
The Graph Based Benchmark Suite (GBBS)
Laxman Dhulipala

Carnegie Mellon University

ldhulipa@cs.cmu.edu

Jessica Shi

MIT CSAIL

jeshi@mit.edu

Tom Tseng

MIT CSAIL

tomtseng@csail.mit.edu

Guy E. Blelloch

Carnegie Mellon University

guyb@cs.cmu.edu

Julian Shun

MIT CSAIL

jshun@mit.edu

Abstract

In this demonstration paper, we present the Graph Based

Benchmark Suite (GBBS), a suite of scalable, provably-efficient

implementations of over 20 fundamental graph problems

for shared-memory multicore machines. Our results are ob-

tained using a graph processing interface written in C++,

extending the Ligra interface with additional functional prim-

itives that have clearly defined cost bounds. Our approach en-

ables writing high-level codes that are simultaneously simple

and high-performance by virtue of using highly-optimized

primitives. Another benefit is that optimizations, such as

graph compression, are implemented transparently to high-

level user code, and can thus be utilized without changing

the implementation. Our approach enables our codes to scale

to the largest publicly-available real-world graph containing

over 200 billion edges on a single multicore machine.

We show how to use GBBS to process and perform a vari-

ety of tasks on real-world graphs. We present the high-level

C++ APIs that enable us to write concise, high-performance

implementations. We also introduce a Python interface to

GBBS, which lets users easily prototype algorithms and

pipelines in Python that significantly outperform NetworkX,

a mature Python-based graph processing solution.

ACM Reference Format:

Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Ju-

lian Shun. 2020. The Graph Based Benchmark Suite (GBBS). In

3rd Joint International Workshop on Graph Data Management Ex-
periences & Systems (GRADES) and Network Data Analytics (NDA)
(GRADES-NDA’20), June 14, 2020, Portland, OR, USA. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3398682.3399168

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

GRADES-NDA’20, June 14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8021-8/20/06.

https://doi.org/10.1145/3398682.3399168

1 Introduction

Programming algorithms that can process massive graphs

with billions to hundreds of billions of edges is a challenging

task. To simplify the task, we have designed a problem-based

benchmark and corresponding C++ library called Graph

Based Benchmark Suite (GBBS) to make it easier to design

provably-efficient and scalable shared-memory parallel graph

algorithms [15, 16]. GBBS began as a project to benchmark

parallel graph algorithms, but over time has evolved into a

useful library for designing and implementing new highly

performant parallel graph algorithms. In this short paper, we

present an overview of the C++ library underlying GBBS,

including the core techniques, system design, and APIs that

enable us to achieve our results and enable the design of sim-

ple, efficient implementations. We have made GBBS publicly-

available at https://github.com/ParAlg/gbbs, and provide a

website documenting the benchmark at https://paralg.github.

io/gbbs/. We hope our approach will be applicable to other

algorithmic and data mining tasks on graphs in the future.

Graph Based Benchmark Suite (GBBS). In GBBS, we pro-

vide a high-level graph processing interface in C++ that ex-

tends the Ligra, Ligra+, and Julienne frameworks [14, 42, 45]

with additional functional primitives that are parallel by
default. We have found our approach to be broadly appli-

cable as we have designed and implemented simple, fast,

and provably-efficient multicore implementations of over 20

benchmark graph problems, ranging from standard graph

kernels such as breadth-first search and connectivity, to

more challenging problems such as biconnectivity, mini-

mum spanning forest, k-clique enumeration, and strongly

connected components. Importantly, the GBBS benchmarks

provide clear input-output specifications enabling others to

easily compare other algorithms and implementations with

our results. Other benchmarks suites, such as the GAP [7],

PBBS [44], and LDBC Graphalytics [24] benchmarks have

inspired our work, but we extend the approach taken by

these benchmarks to a much broader set of graph problems.

We believe that the benchmark suite implemented as part of

GBBS is one of the broadest set of high-performance graph

algorithm implementations available today.

https://doi.org/10.1145/3398682.3399168
https://doi.org/10.1145/3398682.3399168
https://github.com/ParAlg/gbbs
https://paralg.github.io/gbbs/
https://paralg.github.io/gbbs/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3398682.3399168&domain=pdf&date_stamp=2020-06-14

GRADES-NDA’20, June 14, 2020, Portland, OR, USA Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun

Graph

Compression Lib

Bucketing Graph Vertex

PBBS

Runtime
Cilk, OpenMP, TBB,

Homegrown

Core GBBS Interfaces

Figure 1: System architecture of GBBS. The core interfaces are

the bucketing, graph, and vertex interfaces. These interfaces utilize

parallel primitives and routines from PBBS. Parallelism is imple-

mented using a parallel runtime system—Cilk Plus, OpenMP, TBB,

or a homegrown scheduler that we wrote ourselves—and can be

swapped using a command line argument. The vertex and graph

interfaces use a compression library that mediates access to the un-

derlying graph, which can either be compressed or uncompressed.

In this paper, we focus on describing our techniques, de-

sign principles, and APIs that enable short, reusable, and

composable codes that simplify programming a wide range

of fundamental graph problems. Importantly, all of our codes

scale to the largest publicly-available real-world graph, the

Hyperlink Web graph [33], with over 3.5 billion vertices and

128 billion edges (over 200 billion edges once symmetrized),

on a commodity multicore machine. GBBS is an active bed

for our ongoing research, and we hope to attract more users

to use our system for both benchmarking existing graph

algorithms as well as implementing new ones.

Contributions. We make the following contributions:

(1) We describe GBBS, including the core APIs and the over-

all organization and design of the library.

(2) We describe how to implement an algorithm in GBBS

and provide an example using CoSimRank, an important

data mining algorithm.

(3) We provide a new Python-based API for GBBS and show

that end-to-end processing of graphs using our API is

orders of magnitude faster than NetworkX, a mature

existing Python-based graph processing solution.

2 GBBS Design

GBBS is built as a number of layers, which we illustrate in

Figure 1. We provide a detailed description of the library, our

APIs and corresponding cost bounds, as well as the GBBS

benchmarks, on our website (see Appendix F).

Parallel Runtime and Cost Model

GBBS uses a shared-memory approach to parallel graph

processing in which the entire graph is stored in the main

memory of a single multicore machine. Our codes exploit

nested parallelism using scheduler-agnostic parallel prim-

itives, such as fork-join and parallel-for loops. Thus, they

can easily be compiled to use different parallel runtimes such

as Cilk Plus, OpenMP, TBB, and also a custom work-stealing

scheduler implemented by the authors. We analyze GBBS al-

gorithms in the classic work-depth model for shared-memory

algorithms, where the work is the number of operations used

by the algorithm and the depth is the length of the longest

sequential dependence in the computation [13, 25].

Parallel Datatypes and Primitives (PBBS)

We build on PBBS [44], a robust base layer providing parallel

primitives and utilities, upon which we build the higher-level

graph and vertex interfaces. PBBS provides the following

utilities. A sequence is a generic parallel sequence datatype,
similar to a parallel version of a C++ vector that provides par-

allel initialization and destruction. GBBS also uses generic

implementations of a parallel linear-probing hash table [43].

Lastly, we import parallel primitives over sequences, includ-

ing map, reduce, prefix-sum (scan), filter, pack, histogram,

random shuffle, and a set of efficient sorting algorithm.

Graph Representations

Compressed Graphs. Graphs in GBBS are stored in the

compressed sparse row (CSR) format. CSR stores two arrays, I
and A, where the vertices are in the range [0,n − 1] and inci-

dent edges of a vertex v are stored in {A[I [v]], . . . ,A[I [v +
1]−1]} (with a special case for vertexn−1). The uncompressed
format in GBBS is equivalent to the CSR format. GBBS also

supports several compressed graph formats from the Ligra+

framework [45]. Specifically, we provide support for graphs

where neighbor lists are encoded using byte codes and a

parallel generalization of byte codes (see Appendix B).

Weighted Graphs. The graph and vertex datatypes used

in GBBS are generic over the weight type of the graph.

Graphs with arbitrary edge weights can be represented by

simply changing a template argument to the vertex and graph

datatypes. We describe how edge weights integrate with

compression in Appendix B. We treat unweighted graphs as

graphs weighted by an implicit null (0-byte) weight.

Vertex and Graph Datatypes

Next, we describe the core vertex and graph interfaces which

mediate algorithms’ and high-level routines’ accesses to the

underlying graph representation (which can either be com-

pressed or uncompressed, and weighted or unweighted).

Vertex Datatypes and Primitives. GBBS provides vertex

datatypes for both symmetric and asymmetric vertices, used

for undirected and directed graphs, respectively. The vertex

datatype interface (see Figure 2) provides functional primi-

tives over vertex neighborhoods, such as map, reduce, scan,

count (a special case of reduce where the map function is a

boolean function), as well as primitives to extract a subset of

the neighborhood satisfying a predicate (filter) and a primi-

tive to mutate the vertex neighborhood and delete edges that

do not satisfy a given predicate (pack). The interface also

provides functions for computing the intersection, union,

Graph Based Benchmark Suite (GBBS) GRADES-NDA’20, June 14, 2020, Portland, OR, USA

Vertex

Vertex-Vertex
operators:

intersection
union
difference

Neighborhood
operators:

map
reduce
scan

pack
filter
count

iterate
i-th
degree

Graph
srcMap
srcReduce

Aggregate at
source:

Aggregate at
neighbor:

srcCount
srcPack

nghMap
nghReduce

nghCount
nghPack

Graph
operators:

filterGraph
packGraph

numVertices
numEdges

Figure 2: Core GBBS interfaces. We provide descriptions in the text.

or difference between the set of neighbors of two vertices.

Due to space constraints, we provide the full interface on

our website (see Appendix F).

Vertex Subsets. We use the vertexSubset datatype from

Ligra, which represents a subset of vertices in the graph. A

subset can either be sparse (represented as a collection of

vertex IDs) or dense (represented as a boolean array or bit-

vector of length n, the number of vertices in the graph). A

vertexSubsetT is a generic vertexSubset, where each vertex

is augmented with a value of some type T.
Bucketing.Weuse the bucketing interface from Julienne [14],

which enables priority-based graph algorithms, including

integer-weighted shortest paths, ∆-stepping for shortest

paths, k-core decomposition, and others. Each bucket is rep-

resented as a vertexSubset, and the interface allows vertices

to dynamically be moved through different buckets as pri-

orities change. Algorithms using the interface iteratively

extract the highest priority bucket, potentially update inci-

dent vertex priorities, and repeat until all buckets are empty.

Graph Datatypes and Primitives. GBBS provides graph

datatypes for both symmetric and asymmetric graphs. The

distinction is important for statically enforcing arguments to

problems and routines that require a symmetric input (e.g.,

it does not make sense to call connectivity or biconnectivity

on a directed input). Aside from standard functions to query

the number of vertices and edges, the core graph interface

is the set of functional operators defined on graphs, which

extend and generalize the edgeMap primitive provided by

Ligra, which we review for completeness in Appendix C.

GeneralizingedgeMap. In GBBS, we generalize the edgeMap

primitive (Appendix C) in two ways. First, we observe that

edgeMap is a function from a vertexSubset to a vertexSub-

set containing neighbors of the input vertexSubset, and that

it is often useful to apply a functional operator over a ver-

texSubset and return the results for the same vertexSubset.
Second, we observe that we can generalize applying the map

operation to perform reductions, counts, and packs using

the same interface.

Graph Dataset Num. Vertices Num. Edges

com-Orkut 3,072,627 234,370,166

Hyperlink2012 3,563,602,789 128,736,914,167

Hyperlink2012-Sym 3,563,602,789 225,840,663,232

Table 1: Graph inputs, including vertices and edges.

Based on these observations, we provide versions of the

edgeMap primitive that aggregate the results at the source:

srcMap, srcReduce, srcCount, and srcPack. We also pro-

vide generalizations of edgeMap that return a subset of

the neighbors of the input vertexSubset, including nghMap

(equivalent to edgeMap), nghReduce, nghCount, and ngh-

Pack. We provide additional details about the generalized

primitives in Appendix C.

Finally, we provide an operator for filtering edges out of

a graph that returns a new graph, called filterGraph. The

primitive is useful for codes such as triangle counting and k-
clique enumeration, which require directing the edges of an

undirected graph to eliminate redundant work. We provide a

similar primitive which operates in-place called packGraph.

Python Interface

We have implemented a Python-based interface for GBBS

that makes it easy for users to utilize our benchmark imple-

mentations and data structures. The library is implemented

using pybind11 [26], which provides zero-copy interoper-

ability between C++ and Python. We provide functionality

to load graphs from a variety of formats and sources, includ-

ing datasets from SNAP [29] and LAW [8], as well as the

uncompressed and compressed formats in GBBS.

3 Demonstration Walkthrough

In this section, we demonstrate how to use the GBBS graph

and vertex APIs, set up and implement CoSimRank, a new

benchmark using GBBS, and demonstrate how to use GBBS

to solve problems using a new zero-copy Python interface

that we have implemented.

Using the Graph and Vertex APIs

The C++ graph and vertex APIs can be used as follows:

using sym_vertex_int = symmetric_vertex<int>;
using sym_graph_int = symmetric_graph<symmetric_vertex,

int>;↪→

After loading an integer-weighted symmetric graph G
(please see our website for how to load graphs of different

types from C++), we can now call various graph methods,

and access a vertex object for the i’th vertex as follows:

size_t n = G.numVertices();
size_t m = G.numEdges();
sym_vertex_int vtx10 = G.get_vertex(10);

Similarly, methods on the vertex can be called as follows:

// Intersect vtx10 and vtx42 and return the size
sym_vertex_int vtx42 = G.get_vertex(42);
size_t intersection_size = vtx10.intersect(vtx42);
// Compute number of heavy edges incident to vtx10
auto pred = [](vtxid_t u, vtxid_t v, int wgh) {

GRADES-NDA’20, June 14, 2020, Portland, OR, USA Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun

Coloring MaximalMatching KCore PageRank MIS BFS CoSimRank
100

101

102

103

104

105

S
lo

w
d

ow
n

(l
o
g

1
0

sc
a

le
)

77.2

165 1.27e+03
>1hr

>1hr
278

OOM

9.93 3.88
8.7

35 1.96 0.25 595
0.838 0.187 1.09 1.49 0.081 0.015 25.4

Values on top of bars display running times in seconds.

NetworkX

GBBS(T1)

GBBS(T60)

Figure 3: Comparison between GBBS and NetworkX algorithm implementations for the com-Orkut graph. We report the slowdown relative

to GBBS(T60), which is GBBS on 60 threads. The experiments are run on a c2-standard-60 Google Cloud instance, which consists of 60 cores

(with two-way hyper-threading), with 3.8GHz Intel Xeon scalable (Cascade Lake) processors and 240 GiB of main memory.

return wgh > 5;};
size_t num_heavy = vtx10.countOutNgh(pred);

Here, vtxid_t is the numeric type for vertex IDs.

Benchmark Implementation: CoSimRank

CoSimRank [38] is a local version of SimRank [27] that al-

lows the similarity of a pair of vertices to be computed with-

out computing the similarity of all pairs of vertices in the

graph. Its computation involves a simplified Personalized

PageRank computation [10], without the use of a damping

factor. We provide the pseudocode and description for our

implementation using GBBS in Algorithm 1 in Appendix D.

Using the Python Interface

Next, we illustrate how to use GBBS in an end-to-end fashion

to rapidly import a graph from the SNAP benchmark and

run the CoSimRank algorithm on it. Extending the Python

bindings after implementing a new benchmark requires only

a few lines of code to add an extra method to the graph object

exported by the library.

We first build the bindings using Bazel [6] and add the

compiled libraries to the Python path:

> bazel build //pybindings/...
> export PYTHONPATH=$(pwd)/bazel-bin/pybindings/:$PYTHONPATH

Next, we launch the Python REPL, import the library, and

import a downloaded graph from the SNAP dataset [29].

>>> import gbbs
>>> G = gbbs.loadSNAP("com-youtube.ungraph.txt",

undirected=True)↪→

This command creates an uncompressed graph in the GBBS

format at the same location as the input (compression can

optionally be enabled using a separate flag). We can then

apply the CoSimRank method defined on graphs:

>>> sim = G.CoSimRank(src=10, dest=82)
>>> print(sim)
0.0002881

Other primitives can be applied similarly. For example:

>>> components = G.Connectivity()
>>> print(components[10] == components[82])
True
>>> cores = G.KCore() # Computes coreness values
>>> print(cores[10], cores[82])
(41, 50)

Comparison with NetworkX

We compared the performance of our implementations with

that of NetworkX [23]. We ran our experiments on a 60-

core, 2-way hyper-threaded c2-standard-60 Google Cloud

instance, with 3.8GHz Intel Xeon Scalable (Cascade Lake)

processors and 240 GiB of memory.

Figure 3 shows the results of the comparison for the com-

Orkut graph from SNAP. For PageRank and maximal inde-

pendent set (MIS), the NetworkX implementation did not

finish after 1 hour. For CoSimRank, the NetworkX library

calls an all-pairs implementation of SimRank [27], which

runs out of memory as it materializes an n × n matrix. We

find that even for this small input which has about 3 mil-

lion vertices and 234 million edges (see Table 1), GBBS is

significantly faster than NetworkX even for GBBS running

on a single thread. In particular, we demonstrate significant

speedups of 7.77x to over 1836.73x running our benchmarks

on a single thread, and of 92.12x to over 4444.44x running

our benchmark on 60 threads, as shown in Figure 3.

Although this comparison is not apples-to-apples, since

our implementations are run in parallel using a highly-optimized

C++ library, and NetworkX is implemented in Python, we

believe that our approach and our Python bindings make

high-performance algorithm implementations more accessi-

ble to the broad Python community.

4 Conclusion and Future Work

Wehave presented the Graph Based Benchmark Suite (GBBS),

a benchmark suite of over 20 fundamental graph problems,

and an overview of the techniques and interfaces enabling

our implementations. In future work, we intend to implement

our interface on a recent system for streaming graphs called

Aspen [17] in a way that enables all GBBS codes to work

without modifications over the Aspen graph representations.

We encourage others to use GBBS for both benchmarking

existing graph algorithms as well as implementing new ones.

Acknowledgements. This research was supported by DOE

Early Career Award #DE-SC0018947, NSF Graduate Research

Fellowship #1122374, NSF CAREER Award #CCF-1845763,

NSF grants CCF-1910030 and CCF-1919223, and Google Fac-

ulty Research Award.

Graph Based Benchmark Suite (GBBS) GRADES-NDA’20, June 14, 2020, Portland, OR, USA

References

[1] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. CRONO: A benchmark

suite for multithreaded graph algorithms executing on futuristic mul-

ticores. In Proceedings of the 2015 IEEE International Symposium on
Workload Characterization, IISWC ’15, Washington, DC, USA, 2015.

IEEE Computer Society.

[2] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan.

LinkBench: A database benchmark based on the facebook social graph.

In ACM SIGMOD International Conference on Management of Data,
pages 1185–1196, 2013.

[3] D. A. Bader, J. Feo, J. Gilbert, J. Kepner, D. Koester, and E. Loh. HPC

scalable graph analysis benchmark.

[4] D. A. Bader and K. Madduri. Design and implementation of the HPCS

graph analysis benchmark on symmetric multiprocessors. In Inter-
national Conference on High-Performance Computing (HiPC), pages
465–476, 2005.

[5] G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher, A. Lemay, and N. Ad-

vokaat. gMark: Schema-driven generation of graphs and queries. IEEE
Transactions on Knowledge and Data Engineering, 29(4):856–869, 2016.

[6] Bazel. https://bazel.build/.

[7] S. Beamer, K. Asanovic, and D. A. Patterson. The GAP benchmark

suite. CoRR, abs/1508.03619, 2015.
[8] P. Boldi and S. Vigna. The Webgraph framework I: compression tech-

niques. In International World Wide Web Conference (WWW), pages
595–602, 2004.

[9] A. Bonifati, G. Fletcher, J. Hidders, and A. Iosup. A survey of bench-

marks for graph-processing systems. In Graph Data Management,
pages 163–186. Springer, 2018.

[10] S. Brin and L. Page. The anatomy of a large-scale hypertextual web

search engine. In Computer Networks and ISDN Systems, pages 107–117,
1998.

[11] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,

J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,

L. Puzar, Y. J. Song, and V. Venkataramani. TAO: Facebook’s distributed

data store for the social graph. In USENIX Annual Technical Conference
(ATC), pages 49–60, 2013.

[12] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.

SIAM J. Comput., 14(1):210–223, Feb. 1985.
[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms (3. ed.). MIT Press, 2009.

[14] L. Dhulipala, G. Blelloch, and J. Shun. Julienne: A framework for

parallel graph algorithms using work-efficient bucketing. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 293–304, 2017.

[15] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel

graph algorithms can be fast and scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 393–404,
2018.

[16] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel

graph algorithms can be fast and scalable. CoRR, abs/1805.05208, 2018.
[17] L. Dhulipala, G. E. Blelloch, and J. Shun. Low-latency graph streaming

using compressed purely-functional trees. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI),
pages 918–934, 2019.

[18] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons,

and J. Shun. Sage: Parallel semi-asymmetric graph algorithms for

NVRAMs. Proceedings of the VLDB Endowment, 13(9), 2020.
[19] A. Dubey, G. D. Hill, R. Escriva, and E. G. Sirer. Weaver: a high-

performance, transactional graph database based on refinable times-

tamps. Proceedings of the VLDB Endowment, 9(11):852–863, 2016.

[20] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat,

M.-D. Pham, and P. Boncz. The LDBC social network benchmark:

Interactive workload. In ACM SIGMOD International Conference on
Management of Data. Association for Computing Machinery, 2015.

[21] L. Gao, L. Golab, M. T. Özsu, and G. Aluç. StreamWatDiv: A streaming

RDF benchmark. In Proceedings of the International Workshop on
Semantic Big Data, pages 1–6, 2018.

[22] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph:

Distributed graph-parallel computation on natural graphs. In USENIX
Symposium on Operating System Design and Implementation (OSDI),
pages 17–30, 2012.

[23] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure,

dynamics, and function using NetworkX. Technical report, Los Alamos

National Lab.(LANL), Los Alamos, NM (United States), 2008.

[24] A. Iosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Pérez, T. Man-

hardto, H. Chafio, M. Capotă, N. Sundaram, M. Anderson, I. G. Tănase,

Y. Xia, L. Nai, and P. Boncz. LDBC graphalytics: A benchmark for large-

scale graph analysis on parallel and distributed platforms. Proceedings
of the VLDB Endowment, 9(13):1317–1328, Sept. 2016.

[25] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley Professional,

1992.

[26] W. Jakob, J. Rhinelander, and D. Moldovan. pybind11

– seamless operability between C++11 and Python, 2017.

https://github.com/pybind/pybind11.

[27] G. Jeh and J. Widom. SimRank: a measure of structural-context similar-

ity. In ACM SIGKDD International conference on Knowledge Discovery
and Data Mining, pages 538–543, 2002.

[28] A. Khandelwal, Z. Yang, E. Ye, R. Agarwal, and I. Stoica. ZipG: A

memory-efficient graph store for interactive queries. In ACM SIGMOD
International Conference on Management of Data, pages 1149–1164,
2017.

[29] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, 2019.

[30] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Heller-

stein. GraphLab: A new framework for parallel machine learning. In

Conference on Uncertainty in Artificial Intelligence (UAI), pages 340–349,
2010.

[31] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski. Pregel: a system for large-scale graph processing.

In ACM SIGMOD International Conference on Management of Data,
pages 135–146, 2010.

[32] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: A

survey of vertex-centric frameworks for large-scale distributed graph

processing. ACM Comput. Surv., 48(2):25:1–25:39, Oct. 2015.
[33] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. The graph structure

in the web–analyzed on different aggregation levels. The Journal of
Web Science, 1(1), 2015.

[34] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin. GraphBIG: under-

standing graph computing in the context of industrial solutions. In

SC’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–12. IEEE, 2015.

[35] Neo4j. http://neo4j.com.

[36] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure

for graph analytics. InACM Symposium on Operating Systems Principles
(SOSP), pages 456–471, 2013.

[37] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Hari-

dasan. Managing large graphs on multi-cores with graph awareness.

In USENIX Conference on Annual Technical Conference (ATC), pages
41–52, 2012.

[38] S. Rothe and H. Schütze. CoSimRank: A flexible & efficient graph-

theoretic similarity measure. In Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1392–1402, 2014.

https://bazel.build/
http://snap.stanford.edu/data
http://neo4j.com

GRADES-NDA’20, June 14, 2020, Portland, OR, USA Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun

[39] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine

on a memory cloud. In ACM SIGMOD International Conference on
Management of Data, pages 505–516, 2013.

[40] J. Shi, L. Dhulipala, and J. Shun. Parallel clique counting and peeling

algorithms. arXiv preprint arXiv:2002.10047, 2020.
[41] J. Shun. Practical parallel hypergraph algorithms. In ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 232–249, 2020.

[42] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing

framework for shared memory. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 135–146,
2013.

[43] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for determin-

ism. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 96–107, 2014.

[44] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.

Simhadri, and K. Tangwongsan. Brief announcement: the Problem

Based Benchmark Suite. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pages 68–70, 2012.

[45] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster: Parallel pro-

cessing of compressed graphs with Ligra+. In IEEE Data Compression
Conference (DCC), pages 403–412, 2015.

[46] J. Shun and K. Tangwongsan. Multicore triangle computations without

tuning. In IEEE International Conference on Data Engineering (ICDE),
pages 149–160, 2015.

[47] Z. Xu, X. Chen, J. Shen, Y. Zhang, C. Chen, and C. Yang. Gardenia: A

graph processing benchmark suite for next-generation accelerators.

ACM Journal on Emerging Technologies in Computing Systems (JETC),
15(1):1–13, 2019.

[48] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big graph analytics platforms.

Foundations and Trends in Databases, 7(1-2):1–195, 2017.

A Related Work

Graph Processing Frameworks and Systems. There has

been a wealth of work on designing efficient parallel graph

frameworks and systems over the past two decades ([22,

30, 31, 36, 42] among many others). We refer the reader

to [32, 48] for excellent surveys of this growing literature.

The approach used in the GBBS library crucially depends

on the line of work on Ligra [42], and subsequent systems,

including Ligra+ [45], and Julienne [14]. Recently, the line

of work on Ligra was generalized for NVRAM-based sys-

tems [18], and to support hypergraphs [41]. An interesting

question is whether the extended edgeMap primitives used

in GBBS make it easier to implement a broad class of parallel

hypergraph algorithms.

Parallel Graph Algorithm Benchmarks. Many parallel

graph algorithm benchmarks have been proposed. A recent

survey by Bonifati et al. [9] provides a good overview of

many existing benchmarks. SSCA [3, 4] is an early bench-

mark specifying four graph kernels including graph genera-

tion, subgraph extraction, and clustering. The Problem Based

Benchmark Suite (PBBS) [44] is a more general parallel al-

gorithm benchmark that includes six problems on graphs

(BFS, spanning forest, minimum spanning forest, MIS, maxi-

mal matching, and graph separators). The PBBS benchmarks

are problem-based in that they are defined only in terms

of the input and output without specifying the algorithm

used to solve the problem. We follow the style of PBBS in

GBBS of defining the input and output requirements for each

problem. The LDBC Graphalytics benchmark [24] includes 6

algorithms including BFS, PageRank, connected components,

label propagation, local clustering coefficient, and SSSP. The

GraphAlgorithm Platform (GAP) Benchmark [7] specifies six

kernels for BFS, SSSP, PageRank, connectivity, betweenness

centrality, and triangle counting. GBBS implements a super-

set of the GAP benchmarks, and supports a much broader

set of problems than both the LDBC and GAP benchmarks.

Several recent benchmarks focus on the architecural prop-

erties of parallel graph algorithms. CRONO [1] implements

10 graph algorithms, including all-pairs shortest paths, exact

betweenness centrality, traveling salesman, and depth-first

search, and performs an architectural analysis of their im-

plementations. GraphBIG [34] describes 12 algorithms, in-

cluding several problems that we consider, like k-core and
graph coloring (using the Jones-Plassmann algorithm), but

also problems like depth-first search, which are difficult to

parallelize. GARDENIA [47] provides a benchmark with 9

algorithms, including connectivity, BFS, betweenness central-

ity, PageRank, and triangle counting. Compared with these

architectural benchmarks, GBBS implements a much broader

set of graph problems. It would be interesting to study our

implementations from an architectural perspective.

Graph Databases and Streaming Systems. A related line

of research has been on graph databases (e.g., [11, 19, 28,

35, 37, 39]). Graph databases support dynamically updating

the graph, usually through transactions (i.e., multi-writer

concurrency) and are thus more general than the Ligra sys-

tem and its descendants. However due to the overheads of

supporting transactions, they are generally slower for static

graph algorithms, which is what GBBS targets. Aspen [17]

is a recent system supporting dynamic graph updates that

also supports a Ligra-like interface. An interesting question

that we plan to investigate is whether implementing the

core interfaces from GBBS on top of Aspen would enable the

growing number of GBBS implementations to automatically

run on both static and dynamically evolving graphs.

Graph Database Benchmarks. Recently, there has been

interest in designing benchmarks for graph databases [2, 5,

20, 21]. The LinkBench benchmark [2] generates a synthetic

graph database, update stream, and operations that simu-

late the workload observed at Facebook. The LDBC Social

Network Benchmark [20] presents a broad benchmark with

many graph-based queries, and supports generating syn-

thetic networks at various scales. The gMark benchmark [5]

is a domain- and query-language-independent benchmark

for generating graphs and query workloads. Stream Wat-

Div [21] is a streaming RDF benchmark for benchmarking

Graph Based Benchmark Suite (GBBS) GRADES-NDA’20, June 14, 2020, Portland, OR, USA

1 1

2

1

2

3

srcCount nghCount

(1) (2) (3)

Figure 4: Illustration of srcCount and nghCount primitives. The

input is illustrated in Panel (1), and consists of a graph and a vertex-

Subset, with vertices in the vertexSubset illustrated in green. The

green edges are edges for which the condition function C returns

true. Panel (2) and Panel (3) show the results of applying srcCount

and nghCount, respectively. Both primitives emit an augmented

vertexSubsetint, illustrated in red, where each vertex has an associ-

ated count of the number of edges satisfying C .

SPARQL-based streaming systems, which are closely related

to graph databases. Compared with these efforts, the main

difference in GBBS is that we focus on static graphs, and

focus on problems from the parallel graph algorithms litera-

ture.

B Compression

Byte Codes. In byte codes, we store a vertex’s neighbor list

by difference encoding consecutive vertices, with the first

vertex difference encoded with respect to the source. Decod-

ing is done by sequentially uncompressing each difference,

and summing the differences into a running sumwhich gives

the ID of the next neighbor. As this process is sequential,

graph algorithms using the byte format that map over the

neighbors of a vertex will have poor depth bounds.

Parallel ByteCodes.Weenable parallelism using the parallel-

byte format from Ligra+. This format breaks the neighbors of

a high-degree vertex into blocks, where each block contains

a constant number of neighbors. Each block is difference

encoded with respect to the source, and the format stores

the blocks in a neighbor list in sorted order. As each block

can have a different size, it also stores offsets that point to

the start of each block. Using the parallel-byte format, the

neighbors of a high-degree vertex can then be done in paral-

lel over the blocks. We refer the reader to Ligra+ [45] for a

detailed discussion of this idea.

Integrating Edge Weights. Both schemes above provide

support for compressingweighted graphs. If the graphweight

type is E, the encoder simply interleaves the weighted ele-

ments of type E with the differences generated by the byte

or parallel byte code. GBBS supports compressing integer

weights using variable-length coding, similar to Ligra+ [45].

C edgeMap and Generalizing edgeMap

edgeMap. Next, we review the edgeMap primitive from

Ligra, which is the basis for the generalized interface used in

GBBS. edgeMap is a basic graph processing primitive useful

for performing graph traversal. The edgeMap primitive takes

as input a frontier, or subset of seed vertices. It then applies

a user-defined function to generate a new frontier consisting

of neighbors of the input frontier. For example, in a breadth-

first search, the user-defined primitive emits a neighbor in

the output frontier if it has not yet been visited.

More formally, given a graphG (V ,E), edgeMap takes as

input a vertexSubsetU , and two boolean functions F (themap
function) and C (the cond or condition function). edgeMap

applies F to (u,v) ∈ E such that u ∈ U and C (v) = true
(call this subset of edges Ea), and returns a vertexSubsetU ′,
where u ∈ U ′ if and only if (u,v) ∈ Ea and F (u,v) = true.
Generalizing edgeMap. Here we provide some additional

details about our generalizations of the edgeMap primitive.

The interface for these primitives is similar to edgeMap, but

the return types differ depending on the functional operation:

• The map operator (like edgeMap) returns a vertexSubset.

• The reduce operator returns an vertexSubsetE, where E
is the result type of the reduction operation.

• The count operator is a specialization of reduce, return-

ing a vertexSubsetint, where each vertex is augmented

with the number of incident edges satisfying the condition

function (defined in the description of edgeMap above).

• The pack operator preserves edges satisfying an input

predicate P and deletes edges that do not satisfy P . It re-
turns a vertexSubsetint containing the new vertex degrees

of affected vertices (either the sources or the neighbors).

Figure 4 illustrates the two count operator variants used

in GBBS, srcCount and nghCount. Both primitives are

generalizations of the edgeMap primitive.

D CoSimRank Pseudocode

Algorithm 1 Parallel CoSimRank

1: procedure CoSimRank(G , u , v , c = 0.85, max_iter= 100, ε = 1e-6)

2: curu ← eu , curv ← ev ▷ ew is the standard basis vector

3: C : w → true ▷ All neighbors are valid for nghReduce

4: Su ← {u }, Sv ← {v } ▷ Initial frontier is u and v
5: mapu : (src, ngh)→ curu [src]/deg(src) ▷ Contributions for u ,v
6: mapv : (src, ngh)→ curv [src]/deg(src)
7: reduce: (ℓ, r) → ℓ + r
8: i ← 0

9: sim← curu · curv
10: while i < max_iter do

11: Su ←nghReduce(Su, mapu, C, reduce)
12: Sv ←nghReduce(Sv , mapv , C, reduce)
13: ∀i , nxtu [i]← Su [i].value
14: ∀i , nxtv [i]← Sv [i].value
15: sim← sim + c i · (nxtu · nxtv) ▷ Compute similarity

16: if ∥nxtu − curu ∥1 < ε and ∥nxtv − curv ∥1 < ε then break

17: Swap curu and nxtu
18: Swap curv and nxtv

19: return sim

For a pair of vertices u and v , CoSimRank starts with the

standard basis vectors eu and ev respectively (Line 2), and

iteratively applies PageRank using nghReduce for u and v

GRADES-NDA’20, June 14, 2020, Portland, OR, USA Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun

Problem Work Running Time (s)

Breadth-First Search O (m) 8.44

Weighted Breadth-First Search O (m)∗ 58.1

Bellman-Ford O (d (G)m) 59.4

Single-Source Widest Path O (d (G)m) 48.4

Single-Source Betweenness O (m) 37.1

O (k)-Spanner O (m)∗ 36.5

Low-Diameter Decomposition O (m)∗ 16.6

Connectivity O (m)∗ 25.0

Spanning Forest O (m)∗ 35.8

Biconnectivity O (m)∗ 165

Strongly Connected Components O (m logm)∗ 185

Minimum Spanning Forest O (m)∗ 187

Maximal Independent Set O (m)∗ 32.2

Maximal Matching O (m)∗ 108

Graph Coloring O (m)∗ 158

Approximate Set Cover O (m)∗ 90.4

Triangle Counting O (m3/2) 1168

4-Clique Counting O (mα (G)2) 1.62 ·105

k-core O (m)∗ 184

Approximate Densest Subgraph O (m) 51.4

PageRank Iteration O (m) 13.1

Table 2: Work bounds for GBBS implementations, and parallel run-

ning times in seconds on the Hyperlink2012 web graph. All bench-

marks other than strongly connected components are run on the

undirected version of the graph.
∗
denotes that a bound holds in

expectation.m is denotes the number of edges in the graph, and we

assume thatm = Ω(n), where n is the number of vertices. d (G) is the
diameter of the graph, and α (G) is the arboricity of the graph (the

minimum number of spanning forests needed to cover the graph).

The depth bounds for most implementations is poly-logarithmic in

m, and we defer a full list of our depth bounds to the GBBS website.

(Lines 11–12). Specifically, starting with an initial singleton

frontier for each of u and v , for each traversed edge nghRe-

duce computes the PageRank contribution from each source

(Lines 5–6), and reduces the sum to the neighbors (Line 7).

The values on the new frontier (Lines 13–14) are incorpo-

rated into the similarity score through an inner product. The

algorithm stops after a maximum number of iterations (Line

10) or when the ℓ1-distances between consecutive PageRank

vectors for both vertices are below a threshold (Lines 16–17).

E Results on Hyperlink2012

Table 2 shows the experimental results for the graph bench-

marks currently supported in GBBS on the Hyperlink2012

Web graph [33]. The benchmarks are run on a 72-core Dell

PowerEdge R930 (with two-way hyper-threading) with 4 ×

2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with a

4800MHz bus and 45MB L3 cache) and 1TB of main memory.

Table 1 lists the number of vertices and edges in both the

directed, and undirected (-Sym) versions of this graph.

The times reported here are from our earlier work [15, 16],

and the clique-counting time is from [40]. We note that for

triangle counting [46] and higher-clique counting [40], the

bounds that we achieve are work-efficient with respect to

existing, highly-optimized sequential algorithms [12]. Other

than the running times for triangle counting and 4-clique

counting, all of our times run in just a few minutes, which

is surprising given the size of this graph. For triangle and

4-clique counting, our times are slower due to the sheer

number of triangles and 4-cliques supported by this graph—

9.648 × 1012 and 7.306 × 1015, respectively. All of our bench-
marks implementations have strong bounds on their work

and depth.

F GBBS Website

To make it easier to access GBBS documentation and also

view our benchmark specifications, we have built a website

for GBBS, which can be found at https://paralg.github.io/

gbbs/. The website contains:

(1) Input-output specifications for each problem currently

included in GBBS. Each specification page also includes

information on how to compile the benchmark and run

it on supported graph inputs.

(2) A getting-started guide, which explains the requirements

for GBBS, how to install the library, and how to compile

and run the codes on different graph formats.

(3) Instructions for how to use the Python bindings and

update the bindings with new benchmarks.

https://paralg.github.io/gbbs/
https://paralg.github.io/gbbs/

	Abstract
	1 Introduction
	2 GBBS Design
	3 Demonstration Walkthrough
	4 Conclusion and Future Work
	References
	A Related Work
	B Compression
	C edgeMap and Generalizing edgeMap
	D CoSimRank Pseudocode
	E Results on Hyperlink2012
	F GBBS Website

