
FliT: A Library for Simple and Efficient Persistent
Algorithms

Yuanhao Wei
Carnegie Mellon University, USA

yuanhao1@cs.cmu.edu

Naama Ben-David
VMware Research, USA
bendavidn@vmware.com

Michal Friedman
Technion, Israel

michal.f@cs.technion.ac.il

Guy E. Blelloch
Carnegie Mellon University, USA

guyb@cs.cmu.edu

Erez Petrank
Technion, Israel

erez@cs.technion.ac.il

Abstract
Non-volatile random access memory (NVRAM) offers byte-
addressable persistence at speeds comparable to DRAM.
However, with caches remaining volatile, automatic cache
evictions can reorder updates to memory, potentially leaving
persistent memory in an inconsistent state upon a system
crash. Flush and fence instructions can be used to force or-
dering among updates, but are expensive. This has motivated
significant work studying how to write correct and efficient
persistent programs for NVRAM.
In this paper, we present FliT, a C++ library that facili-

tates writing efficient persistent code. Using the library’s
default mode makes any linearizable data structure durable
with minimal changes to the code. FliT avoids many redun-
dant flush instructions by using a novel algorithm to track
dirty cache lines. It also allows for extra optimizations, but
achieves good performance even in its default setting.

To describe the FliT library’s capabilities and guarantees,
we define a persistent programming interface, called the P-V
Interface, which FliT implements. The P-V Interface captures
the expected behavior of code in which some instructions’
effects are persisted and some are not. We show that the
interface captures the desired semantics of many practical
algorithms in the literature.

We apply the FliT library to four different persistent data
structures, and show that across several workloads, persis-
tence implementations, and data structure sizes, the FliT
library always improves operation throughput, by at least
2.1× over a naive implementation in all but one workload.

CCS Concepts: •Computingmethodologies→Concur-
rent algorithms; • Hardware→ Fault tolerance.

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/04.
https://doi.org/10.1145/3503221.3508436

Keywords: Non-volatile Memory, Concurrent Data Struc-
tures, Recoverability

1 Introduction
The long-anticipated fast, byte-addressable non-volatile ran-
dom access memories (NVRAM) are now a reality, with Intel
Optane available alongside DRAM in the newest machines.
NVRAM promises to revolutionize persistent algorithms,
with speeds up to three orders of magnitude faster than
SSD. However, designing correct persistent algorithms for
NVRAM is notoriously difficult. Subtle bugs are easy to over-
look. The main difficulty stems from the fact that, for the
time being, caches and registers remain volatile.1 This means
that if programs are simply run as they would be on DRAM,
significant parts of the state of memory could be lost upon a
system crash, thus not achieving meaningful persistence. On
the other hand, programs designed for SSD or disk cannot
efficiently work as-is on NVRAM, due to the finer atomic
granularity of this new memory technology. New techniques
must therefore be developed to achieve correct and efficient
persistence on NVRAM.

To prevent values on cache from being lost upon a crash,
programmers must use explicit flush and fence instructions
to push cache lines to NVRAM in a certain order. Care must
be taken in deciding which values to flush and when to
execute the flush and fence instructions, since these instruc-
tions are expensive. Researchers have therefore dedicated
significant effort to carefully reasoning about inherent de-
pendencies in algorithms, to omit flushes when it is safe
to do so, yet still guarantee persistence on NVRAM [9–
13, 16, 17, 24, 25, 30, 37].

Data races in persistent programs pose even more chal-
lenges. Since writing and persisting values cannot be done
atomically, a value can be visible to other threads before
being persisted. Thus, to avoid memory inconsistencies, a
process may have to flush locations it reads, even if pro-
cesses flush locations when they write as well. However, in

1While Intel announced the new eADR technology [21] that promises to
persist cache contents as well, this would require powerful and expensive
batteries to implement. Thus, it is unlikely that volatile caches will cease
being a reality in the near future [31].

309

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3503221.3508436
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3503221.3508436&domain=pdf&date_stamp=2022-03-28


PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and Erez Petrank

most cases, a writing process can finish persisting its new
value before any other process reads it. In that case, it seems
wasteful to have the reader flush this value as well. Existing
work in the literature avoids these wasteful flushes by us-
ing a bit in each memory word to indicate whether or not
it has already been flushed [14, 19, 35]. This optimization
has been shown to have tremendous benefits in practice,
but borrowing a bit from each word is not always possible.
Furthermore, this optimization requires modifying memory
using compare-and-swap, and therefore cannot be applied
to data structures designed with other primitives, such as
fetch-and-add or swap.
We propose a new technique for avoiding unnecessary

flushes which is fully general in the sense that it can be
applied to any code safely. The idea is to use counters (sepa-
rate from the memory word) to keep track of ongoing stores
for each variable. When a store begins, it tags the memory
location it operates on by incrementing the corresponding
counter. Loads check the counter when accessing a given
memory location, and only execute a flush instruction on it
if it is tagged. In this way, flush instructions are only exe-
cuted when needed. This technique allows for flexibility in
the placement of these counters. The counters can be, for
example, placed next to each variable or in a separate hash
table. We experiment with different options in Section 6.

We package this technique into an easy-to-use C++ library
called FliT, or Flush if Tagged, which helps programmers eas-
ily design efficient persistent code for NVRAM, abstracting
away details of flush and fence instructions, and applying the
optimization under the hood. At a high level, the FliT library
persists the effect of each instruction without requiring the
programmer to handle low-level flushing and barriers.

The FliT library greatly improves the performance of per-
sistent code, since it enables the program to safely skip flush
instructions when they are not needed. Furthermore, FliT is
easy to use, and its syntax requires minimal changes when
applying it to existing code. Indeed, to use FliT, the program-
mer simply needs to modify the declaration of variables to
be persisted, and annotate when an operation terminates –
this already makes any linearizable data structure durably
linearizable [23]. For example, a C++11 implementation of
Harris’s linked list [20] can be made durably linearizable
using our library by changing just seven lines of code.
Another advantage of the FliT library is its flexibility;

while, by default, the FliT library instruments each load and
store instruction to access the tag counters, this does not
have to be the case. Many previous works have focused on
understanding which values must be persisted, and which
can be left volatile [9, 11, 12, 14, 16, 17]. These efforts have
led to many optimized persistent data structure implementa-
tions. The FliT library can complement these existing works
by allowing the programmer to specify whether a specific
instruction’s arguments should be left volatile. In that case,
the instruction can be annotated as such, and the flushing

mechanism is bypassed. Thus, while the FliT library can
be used to persist all memory values in a naive manner to
yield a fairly performant solution, it can be combined with
existing optimizations to yield even better results.
To more formally argue about the library’s correctness,

we define an abstract interface, called the P-V Interface, which
the FliT library implements. Intuitively, the interface con-
siders two types of instructions; those whose effects must
be persisted (called p-instructions), and those whose persis-
tence has been optimized away (called v-instructions). The
P-V Interface describes the interaction between these two
types of instructions and the resulting effect on the mem-
ory. We show that the P-V Interface captures persistence
behavior in many algorithms in the literature. Intuitively,
the P-V Interface abstracts flush and fence instructions down
to their underlying meaning, and we use it to show that the
FliT library behaves as expected. We believe that the P-V
Interface offers a good balance between ease of program-
ming and the efficiency of potential implementations. Since
it is relatively low-level, it can be implemented efficiently, as
is exemplified by FliT. Furthermore, designing durably lin-
earizable data structures [23] is easy using the P-V Interface;
if every instruction is made a p-instruction, a linearizable
data structure becomes durable. On the other hand, carefully
reasoned optimizations can also be applied by making some
instructions v-instructions where possible. Thus, we believe
that the P-V Interface may be of independent interest.

We evaluate the FliT library by using it to implement four
different durable data structures; a linked-list [20], a BST [27],
a skiplist [14], and a hash table [14]. Furthermore, for each
data structure, we evaluate three different ways of making it
durable; one that makes all instructions p-instructions, and
two more optimized settings that appear in the literature; we
consider the NVTraverse methodology [16], which allows
us to have v-loads while traversing the data structure, and a
manually optimized durable version of the same data struc-
ture [14]. We also evaluate different settings for the place-
ment of the counters in the implementation of FliT, and com-
pare these to the existing bit-tagging technique [14, 19, 35].
We observe that, the FliT library provides up to 200× speedup
over a durable linearizable version implemented with plain
flush instructions. Furthermore, even for highly optimized
implementations, the FliT library still provides up to 4.32×
speedup and never slows down any implementation.

In summary, the contributions of the paper are as follows.

• We present a new technique for tracking dirty cache
lines that is fully general.

• We present the FliT library, which uses this technique
to instrument instructions giving an easy way to de-
sign efficient persistent code.

• We formalize the FliT library interface as the P-V In-
terface, which captures many practical use cases, and

310



FliT: A Library for Simple and Efficient Persistent Algorithms PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

gives a simple way of creating durably linearizable
data structures.

• We evaluate the FliT library and show it can signif-
icantly improve the performance of even the most
optimized persistent algorithms.

The rest of this paper is organized as follows. Background
is discussed in Section 2. In Section 3, we present the P-V In-
terface definition. We rely on this interface when presenting
the FliT library syntax in Section 4, and its implementation
and algorithmic ideas in Section 5. We evaluate the FliT li-
brary in Section 6. Finally, we discuss additional related work
and conclude the paper in Sections 7 and 8.

2 Background and Preliminaries
Flushing on current hardware. In existing architectures,

there are specific flush instructions which write back a value
from a specific cache line to the main memory. The flush
instructions might differ by their strength and whether they
invalidate the cache line, which influences performance. In
addition, there are fence instructions which provide ordering.
A store fence ensures that all preceding writes and flushes
executed by a specific process are visible to other processes
before any writes or flushes executed after the fence. A flush
followed by a fence blocks until all previously flushed lo-
cations have reached main memory, which may be volatile
(i.e., DRAM), or non-volatile (i.e., NVRAM), depending on
the mapping of the specific flushed address.

In the rest of this paper, wewill use the term pwb (persistent-
write-back) to refer to the weakest form of flushing, which
does not block or invalidate. It is persistent, since in all our
use-cases, the memory it flushes is mapped to NVRAM. As
mentioned above, after a non-blocking flush instruction, a
fence must be called to ensure the completion of the flush.
In this paper, we use pfence to refer to a fence instruction. A
pfence called by a process 𝑖 is assumed to order all previous
pwb instructions called by 𝑖 before any pwb or write instruc-
tions that are executed after the pfence. The pwb and pfence
instructions are architecture-agnostic.

Previous flushing optimizations. We defer most of the
discussion of related work to Section 7. However, some
flushing optimizations have appeared in the literature that
are reminiscent of the FliT library’s implementation, so we
briefly discuss them now. David et al. [14] introduce a tech-
nique they call link-and-persist to avoid executing pwb in-
structions when the variable being flushed is clean. Their
technique works by using a single bit in each memory word
as a flag indicating whether or not it has been flushed since
the last time it was updated. When a new value is written, it
is written with the flag up. The writing process then executes
a pwb and a pfence to persist the new value, and then exe-
cutes another store to flip the flag down. A reader executes
a pwb on any location it read that had the flag up, and skips
flushing every time the flag is down. This technique has

appeared in the literature under different names [19, 35, 39],
always optimizing redundant pwbs, and yielding faster algo-
rithms. This technique is similar to the implementation of
our FliT library. However, the FliT library is more general
and flexible. For one, it does not require taking a bit in ev-
ery memory word. While pointers leave unused bits in each
word, some algorithms make use of these bits for other parts
of their logic. The link-and-persist technique is not appli-
cable to such algorithms. Furthermore, for link-and-persist
to work, all stores must be executed using a CAS instruc-
tion (as opposed to, for example, fetch-and-add or swap), to
prevent accidentally removing a flag for a value that has
not yet been flushed. The FliT library does not suffer from
these restrictions. Finally, as will be shown in the rest of the
paper, the FliT library also provides flexibility in allocating
the space used for metadata tracking persistent state, which
can sometimes be a useful way to optimize implementations.

Model. We consider a shared memory setting in which 𝑛
processes access two types of memory; volatile memory and
persistent memory. Volatile memory roughly corresponds to
caches and registers, as well as DRAM, on real architectures,
whereas persistent memory corresponds to the NVRAM. We
assume that upon a system crash anything that is in persistent
memory remains, but anything on volatile memory is lost.

Processes can access shared memory using read, write, or
read-modify-write (RMW) instructions, like compare-and-
swap (CAS), fetch-and-add (FAA), and test-and-set (TAS). We
sometimes refer to read instructions as loads, and to all other
instructions collectively as stores. Each memory location is
categorized at any given point in time as shared or private.
There is a root location in memory, that is always shared. A
private memory location can only be accessed by a single
process 𝑖 , which can make that location shared by executing
a specific store on some shared location. This store depends
on the algorithm; it could be releasing some lock, or swinging
a shared pointer to point to this location.
All accesses are applied to volatile memory. To make a

value that is in volatile memory appear in persistent memory,
processes can execute persistence instructions, which include
pwb and pfence (as long as these addresses are mapped to the
persistent memory). From now on in the paper, whenever
we invoke pwb on some location, we assume that location
is mapped to persistent memory. A pwb instruction takes a
memory location as a parameter. The value 𝑣 in memory loca-
tion ℓ is said to be flushed if a pwb instruction was executed
on ℓ when 𝑣 was in ℓ . After a process 𝑖 executes a pfence
instruction, any value that was flushed by 𝑖 is in persistent
memory.

A data structure 𝐷 defines a set of operations, along with
a sequential specification, defining how the operations be-
have in a sequential execution. Histories are composed of
operations and crash events. A crash event erases all values
in volatile memory, but leaves the persistent memory intact.

311



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and Erez Petrank

Furthermore, after a crash event, new processes are spawned.
A history 𝐻 of operations of data structure 𝐷 , with no crash
events, is linearizable if there is a single point in time during
the execution of each operation at which that operation takes
effect, such that the sequence of these points adheres to the
sequential specification of 𝐷 . A history with crash events
is durably linearizable [23] if it is linearizable after all crash
events are removed from it. A data structure implementa-
tion is linearizable (resp. durably linearizable) if all possible
histories of it are linearizable (resp. durably linearizable).

3 Persistent-Volatile Instruction Interface
Before presenting the FliT library, we define the abstract
interface that it implements. This interface, called the P-
V Interface, is important for discussing the correctness of
the FliT library implementation; we later prove that our
implementation satisfies the abstract interface. Furthermore,
this interface allows users of the FliT library to reason about
their code in a precise manner.
The P-V Interface aims to capture the behavior of a pro-

gram with both volatile and persistent memory. Firstly, han-
dling persistence should not affect the behavior of the volatile
memory. In particular, this means that we should expect to
see the same sequential semantics on volatile memory as we
do in a classic system. That is, any load on volatile memory
should return the value written by the most recent store. For
persistence, we expect the interface to capture the behavior
of code that uses pwb and pfence instructions. We also note
that dependencies between instructions can play a role in
when we expect a value to be persisted; if a value has been
written but never read, it may be ok for it to be lost upon a
system crash, since its effects have not yet been observed.
We formalize these intuitions below.

We begin defining the interface by introducing terminol-
ogy to separate two types of instructions: we say an instruc-
tion is a p-instruction if it has to be persisted (defined below),
and a v-instruction if it does not. More specifically, we refer to
persisted loads and stores as p-loads and p-stores respectively,
and to their volatile counterparts as v-loads and v-stores. If we
do not specify whether an instruction is persisted or volatile,
then it could be either.
To nail this down precisely, we further distinguish be-

tween shared instructions, which can race with other shared
instructions to the same location, and private instructions,
which cannot race with any other instruction. A private in-
struction may allow more flexibility in when it is persisted,
since other processes cannot observe its effects.
We refer to the memory location an instruction operates

on as its location. Furthermore, we associate a value with
each instruction; a load’s value is what it returned (read from
its location), and a store’s value is the value newly written
on its location. When we say an instruction is persisted, we
mean its value is on persistent memory.

To create durable code, wemust reason about dependencies
among different instructions. In particular, for a new store
to be safe in a persistent setting, a process 𝑖 must ensure that
all its dependencies have been persisted before executing the
store. That is, the values that process 𝑖 used to determine the
value and location of the new store must not be lost at a later
time. Furthermore, to maintain a store-order guarantee for
persistent memory, previous store instructions by the same
process 𝑖 must also be persisted before 𝑖’s new store. Finally,
to prevent losing the effects of a completed operation, we
must persist all of 𝑖’s dependencies and store values before 𝑖
completes an operation.

The P-V Interface, defined in Definition 1, formalizes the
meaning of dependencies in terms of p-stores and p-loads.
Conditions 2 and 3 of Definition 1 define the “depends on”
relationship which is later used in Condition 4. Intuitively,
a process 𝑖 depends on its own p-stores (Condition 2), and
on previous p-stores on locations on which 𝑖 executes a p-
load (Condition 3). The interface then requires that these
dependencies be persisted before 𝑖 executes a store that is
visible to other processes (shared), or before it completes an
operation (Condition 4). To capture which p-stores become
dependencies, we consider the linearization of instructions.
Intuitively, an instruction linearizes at the time it accesses
volatile memory (Condition 1). Note that Conditions 1, 2,
and 3 apply to both private and shared instructions, and that
v-instructions do not add dependencies.
Definition 1. [The P-V Interface.] Each instruction has a
linearization point within its interval, such that:

1. Keeping Volatile Memory Behavior. A load 𝑟 on lo-
cation ℓ returns the value of the most recent store on ℓ

that linearized before 𝑟 .
2. Store Dependencies. Let 𝑠 be a linearized p-store exe-

cuted by a process 𝑖 . 𝑖 depends on 𝑠 .
3. Load Dependencies. Let 𝑟 be a p-load by process 𝑖 on

location ℓ . 𝑖 depends on every p-store on ℓ that was lin-
earized before 𝑟 .

4. Persisting Dependencies. Let 𝑡 be either the lineariza-
tion point of a shared store by process 𝑖 , or the time at
which 𝑖 completes an operation. The value of every store
𝑖 depended on before time 𝑡 is persisted by time 𝑡 .

3.1 Applicability of the P-V Interface
In this subsection, we show that for many algorithms de-
signed for NVRAM, it is easy to replace their memory ac-
cesses and all pwb and pfence instructionswith p-instructions
(for dependencies) and v-instructions (for instructions opti-
mized out as non-dependencies).

Simple durability. We begin by considering how to guar-
antee durability using the P-V Interface for any given lin-
earizable algorithm. Izraelevitz et al. [23] show that, for any
linearizable data structure, if every load-acquire and store-
release is accompanied by a pwb and a pfence, and stores are

312



FliT: A Library for Simple and Efficient Persistent Algorithms PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

followed by a pwb, then the data structure becomes durable.
We show that declaring these instructions as p-instructions
achieves the same guarantee. Furthermore, using our imple-
mentation of the P-V Interface yields a much faster solution.
Theorem 3.1. Given a linearizable data structure, if we make
all its loads and stores p-instructions, then the resulting data
structure is durably linearizable.

Due to lack of space, the full proof is deferred to the sup-
plementary material.

NVTraverse. While declaring each load and store as a
p-instruction is very simple, and can be easily applied to
any linearizable algorithm to make it persistent, there may
be opportunities to optimize such a construction if some in-
structions could be identified as non-dependencies (marked
as v-instructions). This can give more flexibility to the under-
lying implementation to omit pwb and pfence instructions
where possible. Indeed, there are several constructions of
durable data structures in the literature that do not persist
every memory instruction. For example, Friedman et al. [16]
present a general construction to make certain lock-free data
structures persistentmore efficiently than the construction of
Izraelevitz et al. mentioned above. In particular, they consider
data structures in traversal form, in which each operation
has a read-only traversal phase followed by a short critical
phase. Many lock-free data structures, including linked-lists,
BSTs, and skiplists, can fit this form. Friedman et al. show
that such data structures do not need to execute any pwb
instructions during the traversal phase. That is, any load in
the traversal phase can be thought of as a v-load, and any
instruction (load or store) in the critical phase can be thought
of as a p-instruction. There is a short transition between the
traversal and critical phases in NVTraverse, in which some
locations that were read during the traversals are flushed.
This can be achieved by executing p-loads on those locations.

Other Algorithms. Many other NVRAM algorithms ap-
pear in the literature, with various techniques to optimize
the interaction with persistent memory. As a general rule
of thumb, any instruction that is not immediately followed
by a pwb in such algorithms can be seen as a v-instruction,
and any other instruction can be seen as a p-instruction.
The ‘dependency’ terminology is used intuitively in several
works [14, 17]; generally, non-dependencies in those works
can be seen as v-instructions.

4 The FliT Library and Interface
In this section, we introduce the FliT library, which imple-
ments the P-V Interface defined in Section 3. At its core, FliT
provides an interface with which to declare each instruction
as either a p- or v-instruction (using the pflag parameter).

The FliT library is implemented in C++ and is available at
https://github.com/cmuparlay/flit. To use the library, a pro-
grammer must declare variables as persist<>. The persist

1 class persist<T, default_pflag> {
2 public member functions:
3 T load(bool pflag = default_pflag);
4 void write(T value, bool pflag = default_pflag);
5 bool CAS(T oldval, T newval, bool pflag = default_pflag);
6 T exchange(T newVal);
7 int FAA(int amount, bool pflag = default_pflag);
8 // FAA is only supported if T is an int type
9 public static functions:
10 void operation_completion(); } ;

Figure 1. Basic interface of FliT.

1 struct Node {
2 persist<int, flush_option::persisted> key;
3 persist<T, flush_option::persisted> value;
4 persist<std::atomic<Node*>, flush_option::persisted> right;
5 persist<std::atomic<Node*>, flush_option::persisted> left; };

7 persist<Node*> root;

9 void lookup(int key) { // automatic BST lookup
10 Node* node = root->left;
11 while(node->left != nullptr) {
12 if(key < node->key) node = node->left;
13 else node = node->right; }
14 bool result = (node->key == key);
15 persist::operation_completion();
16 return result; }

18 bool insert(K key, V val) { // automatic BST insert
19 ...
20 persist::operation_completion();
21 return result; }

Algorithm 2. FliT library used for a concurrent BST.

template can take any type. Declaring a variable in this way
essentially allows the FliT library to track its persistence
state. Whenever this variable is accessed for loads or stores,
the instruction is overloaded with the library’s implementa-
tion of it, which we call a flit-instruction. Each flit-instruction
takes the standard arguments for its underlying instruction,
in addition to a flag specifying whether it is a v- or a p-
instruction. Finally, a special operation_completion function
is made available, which must be called at the end of each
data structure operation. Figure 1 shows the basic interface.

The FliT library further improves the syntax of this inter-
face to allow for minimal code changes to apply it. In par-
ticular, when declaring a variable in the persist template, a
default pflag value can be specified, making the pflag argu-
ment optional when executing instructions on this variable.
Furthermore, we overload the -> and = operators to execute
FliT loads and stores instead of the default one. These opera-
tors can only be used with the default pflag value though,
since it does not allow for an additional argument.

Algorithm 2 shows an example of the implementation of a
concurrent binary tree, achieving durability by making all in-
structions p-instructions. The change over the original code
is highlighted in red. All fields within a node are declared
with the persist<> template, and given the persisted option
as a default for the pflag. This means that without any code

313

https://github.com/cmuparlay/flit


PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and Erez Petrank

changes, all accesses to these node fields will be persisted
flit-instructions. In the example, all code elided inside the
‘. . .’ remains identical to the original implementation. Note
that FliT is purely library-based and does not require any
changes to the compiler or run-time environment.

The example above only shows the use of a single setting;
all instructions are called as the default p-instructions. The
FliT library is in fact more flexible, and is still easy to use
even for more complicated code. We note that while not
shown in the example, it is also possible to leave a variable
declaration as-is, without using the persist template, if that
variable never requires persistence. This use case arises in
some algorithms. For example, Friedman et al. [17] present a
durable queue implementation that completely avoids flush-
ing the head and tail pointers of the queue. In this case, these
variables can be declared normally, without the FliT library.

5 The Algorithm
We now describe the implementation of the FliT library,
which satisfies the P-V Interface specified in Section 3. At
a high-level, each p-store flit-instruction executes a pfence
before its store, and a pwb on this location after the store.
This means that already, conditions 1, 2 and 4 are satisfied
(ignoring dependencies from Condition 3). If we had a guar-
antee that every p-load to any location ℓ will always happen
after persisting the most recent p-store on ℓ , then Condi-
tion 3 would be satisfied as well, without having to change
the implementation of load instructions at all. However, this
is not the case; since we cannot store and persist atomically,
it is possible for another process to read a value written into
ℓ by a shared p-store before the writing process persists.
One way to handle dependencies from Condition 3 is to

have each p-load execute a pwb after reading its value. How-
ever, this would introduce many unnecessary pwbs, since
most pwbs do not execute concurrently with a pending p-
store on the same location. Our goal in this work is to avoid
as much excessive flushing as possible.

The basic idea behind the implementation of FliT is to asso-
ciate each persist variable with a counter, which we call the
flit-counter. Intuitively, this counter keeps track of the num-
ber of pending p-store flit-instructions. When a p-store flit-
instruction begins, it increments its associated flit-counter.
It then executes its modification, followed by a pwb on this
location, and then decrements the counter. This counter is
checked by all p-loads on this location, and if its value is
non-zero, the p-load executes a pwb after reading the value.
A location whose flit-counter is non-zero is said to be tagged,
and p-loads only flush locations that are tagged (i.e. Flush if
Tagged (FliT)); this is where the FliT library gets its name.
This counter will only go above one if there is contention.

Store flit-instructions also execute a pfence before begin-
ning their execution, and another one before decrementing
the counter (in the case of a p-store). These pfences ensure

1 T shared_load(T* X, bool pflag) {
2 T val = X->load();
3 if (pflag && flit_counter(X) > 0)
4 PWB(X);
5 return val; }

7 T private_load(T* X, bool pflag){ return X->load(); }

9 void shared_store(T* X, T args, bool pflag) {
10 PFENCE();
11 if (pflag) {
12 flit_counter(X).fetch&add(1);
13 X->store(args);
14 PWB(X);
15 PFENCE();
16 flit_counter(X).fetch&sub(1); }
17 else X->store(args); }

19 void private_store(T* X, T args, bool pflag) {
20 if (pflag){
21 X->store(args);
22 PWB(X); // flush all cachelines spanned by *X
23 PFENCE();
24 } else X->store(args); }

26 void completeOp(){ PFENCE(); }

Algorithm 3. The Flush-Marking Algorithm

that all modifications are persisted at the correct times ac-
cording to Definition 1. In particular, the pfence before a
store ensures Condition 4 holds, by making sure all values
pwbed by this process (which includes all of its dependen-
cies) have been persisted. The pfence before decrementing
the counter is required for Condition 3; if this pfence is not
executed, a p-load may observe the flit-counter at value 0
and avoid flushing the location, even though the written
value has not yet been persisted.

The FliT library implementation distinguished between
shared and private accesses to the memory. The details above
in fact describe the implementation for shared accesses. If a
given flit-instruction is private, then its implementation is
more efficient; we can ignore the flit-counter associated with
the accessed location, and avoid the pfence before a private
p-store. Intuitively, if a flit-instruction cannot be concurrent
with any other, then the accessed location is guaranteed not
to be tagged (i.e. its counter has value 0), and return to this
state (in the case of a store) before the next flit-instruction
accesses it. Therefore, there is no need to check it, or to
leave any traces for other processes. Furthermore, note that
Condition 4 of the P-V Interface only requires persisting
before shared stores, so we can skip the pfence before private
stores. Unless specified otherwise, we always discuss shared
flit-instructions in the text, since their implementation is
more involved than that of private ones. The pseudocode of
the implementation of instructions on persist variables is
presented in Algorithm 3. Recall that p- and v-instructions
are distinguished by the pflag argument. We combine all
types of store flit-instructions (CAS, FAA, write, etc) into
one in the pseudocode, since their behavior is the same.

314



FliT: A Library for Simple and Efficient Persistent Algorithms PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Note that we do not specify how each memory location
is associated with a flit-counter. In Section 5.1, we discuss
possible ways to assign counters to memory locations, but
we note that this is flexible. In particular, having many con-
current stores to the same memory location, or sharing a
flit-counter among several locations, cannot result in unsafe
behavior (though it may result in extra pwbs executed).

Theorem 5.1. Algorithm 3 satisfies Definition 1.

The proof of this theorem can be found in the full version
of the paper [36].

5.1 Placement of the Counter
In Algorithm 3, we intentionally abstracted away how flit-
counters are assigned to memory locations, using the un-
specified flit-counter() function. Note that the flit-counter
is completely decoupled from the memory locations it repre-
sents, so it can be placed anywhere, and can be shared by any
number of locations. Furthermore, the flit-counters can usu-
ally be very small; the maximum value in a flit-counter is at
most the number of threads, since each thread can increment
at most one flit-counter at most once before decrementing
it. Therefore, on most machines, including the one we test
on, 8 bits suffice to store a flit-counter without the possi-
bility of overflow, assuming the program does not spawn
more threads than processors. If larger counters are needed,
the user can specify a maximum thread count and our li-
brary will ensure the counters are large enough to store this
number.
In this section, we discuss a couple of practical imple-

mentations for the flit-counter() function, which we later
implement and test. However, we remind the reader that
other practical implementations are possible, and that the
FliT library allows the flexibility of modifying the counter
placement to suit the needs of the user.

Adjacent Counter. One straightforward way to imple-
ment the flit-counters is to place each counter adjacent to
the memory word that uses it. That is, we can make each
memory word in an algorithm be a double-word, and use
the second word for the flit-counter. The advantage of this is
that the counter for each word 𝑋 is on the same cache line
as 𝑋 , and therefore accessing it has minimal cost. However,
this approach can be inconvenient and wasteful, since this
fundamentally changes the memory layout of a given data
structure’s objects. Indeed, an object that fit in a single cache
line might overflow it if all its fields double in size.

Hashed Counter. Another flit-counter placement strat-
egy is to use a hash table; each memory location 𝑋 hashes
into the table, which has a counter in each of its entries. This
method allows different memory locations to use the same
flit-counter. The number of collisions depends on the ratio
of the size of the hash table and the number of threads in the
system, since each thread can access at most one hash-table

entry per flit-instruction. The advantage of this approach
is two-fold. First, it saves memory. In many data structures,
especially if they are not highly-contended, most memory lo-
cations will have no pending p-stores most of the time. This
means that sharing counters results in a negligible amount
of extra flushing. Secondly, it does not require changing the
layout of memory in the data structure itself, since the flit-
counters are not placed in the same cache lines as the data
structure elements. However, this can also be a downside in
some situations; since the flit-counter is in a separate cache
line, accessing it could incur an additional cache miss.
Note also that the hashing method allows us to compact

the memory usage of flit-counters even further, by squeezing
several counters into each word. Recall that 8 bits suffice
for each flit-counter in our experiments, so we can fit 8
counters in a single memory word. However, compacting
the flit-counters in this way can increase false-sharing; many
different memory locations could be mapped to counters on
the same cache line.

6 Evaluation
The FliT library’s implementation optimizes pwb instruc-
tions on shared locations. To highlight its effects and focus
on them in the evaluation, we evaluate the library applied
to lock-free data structures, in which most memory accesses
are shared. We apply the FliT library to 4 lock-free data struc-
tures; a linked-list [20], a binary search tree (BST) [27], a
skiplist [15], and a hash table which uses Harris’s linked list
to implement each bucket [20]. For each data structure, we
implement three different ways of making it durable; the first
is the automatic transformation discussed in Section 3.1, in
which all instructions are made p-instructions, the second
is using the NVtraverse framework [16], and the third is
a hand-tuned (manual) construction based on algorithms
presented by David et al [14]. We also study the effect of
various policies for placing the flit-counters in memory with
respect to the memory locations they are associated with.
In particular, we implement the adjacent counter variant
(flit-adjacent) and a hash table (flit-HT), for which we test
five different sizes. We evaluate the tradeoffs of the different
approaches. Finally, we also implement the link-and-persist
technique described by David et al. [14]2. We compare these
implementations of the P-V Interface with the plain version,
which places pwb and pfence instructions where necessary,
but does not utilize any tagging method to avoid pwbs in
the loads.

Setup. We run experiments on a machine with two Xeon
Gold 6252 processors (24 cores, 3.7GHzmax frequency, 33MB
L3 cache, with 2-way hyperthreading). The machine has
375GB of DRAM and 3TB of NVRAM (Intel Optane DC mem-
ory), organized as 12 × 256GB DIMMS (6 per processor).
2There are other implementations of link-and-persist [19, 35, 39], but they
all perform essentially the same steps.

315



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and Erez Petrank

Figure 4. Tuning hashtable size for the FliT library. Throughput
shown is for the automatic BST with 10K keys.

On Intel/AMD architectures [1, 22], the three available
flush instructions are clflush, clflushopt, and clwb, where clwb
is not blocking and supposed to not invalidate the cache.
Thus, clwb is the most efficient one, and is the one we use in
our implementation. The processors are based on the Cas-
cade Lake SP microarchitecture, which supports the clwb
instruction for flushing cache lines (pwb). However, its imple-
mentation of clwb still invalidates cache lines. Performance
might be improved in future platforms where clwb does not
invalidate cache lines. For ordering, we use the sfence in-
struction. The equivalent instructions on ARM are DC CVAP
and a full system DSB instruction for flush and fence exe-
cution [2]. We use libvmmalloc from the PMDK library to
place all dynamically allocated objects in NVRAM, which
is configured in an App-Direct mode to let the NVRAM re-
side alongside the DRAM and allow byte addressable access.
All other objects are stored in RAM. The operating system
is Fedora 27 (Server Edition), and the code was written in
C++ and compiled using g++ (GCC) version 7.3.1. We use
std::atomics with relaxed memory orders where appro-
priate. In our implementation of Algorithm 3, some of the
pfence instructions can be omitted because on our Intel ma-
chine, atomic instructions (such as CAS and FAA) perform
an implicit pfence.
We avoid crossing NUMA-node boundaries, since unex-

pected effects have been observed when allocating across
NUMA nodes on the NVRAM . Hyperthreading is used for
experiments with more than 24 threads. Unless stated oth-
erwise, all data structures are tested with three different
workloads; 0% updates, 5% updates, and 50% updates. Up-
dates are split 50/50 between inserts and deletes, and chosen
randomly. All experiments were run for 5 seconds and an
average of 5 runs is reported.

FliT Hash Table Size. We begin our evaluation by testing
the effect of the size of the flit-HT on performance. There is a
trade-off between memory footprint and the number of colli-
sions on the counters; keeping the table small allows it to fit
in cache, making accesses to it potentially cheaper. However,
if it is too small, hash collisions could cause cache coherence
misses. Figure 4 shows the result of different flit-HT sizes on

Figure 5. Scalability graph for the automatic BST with 10K keys
and 5% updates.

the BST, with three different update ratios. We show the au-
tomatic BST implementation. Other data structures showed
similar patterns, and are omitted for brevity.
We first note that for 0% updates, we see that the larger

the hash table, the lower the throughput. This is as expected;
as the flit-HT grows, less of it fits in cache, and therefore
accesses to it more frequently incur cache misses. Further-
more, at 0% updates, the flit-counters are never updated, so
coherence misses are not a concern. Starting at 5% updates,
we see a stark performance drop for the 4KB hash table. Two
types of hash collisions can occur in this framework: (1) two
locations hash to the same counter, resulting in potentially
redundant pwbs executed, if the flit-counter balance is in-
flated due to an ongoing p-store on a different location. More
severe, however, is the second type of hash collisions: (2)
cache line collisions; the 4K flit-counters in the hash table are
packed into only 64 cache lines. This means that if any two
p-instructions, at least one of which is a p-store, occur on
locations that hash to the same cache line (quite likely), they
suffer a coherence cache miss. In such a small hash table,
this effect is very prominent. This is much less noticeable in
the larger hash tables.

For the rest of the plots, we show only one hash table size;
the 1MB flit-HT. We note that this size fits in the L3 cache,
but is large enough to avoid most hash collisions.

Varying Number of Threads. We now consider the scal-
ability of data structures that use the FliT library, as the
number of threads grows. The results can be seen in Figure 5.
Again, the automatic 10K BST with 5% updates is shown.
Note that in this plot, aside from the flit-HT, we show a
few different settings for comparison. In particular, the gray
line shows a non-persistent version of the data structure, in
which no pwb or pfence instructions are issued. This forms
a baseline that cannot be significantly outperformed by any
persistent implementation. We run the non-persistent ver-
sion also on NVRAM to show the software overheads of
persistence. In Figure 5, this overhead is about 44% for flit-
HT.

The blue line shows a BST version implemented with plain
pwb and pfence usage, without applying the FliT library at all.
This version performs many more pwbs, and its performance

316



FliT: A Library for Simple and Efficient Persistent Algorithms PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

and scalability suffer. We show both the flit-HT and the flit-
adjacent versions of the FliT library. Both of them scale
similarly, and quite well.
We also ran scalability experiments for our linked list,

hashtable, and skiplist data structures and the shape of the
graphs were similar to the one shown in Figure 5. The re-
maining graphs in this section focus on workloads with 44
threads because the relative performance of the algorithms
stays the same across thread counts.

Comparing Durability Methods. Figure 6 shows the
four implemented data structures, each with their three dif-
ferent methods of durability: automatic, NVTraverse, and
manual. When using the FliT library, these methods differ
in how many v-instructions they execute; the automatic ver-
sion only executes p-instructions, the NVTraverse executes
many v-loads while traversing the data structure, and the
manual version carefully reasons about these individual data
structures to make a larger fraction of the instructions be
volatile. All plots show 5% updates, and the smaller size of
the tested data structure (10K nodes for the scalable data
structures, and 128 nodes for the linear linked-list). For each
setting, we show a plain implementation, flit-adjacent, flit-
HT, and link-and-persist where applicable. The plots also
show the performance of the original, non-persistent version
of each data structures using a dotted line at the top of each
graph.
Generally speaking, the link-and-persist method follows

the same patterns as the FliT implementations. We note that
the more optimized the underlying durability implementa-
tion is, the less it benefits from FliT. However, for all settings,
the performance boost from FliT is still substantial; while in
the automatic version, FliT boosts throughput by a factor of
at least 6.68× (in the hash table), and at most 99.5× (in the
skiplist), we still observe an improvement of at least 2.17×
when using FliT in all data structures under all durability
methods. However, it is also important to note that across
the board, the optimized durability methods with FliT out-
perform the automatic durability method with FliT. Thus,
while benefiting less from the FliT library, optimizations that
allow using more v-instructions are still useful, and should
still be implemented using the FliT library.

Interestingly, while optimized solutions do perform better,
the automatic version implemented with the FliT library
performs surprisingly well; it significantly outperforms the
NVTraverse and manual versions without the FliT library
for the BST and hash table, and approximately matches their
performance in the linked-list and skiplist.

Effect of updates. In Figure 7, we show each data struc-
ture with two different sizes, and in each subplot, we vary the
update ratio of the workload. These plots are normalized to
the throughput of the non-persistent baseline for each data
structure. It is easy to see that the more updates executed,
the worse the performance of all persistent versions when

compared to the non-persistent baseline. This is expected;
pwb and pfence instructions are executed more the more
update operations occur. Note that in 0% update workloads,
no pwb or pfence instructions are executed, other than in
initialization and at the end of each operation in the FliT
and link-and-persist versions, since loads only ever execute
a pwb if the location is tagged (and only p-stores can tag
memory locations).

Furthermore, in 0% updates, the flit-adjacent and the link-
and-persist do better than the hash-table variant. This is
because the latter implementations never have to incur an
extra cache miss to access the flit-counter, whereas the flit-
HT incurs L2 misses every time it accesses the counter.

Comparing FliT and Link-and-Persist. We note that
in general, the flit-adjacent and the link-and-persist imple-
mentations perform almost identically. This is because they
both avoid this extra cache miss when accessing the flit-
counter (or flush-bit in the case of link-and-persist). The ex-
ception to this rule is in the skiplist, where link-and-persist
outperforms the flit-adjacent. This is because flit-adjacent
doubles the size of each node. In most data structures, it goes
unnoticed, since each node still fits in a single cache line.
However, the skiplist node stores many pointers, and thus
can overflow a cache line when each word in it is doubled
to fit the flit-counter. This problem does not occur with the
link-and-persist. However, we note that link-and-persist is
not as general, and cannot be implemented with the BST,
since this BST algorithm makes use of all bits in each word.

Interestingly, while flit-adjacent/link-and-persist perform
best when there are 0% updates, this is not always the case
when more updates occur. This is most noticeable in the
smaller hash table and linked-list implementations (Figures 7b
and c). This is because, while in our implementation, we use
Intel’s clwb instruction to perform pwbs, which should not in-
validate cache lines update flushing, invalidations still occur.
Indeed, Intel confirms that clwb, while available for use, is
not currently implemented in hardware. Therefore, p-stores
in the flit-adjacent incur a cachemiss when decrementing the
flit-counter, since they always do so after having executed
a clwb on that cache line, thereby evicting it from memory.
The same thing happens in the link-and-persist implemen-
tation, when flipping the flush-bit after having flushed the
cache line. Since the flit-HT does not place the flit-counter on
the same cache line as its p-store is accessing, decrementing
the flit-counter does not incur this cache miss. This effect is
less prominent in larger data structures, in which traversing
the data structure dominates the overall execution time. Fur-
thermore, we believe that this effect will disappear once Intel
implement their non-invalidating flush option in hardware.
The effects of data structure size on performance and

experiments measuring number of flushes per operation are
discussed in the full version of the paper [36].

317



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and Erez Petrank

(a) BST, 10K keys (b) Hashtable, 10K keys (c) Linked List, 128 keys (d) Skiplist, 10K keys

Figure 6. Throughput of 44 threads with 5% updates. Dotted bar represents throughput of the non-persistent version of each data structure
on NVRAM.

(a) BST, 10K keys (b) Hashtable, 10K keys (c) Linked List, 128 keys (d) Skiplist, 10K keys

(e) BST, 10M keys (f) Hashtable, 10M keys (g) Linked List, 4K keys (h) Skiplist, 10M keys

Figure 7. Throughput results for 44 threads, automatic, normalized to the throughput of the non-persistent version of each data structure.
Dotted bar represents throughput of the non-persistent version of each data structure on NVRAM.

7 Related Work
There have been many papers focusing on finding how to
easily and efficiently program for NVRAM. Izraelevitz et
al. [23] present the notion of durable linearizability, a cor-
rectness condition for persistent data structures. At a high
level, durable linearizability requires a data structure to be
linearizable despite any number of system crashes that occur
during its execution. Izraelevitz et al. also showed how to
place pwb and pfence instructions in linearizable code with
acquire-release consistency to guarantee durable linearizabil-
ity. In this paper we show how to rewrite this construction
in terms of the P-V Interface, and use the FliT library to
optimize this implementation. Izraelevitz et al, also intro-
duce a weaker correctness guarantee, called buffered durable
linearizability, which we do not consider in this paper.

Researchers have also introduced other correctness cri-
teria for persistence and explored how to support them ef-
ficiently [3, 4, 6, 7, 17]. These works consider not only the
state of shared memory upon recovery from a system crash,
but also whether processes can continue their previous ex-
ecution. For example, detectability [17], requires that each
process be able to find out whether its most recently called
operation had completed before a crash. These conditions
can be achieved by storing extra metadata beyond what is
stored in a non-persisted execution. We believe that using
the P-V Interface when designing algorithms for these other
correctness criteria can improve performance and portability
just as much as it does for durably linearizable implementa-
tions.

318



FliT: A Library for Simple and Efficient Persistent Algorithms PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Many algorithms have been designed for NVRAM in the
context of file systems and database indexes [10, 24–26, 33,
37, 38]. These algorithms are often lock-based, rather than
the lock-free data structures that we have compared to in
our evaluation. We believe that the P-V Interface, and its im-
plementation in the FliT library, can also be used to enhance
such algorithms. Indeed, Lee et al. use a technique (like link-
and-persist [14]) in their B-tree algorithm [25]. However, we
focused on lock-free data structures in our evaluation since
the largest benefits in the FliT library’s implementation can
be seen in contended workloads, which are less prominent
in lock-based algorithms. Still, the P-V Interface captures
lock-based algorithms as well, leaving room for optimized
solutions by treating private instructions (those inside a lock)
separately from shared instructions. Similarly, we believe
the P-V Interface can be used to write and reason about effi-
cient persistent transactional memories, a topic that has also
drawn significant attention in recent years [5, 13, 30, 32].

Several papers provide other programming interfaces for
NVRAM. Mnemosyne [34] provides an interface for using
persistent memory through persistent regions. Atlas [8] pro-
vides persistence for general lock-based programs, but does
not capture lock-free algorithms. Gogte et al [18] propose
semantics for persistent synchronization-free regions. Other
works capture the persistence semantics offered by modern
architectures, like Intel-X86 [28] and ARMv8 [29]. This line
of work differs from ours in its goals; we propose an interface
for easy persistent programming, which can be implemented
in hardware using the semantics formalized in these papers.

8 Conclusion
In this paper, we introduce the FliT library, a C++ library
for designing simple and efficient persistent programs for
NVRAM. FliT avoids unnecessary flushing by using flit-
counters to track dirty cache lines.

We test FliT on an Intel machine with Optane DCmemory,
and demonstrate that the FliT library not only achieves re-
markable speedups over even the most optimized persistent
data structures, but is also widely applicable.
Our implementation tested two different ways of allocat-

ing the flit-counters and mapping them to memory locations.
Many other variants are possible, and it would be interesting
to see the effects of different counter allocation strategies on
algorithms that use FliT. One natural option that we did not
explore is to assign one counter per cache line rather than
at the granularity of words.
While FliT’s default mode makes any linearizable data

structure durable with minimal code changes and impressive
performance, it also allows further optimizations. In particu-
lar, it allows a programmer to specify some instructions that
do not need to be persisted. We capture this flexibility with
the P-V Interface, which defines the semantics of code in
which some memory instructions can remain volatile, while

others must be persisted. This interface is language- and
architecture-agnostic, and we show it captures persistence
behavior in many algorithms; we believe that the P-V In-
terface can be implemented on different architectures, and
would achieve similar performance gains as those achieved
by FliT. Note that the algorithm for maintaining flit-counters
is more general than the P-V Interface and can be used to
implement other persistent interfaces as well.

Acknowledgments
We thank the anonymous referees for their comments. This
work was supported by the National Science Foundation
grants CCF-1901381, CCF-1910030, and CCF-1919223 as well
as the Israel Science Foundation grant No. 1102/21.

References
[1] AMD. [n. d.]. AMD64 Architecture Programmer’s Manual. https://www.

amd.com/system/files/TechDocs/24594.pdf
[2] ARM. 2018. ARM Architecture Reference Manual ARMv8. https://static.

docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
[3] Hagit Attiya, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler,

and Eleftherios Kosmas. 2020. Tracking in Order to Recover-Detectable
Recovery of Lock-Free Data Structures. In ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA). 503–505. A full version
is available from https://arxiv.org/abs/1905.13600.

[4] Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. 2018. Nesting-
safe recoverable linearizability: Modular constructions for non-volatile
memory. In ACM Symposium on Principles of Distributed Computing
(PODC). ACM, 7–16.

[5] H Alan Beadle, Wentao Cai, Haosen Wen, and Michael L Scott. 2020.
Nonblocking persistent software transactional memory. In ACM Sym-
posium on Principles and Practice of Parallel Programming (PPOPP).

[6] Naama Ben-David, Guy Blelloch, Michal Friedman, and Yuanhao Wei.
2019. Delay-Free Concurrency on Faulty Persistent Memory,. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[7] Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. 2016. Robust
shared objects for non-volatile main memory. In Conf. on Principles of
Distributed Systems (OPODIS), Vol. 46.

[8] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. 2014.
Atlas: Leveraging locks for non-volatile memory consistency. In Sym-
posium on Object-oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), Vol. 49. ACM, 433–452.

[9] Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric Schkufza,
Onur Mutlu, and Pratap Subrahmanyam. 2016. NVMOVE: Helping
Programmers Move to Byte-Based Persistence. In 4th Workshop on
Interactions of NVM/Flash with Operating Systems and Workloads (IN-
FLOW 16). USENIX Association.

[10] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile
main memory. Proceedings of the VLDB Endowment (PVLDB) (2015).

[11] Joel Coburn, Adrian Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K.
Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making
Persistent Objects Fast and Safe with Next-Generation, Non-Volatile
Memories. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[12] Nachshon Cohen, Rachid Guerraoui, and Mihail Igor Zablotchi. 2018.
The inherent cost of remembering consistently. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). ACM.

[13] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus:
Efficient Algorithms for Persistent Transactional Memory. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 271–
282.

319

https://www.amd.com/system/files/TechDocs/24594.pdf
https://www.amd.com/system/files/TechDocs/24594.pdf
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://arxiv.org/abs/1905.13600


PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and Erez Petrank

[14] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor
Zablotchi. 2018. Log-Free Concurrent Data Structures. In USENIX
Annual Technical Conference.

[15] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University
of Cambridge, Computer Laboratory.

[16] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E Blelloch,
and Erez Petrank. 2020. NVTraverse: in NVRAM data structures, the
destination is more important than the journey. In ACM Conference on
Programming Language Design and Implementation (PLDI).

[17] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-
trank. 2018. A persistent lock-free queue for non-volatile memory. In
ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP), Vol. 53. ACM, 28–40.

[18] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish
Narayanasamy, Peter M Chen, and Thomas F Wenisch. 2018. Per-
sistency for synchronization-free regions. In ACM Conference on Pro-
gramming Language Design and Implementation (PLDI).

[19] Rachid Guerraoui, Alex Kogan, Virendra J Marathe, and Igor Zablotchi.
2020. Efficient multi-word compare and swap. In International Sympo-
sium on Distributed Computing (DISC).

[20] Timothy L Harris. 2001. A pragmatic implementation of non-blocking
linked-lists. In International Symposium on Distributed Computing
(DISC). Springer, 300–314.

[21] Intel. [n. d.]. eADR: New Opportunities for Persistent Memory
Applications. https://software.intel.com/content/www/us/en/
develop/articles/eadr-new-opportunities-for-persistent-memory-
applications.html

[22] Intel. [n. d.]. Intel Architecture Instruction Set Extensions Program-
ming Reference. https://software.intel.com/content/www/us/en/
develop/download/intel-architecture-instruction-set-extensions-
programming-reference.html

[23] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016.
Linearizability of persistent memory objects under a full-system-crash
failure model. In International Symposium on Distributed Computing
(DISC). Springer, 313–327.

[24] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H
Noh. 2017. WORT: Write Optimal Radix Tree for Persistent Memory
Storage Systems.. InUSENIXConference on File and Storage Technologies
(FAST). 257–270.

[25] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. 2019. Recipe: converting concurrent DRAM in-
dexes to persistent-memory indexes. In ACM Symposium on Operating
Systems Principles (SOSP). ACM, 462–477.

[26] Herwig Lejsek, Friðrik Heiðar Ásmundsson, Björn Þór Jónsson, and
Laurent Amsaleg. 2009. NV-Tree: An efficient disk-based index for
approximate search in very large high-dimensional collections. IEEE
Transactions on Pattern Analysis and Machine Intelligence 31, 5 (2009),
869–883.

[27] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-free
Binary Search Trees. In ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP). ACM.

[28] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2019.
Persistency Semantics of the Intel-X86 Architecture. In ACM Sympo-
sium on Principles of Programming Languages (POPL).

[29] Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019. Weak Per-
sistency Semantics from the Ground up: Formalising the Persistency
Semantics of ARMv8 and Transactional Models. In Symposium on
Object-oriented Programming, Systems, Languages and Applications
(OOPSLA), Vol. 3.

[30] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Co-
hen. 2019. OneFile: A Wait-Free Persistent Transactional Memory. In
IEEE/IFIP Conference on Dependable Systems and Networks (DSN).

[31] Steve Scargall. 2020. Persistent Memory Architecture. Apress, 11–30.
[32] PMDK team. 2018. Persistent Memory Programming. https://pmem.io

[33] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,
Roy H Campbell, et al. 2011. Consistent and Durable Data Structures
for Non-Volatile Byte-Addressable Memory.. In USENIX Conference on
File and Storage Technologies (FAST), Vol. 11. 61–75.

[34] Haris Volos, Andres Jaan Tack, andMichaelM Swift. 2011. Mnemosyne:
Lightweight persistent memory. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS). 91–104.

[35] Tianzheng Wang, Levandoski Justin, and Larson Per-Ake. 2018. Easy
lock-free indexing in non-volatile memory. In IEEE International Con-
ference on Data Engineering (ICDE). IEEE, 461–472.

[36] Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch,
and Erez Petrank. 2021. FliT: A Library for Simple and Efficient Persis-
tent Algorithms. arXiv:2108.04202 [cs.DC]

[37] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File
System for Hybrid Volatile/Non-volatile Main Memories. In USENIX
Conference on File and Storage Technologies (FAST). 323–338.

[38] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. 2015. NV-Tree: Reducing consistency cost
for NVM-based single level systems. In USENIX Conference on File and
Storage Technologies (FAST). 167–181.

[39] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez
Petrank. 2019. Efficient Lock-Free Durable Sets. In Symposium on
Object-oriented Programming, Systems, Languages and Applications
(OOPSLA).

320

https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https:// pmem.io
https://arxiv.org/abs/2108.04202


FliT: A Library for Simple and Efficient Persistent Algorithms PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

9 Artifact Evaluation Appendix
9.1 Abstract
This artifact contains an implementation of the FliT library
as well as the source code and scripts needed to reproduce
all the graphs in Section 6.

9.2 Artifact check-list (meta-information)
• Algorithm: FliT library along with the data structures
described in Section 6.

• Program: microbenchmarks
• Compilation: g++ 9.3.0
• Binary: binary not included
• Run-time environment: Ubuntu 16.04.6 LTS
• Hardware: Multi-core machine, preferably with at
least 48 logical cores and NVRAM

• Output: graphs from Section 6 as PNG files.
• Experiments workflow: one script for compiling
the experiments and one script for generating all the
graphs.

• Disk space required (approximately): 120 MB
• Time needed to prepare workflow: approximately
5 minutes

• Time needed to complete experiments: approxi-
mately 6 hours

• Publicly available: yes
• Code licenses:MIT License

9.3 Description
9.3.1 Howdelivered. Available as open source in the artifact
branch of the following GitHub repository: https://github.
com/cmuparlay/flit.

9.3.2 Hardware dependencies. To accurately reproduce
our experimental results, a multi-core machine with at least
48 logical cores is recommended. A newer Intel CPU that sup-
ports CLFLUSHOPT or CLWB is preferable, but the artifact
will also work with the older CLFLUSH instruction. A ma-
chine with Intel Optane DC persistent memory is ideal. The
artifact includes instructions for running on both persistent
memory (NVRAM) and DRAM.

9.3.3 Software dependencies. Our artifact is expected to
run correctly under a variety of Linux x86_64 distributions.
Our experiments were compiled using g++ 9. For scalable
memory allocation in C++, we used jemalloc 5.2.1 as well as
the PMDK libvmmalloc allocator to allocate memory from
NVRAM. Our scripts for running experiments and drawing
graphs require a Python 3 installation with mathplotlib. We
used the numactl command to evenly interleave memory
across the NUMA nodes or restrict the program to a single
socket, depending on the experiment.

9.3.4 Data sets. None.

9.4 Installation
Source code can be complied by running make bench.

9.5 Experiment workflow
After compiling, use bash runall-dram.sh to run all the ex-
periments on DRAM and bash runall-nvram.sh to run on
NVRAM. The generated graphs will be stored in the graphs/
directory. Before running the NVRAM experiments, ensure
that the machine is configured to App-Direct mode and that
the VMMALLOC_POOL_DIR parameter (used by libvmmalloc)
is properly configured in runall-nvram.sh.

9.6 Evaluation and expected results
Given an NVRAM machine with at least 48 logical cores on
numa node 0, the graphs generated by bash runall-nvram.sh
should be very similar to the ones reported in our paper

9.7 Experiment customization
For instructions on how to customize the number of threads,
workload, and data structure size in each experiment, please
see the README file in the artifact branch of the GitHub
repository (https://github.com/cmuparlay/flit).

9.8 Notes
None.

9.9 Methodology
Submission, reviewing and badging methodology:

• https://ctuning.org/ae/submission-20190109.html
• https://ctuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-review-
badging

321

https://github.com/cmuparlay/flit
https://github.com/cmuparlay/flit
https://github.com/cmuparlay/flit
https://ctuning.org/ae/submission-20190109.html
https://ctuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Background and Preliminaries
	3 Persistent-Volatile Instruction Interface
	3.1 Applicability of the P-V Interface

	4 The FliT Library and Interface
	5 The Algorithm
	5.1 Placement of the Counter

	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	9 Artifact Evaluation Appendix
	9.1 Abstract
	9.2 Artifact check-list (meta-information)
	9.3 Description
	9.4 Installation
	9.5 Experiment workflow
	9.6 Evaluation and expected results
	9.7 Experiment customization
	9.8 Notes
	9.9 Methodology


