000:0:1:1110:369:154:83:86means that we failed to sequence a 2000-base sequence, and that thealgorithm noticed this.Options: -x h: Specify the parameter h to the extended algorithm. The de-fault is 2t.Examples: gap 4 6 -Reads input from stdin, sequences it using a (4; 6) chip.gap -x0 3 4 testReads input from test, sequences it using a (3; 4) chip using the basicalgorithm.Compiling: See section 6.1 for information about compiling the package using themake�le. In the make�le, except for NO BOOLEAN, the following optionsshould be included in GLOBDEFS to be used in all compilations, and inDEFINES if only for the debug compilation. NO BOOLEAN should be set inCC and CCDEBUG as it depends on the compiler.The following preprocessor de�nes apply:APPEND CHARS: Append sr random characters at the end of thesequence. Otherwise, no characters are added.DEBUG: Include some debugging information and commands.NDEBUG: Turn o� assert(3) and some other debugging aids.INCLUDE STDOUT: Output very verbose information about the se-quencing process.DEALLOCATE ALL: Deallocate all memory at the end of the program,instead of trusting the operating system to do this.NO BOOLEAN: De�ne a boolean data type, for compilers that do nothave one (such as the Sun Workshop 4.2 compiler).45



Bugs: The lookup function does not exist, and has instead been inlined byhand.The implementation of Lookup takes time O(km4s ); this makes thealgorithm be quadratic-time, when it should be linear-time. Using atrie would take O(k) time.6.3 tester.plUsage: tester.pl [opts] <k> <s> <mlow>:<mhigh> <iter>Run gap on uniformly distributed random sequences of varying lengths,from m = mlow to m = mhigh. iter sequences are generated foreach length. Uses an (s; r) chip where r = k � s. Leaves outputin �le \output.k s mlow:mhigh iter." The run is stopped if thealgorithm recognizes too few sequences, or when the sequence lengthexceeds mhigh.Options: -q: Send no output to stdout. Otherwise, a new line of output isprinted when m is increased.-m: Send mail when the job is �nished.-l: Increase m linearly by the step value rather than exponen-tially.-s step: Specify the step value. Default is 1.1 for exponential growth,10 for linear growth.-d pct: Die if the success rate falls below pct. Default is 50%.-x h: Specify the parameter to the extended algorithm, h. Defaultis 2t; 0 disables the extended algorithm.-o file: Write output to file instead of to output.k.s.h.mlow.mhigh.iterExamples: tester.pl -qm -s1.05 -d88 8 3 50:50000 1000Uses a (3; 5) chip on sequences of length 50 and higher, increasing inlength by 5% until the success rate falls below 88% { that is, untilfewer than 880 of the 1000 sequences of a given length cannot be re-constructed. The run will also stop if we exceed 50000 bases in length(but that will almost certainly not happen). h is the default of 2t.tester.pl -x0 -d0 -l -s1 7 4 30:1000 100Uses a (4; 3) chip on sequences of every length from 30 to 1000. Thebasic algorithm is used, since h = 0.Output: The output is intended to be used as input to a later script, such assplitfiles, rather than to be read by a human operator. There is oneline for each m run. The format is a colon-separated list, with thefollowing �elds:1. s 46



2. r3. m4. Number of sequences of length m5. Number correctly reconstructed6. Percent correctly reconstructed (that is, 100*[4]/[5])7. Number of failures Followed by r + 1 �elds, where �eld i is thenumber of times we did exactly i shifts when extending.6.4 real dna.plUsage: real_dna.pl [opts] <file> <min> <max> <s> <r>Run gap on real sequences of varying lengths, from m = min tom = max. The real sequences are non-overlapping substrings ofthe string held in file. Uses an (s; r) chip. Leaves output in �le\file.min:max.s.r." The run is stopped if the algorithm recognizestoo few sequences, or when the sequence length exceeds max. The �leis assumed to have been encoded using comp dna.Options: -m: Send mail when the job is �nished.-s step: Specify the step value. Default is 1.1 for exponential growth,10 for linear growth.-d pct: Die if the success rate falls below pct. Default is 50%.Examples: real dna.pl -m -s1.05 -d88 sequences/ecoli.cmp 50 50000 3 5Uses a (3; 5) chip on sequences of length 50 and higher, increasing inlength by 5% until the success rate falls below 88%. The run will alsostop if we exceed 50000 bases in length (but that will almost certainlynot happen).Output: The output is similar but slightly di�erent from that of tester.pl.Use split real instead of splitfiles. There is one line for each mrun. The format is a colon-separated list, with the following �elds:1. m2. Number of sequences of length m3. Number correctly reconstructed4. Percent correctly reconstructed (that is, 100*[4]/[5])5. Time spent (in seconds) Followed by r + 1 �elds, where �eld i isthe number of times we did exactly i shifts when extending.Bugs: There is no error �eld in the output; this �eld should be added forcompleteness.It seems the last line has its r + 1 shift-counting �elds cut out.There are other problems with the shift-counting �elds.47



6.5 my seqgenUsage: my_seqgen [probabilities] <m> <iter> [seed]Randomly generates iter sequences each of length m, in the formatused by gap. By default, the distribution is uniform, but each basecan be given a di�erent probability if needed. The random numbergenerator is random(3); the seed is by default time xor pid, but can bespeci�ed by the user.Options: -x prob: Set the probability (in percent) of getting the base `x' to prob,where x 2 a; c; g; t. The probability of multiple bases can beset; those of any unmentioned base are set to be equal, andsuch that the sum of the probabilities is 100%. prob can beneither negative nor greater than 100%.Example: my seqgen 3241 1000Generates 1000 sequences each of length 3241. The data is uniformlydistributed.my seqgen -a40 3241 1000Generates 1000 sequences each of length 3241. The probability ofgenerating `a' is 40%, while those of `c', `g', and `t' are 20% each.Notes: Pevznar and Belyi [1] included with their sbhpack package a similarprogram called seqgen. It provides more functionality, but it has a racecondition which shows up when running in a distributed environment:occasionally, it falls into an in�nite loop.6.6 basecountUsage: basecount <n> <file>Reads a �le and outputs the n-symbol entropy. The �le is assumed tohave been compressed by comp dna.Example: basecount 7 ecoli.cmpOutputs the 7-symbol entropy of the E. coli genome.Bugs: The dictionary used is direct-mapped. Therefore, the amount of mem-ory used by the program is O(4n). In addition, the n-grams must �twithin an int; each nucleotide is 2 bits, so with a 32-bit int, n � 16.Finally, the program assumes we are on a big-endian machine.6.7 comp dna, dcomp dnaUsage: comp_dna <fna-file>Compresses the FNA-format �le by representing each nucleotide byonly 2 bits rather than 8. Any characters not in [acgt] are ignored.The compressed �le is output to stdout; this should be redirected to a�le. 48



dcomp_dna <cmp-file>Decompressed the �le to stdout. The output is simply a long string ofcharacters in [ACGT]; there is no whitespace, or any other characters.This is suitable e.g. as input to proc dna.Example: comp dna haemo.fna < haemo.cmpCompresses haemo.fna into haemo.cmp. The �le size should fall toabout a quarter. However, we will get warnings that haemo.fna con-tains characters not in [acgt]; these are simply ignored.dcomp dna haemo.cmp | proc dna - 1000 Uncompresses haemo.cmpand splits it into fragments of length 1000 (using proc dna).File format: The input format is:1. 1-line comment (this is a bug: we should allow any number ofcomment-lines, each starting with a greater-than character).2. list of nucleotides, in ASCII. Whitespace is allowed. Charactersnot in fA;C;G; Tg are allowed, to denote as-yet undeterminednucleotides.The �le format is:1. 4-byte magic cookie (big-endian): { 0xac, `g', `t', `\n' }2. 1-line (until new-line, or up to 256 bytes) comment3. list of 2-bit nucleotides, fa; c; g; tg 7! f0; 1; 2; 3gNote the �le is a whole number of bytes long; if we do not have amultiple of four nucleotides in the �le, then the �le will end with several`a' characters.Installation: comp dna and dcomp dna are actually one and the same. If the pro-gram is invoked as dcomp dna, the �le argument is decompressed; other-wise, it is compressed. To do this, simply create a link from dcomp dnato comp dna: ln -s comp dna dcomp dna6.8 dna loop.plUsage: dna_loop.pl [opts] <file> <k1> [<k2> ...]Wraps around real dna.pl. Sets up to run all combinations of (s; r)chips (except s = 1) for each value of k. m starts at (r + 1)(s + 1)and ends at 50000. File is assumed to be compressed using comp dna.No action is actually taken, except to print out the list of commandswhich would actually run all the tests. This can be redirected to a �leto be run later.Options: Options are exactly those of real dna and are passed on without beinginterpreted. 49



Example: dna loop.pl -s1.05 ecoli.cmp 9 | shRuns a test of sequencing E. coli using chips with k = 9, and increasingthe fragment length by 5% per point.dna loop.pl -s1.05 -d90 -m ecoli.cmp 8 9 10 | prun -Uses prun to schedule a test of E. coli using chips with k = 8, 9,and 10, increasing the fragment length by 5%, and stopping when therecognition rate falls below 90%. Mail is sent when a job (all tests fora particular (s; r) chip) is done.6.9 interp, interp.wordsUsage: interp or interp.wordsInterprets the output of gap. interp prints out a line of output incolon-separated format: total number of sequences, number correct,percentage correct, and number of failures. interp.words prints outabout the same information, in more easily readable format.Example: my seqgen 500 500 | gap 3 4 - | interp.wordsRun gap over 500 random sequences of 500 nucleotides each, using a(3; 4) chip; use interp to tell us how many of them it correctly se-quenced.6.10 printtable.plUsage: printtable.pl [opts] <file1> [<file2> ...]Prints one row of a table, suitable for inclusion in a LATEX document.Each �le contributes one column. The table contains the value of min each �le which was the �rst time at which the success rate fell be-low 95%. The �les are assumed to be in the format of the output ofreal dna.pl, although other colon-separated formats can be accommo-dated.Options: d pct: Use pct rather than 95% as the threshold.m index: Use index for the index of the �eld whose value is m. The�elds must be colon-separated. The index number is 0-based.s index: Use index for the index of the �eld whose value is the successrate. The �elds must be colon-separated. The index numberis 0-based.Example: printtable.pl -m2 -s5 output.7*Print a table with one column per value of s and r, for k = 7 using theoutput format of tester.pl.printtable.pl -d90 haemo.cmp.*Print a table with one column per value of s and r, for all chips testedusing real dna.pl on H. in
uenzae. This row corresponds to the valueof m at which less than 90% of the sequences were successfully recon-structed. 50



6.11 proc dnaUsage: proc_dna <file> <m>Splits an input �le into multiple sequences each of length m. Theoutput is in the format gap expects.Example: dcomp dna ecoli.cmp | proc dna - 1000Splits the E. coli genome into about 4500 sequences, each of length1000.6.12 display graphUsage: display_graph <file>Displays the �le using gv -landscape, which it forks into the back-ground.Example: display graph output.8.ps6.13 listallUsage: listall <k> [<k2> ...]List all �les output.s.r where s + r = k.Options: i name: Specify a name other than \output".Example: tar cf all9.tar `listall 9`Creates a tar archive of all �les created by split�les, with k = 9.6.14 plotallUsage: plotall [options] <k> [<k2> ...]Generates plots for the data in postscript format.Options: i name: specify name to include (default 'output')n file: don't run gnuplot; store the commands in fileo name: specify output namet title: specify the plot titlex range: specify a range (don't include brackets)y range: same as above, for y coordinateb: label the graphc: output to color postscript (rather than B/W)e: output to eps; uses .eps extension rather than .ps51



Examples: plotall -cb -y90:100 -ihaemo 8Generates a color plot for the k = 8 run of H. in
uenzae. The plotwill only include data with a success rate of 90% or above; there willbe labels on each curve at the last point before the curve falls outsideof the graph.plotall -b -o"|lpr" 9Generates a plot for the k = 9 run of uniformly distributed data,including labels on the curves. The plot is immediately printed.plotall -be -t" " -y90:100 -n uniform.h0 7 8 9 10Write a �le uniform.h0 containing the gnuplot commands to generateplots \output.7.eps" and so on in eps format. These will have labelson the curves; the title is blank; the success rate is at least 90%. Wecan then modify 9.gnu to change, for example, the precise locations ofthe labels. The easiest way to generate the graphs is to run gnuplot< 9.gnu; we can also, within gnuplot, do load 'uniform.h0'.Bugs: There is no way to specify we don't want a title.The -o option only applies either if it's a pipe to some other program,or if we're plotting only a single value of k.After specifying the y axis, the x axis should be made to be only largeenough to �t the data.Labels are put at the last point at which the curve has not yet droppedbelow the y axis. However, they do not take account of the x axis.6.15 rmallUsage: listall <k> [<k2> ...]Remove all �les output.s.r where s + r = k. Such �les are createdby splitfiles.Options: i name: Specify a name other than output.Example: rmall -iecoli 8 9 10Remove all �les related to E. coli, with k = 8, 9, or 10.6.16 sortallUsage: listall <k> [<k2> ...]Sort all �les output.s.r where s + r = k. Such �les are created bysplitfiles. Useful as the last step before using plotall.Options: i name: Specify a name other than output.Example: sortall -ihaemo 9Sort all �les related to H. in
uenzae, k = 9.52



6.17 split extendUsage: split_extend <files>Splits the shift counts of the given �les into distinct �les. A directoryshould exist for each shift value. Files are deposited in those directorieswith name o.s.r, where s and r are taken from the input �les. Theoutput is assumed to be that of tester.pl.Example: split extend ../output.*Splits all output �les of tester.pl.6.18 split realUsage: split_real <file1> [<file2> ...]Splits �les which are the output of real dna.pl into input for plotallet al. The �lenames are assumed to be in the form <name>.*.s.rExample: split real haemo.cmp.*Splits all of the �les output from running real dna.pl on the H. in-
uenzae sequence into �les haemo.8.0 and so on.6.19 split�lesUsage: splitfiles <field> <list of files>Splits the �les listed into a format appropriate for plotall (and gnuplot).Will produce �les called \output.s.r" (varying s and r), with lines ofform m value where value is taken from the speci�ed �eld.The input format is colon-separated, starting with s:r:mThe �eld number is 0-based (s is �eld 0)Example: splitfiles 5 ../output.8*Splits all the �les output by tester.pl, with k = 8. Field 5 in those�les is the percent success rate, so plotall 8 after this will plot thesuccess rate of the last run of k = 8. Note the output may not besorted; use sortall.
53



7 Further WorkSome of the work that remains to be done has been alluded to already. Theseare some possible directions for further work.� The algorithm code should be made to comply to the division of labouras outlined in the algorithm section. Currently, Lookup is only implicitlyimplemented. This would make it easier to reimplement Lookup as alookup in a trie rather than in a hash table.� Throughout this work, we have assumed perfect hybridization. In practice,some errors occur; in fact, this has been a problem with previous SBHschemes. The behavior of the algorithm with real sets of �red probesshould be studied.� Some of the graphs have unexplained characteristics. For instance, thegraphs of success rates for some of the real data look rather linear, unlikethose for random data. Similarly with the spikes in the graphs of calls toLookup in skewed data.References[1] I. Belyi and P. A. Pevzner. DNA SPECTRUM software package, 1996.[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.MIT Press, Cambridge, MA, 1990.[3] National Center for Biotechnology Information.http://www.ncbi.nlm.nih.gov.[4] P. Pevzner, Y. P. Lysov, K. R. Khrapko, A. V. Belyavsky, V. L. Florentiev,and A. D. Mirzabekov. Optimal chips for megabase dna sequencing. J.Biomol. Struct. and Dyn., 9:399{410, 1991.[5] P. A. Pevzner and R. J. Lipshutz. Towards DNA sequencing by hybridiza-tion. In 19th Symposium on Mathematical Foundations of Computer Science,pages 143{258, 1994.[6] F. P. Preparata, A. M. Frieze, and E. Upfal. On the power of universal basesin sequencing by hybridization. In RECOMB99, 1999.
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