
Turning Manual Concurrent Memory Reclamation
into Automatic Reference Counting

Daniel Anderson∗

Carnegie Mellon University
Pittsburgh, PA, USA
dlanders@cs.cmu.edu

Guy E. Blelloch∗

Carnegie Mellon University
Pittsburgh, PA, USA
guyb@cs.cmu.edu

Yuanhao Wei∗

Carnegie Mellon University
Pittsburgh, PA, USA

yuanhao1@cs.cmu.edu

Abstract

Safe memory reclamation (SMR) schemes are an essential
tool for lock-free data structures and concurrent program-
ming. However, manual SMR schemes are notoriously dif-
ficult to apply correctly, and automatic schemes, such as
reference counting, have been argued for over a decade to
be too slow for practical purposes. A recent wave of work
has disproved this long-held notion and shown that refer-
ence counting can be as scalable as hazard pointers, one of
the most common manual techniques. Despite these tremen-
dous improvements, there remains a gap of up to 2x or more
in performance between these schemes and faster manual
techniques such as epoch-based reclamation (EBR).

In this work, we first advance these ideas and show that in
many cases, automatic reference counting can in fact be as
fast as the fastest manual SMR techniques. We generalize our
previous algorithm called Concurrent Deferred Reference
Counting (CDRC) to obtain a method for converting any
standard manual SMR technique into an automatic reference
counting technique with a similar performance profile. Our
second contribution is extending this framework to support
weak pointers, which are reference-counted pointers that
automatically break pointer cycles by not contributing to
the reference count, thus addressing a common weakness in
reference-counted garbage collection.

Our experiments with a C++-library implementation show
that our automatic techniques perform in line with their man-
ual counterparts, and that our weak pointer implementation
outperforms the best known atomic weak pointer library
by up to an order of magnitude on high thread counts. All
together, we show that the ease of use of automatic mem-
ory management can be achieved without significant cost to
practical performance or general applicability.

∗Authors are listed in alphabetical order.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523730

CCS Concepts: •Computingmethodologies→Concur-

rent algorithms.

Keywords: automatic memory reclamation, concurrency,
smart pointers, lock-free

ACM Reference Format:

Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2022. Turning

Manual ConcurrentMemory Reclamation into Automatic Reference

Counting. In Proceedings of the 43rd ACM SIGPLAN International

Conference on Programming Language Design and Implementation

(PLDI ’22), June 13ś17, 2022, San Diego, CA, USA. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3519939.3523730

1 Introduction

Manually managing memory for concurrent programs is
notoriously difficult and prone to errors. One solution is to
only work in fully garbage-collected languages but this is not
always possible, and comes with its own performance prob-
lems, often yielding no control to the user. On the other hand,
manually managing memory can be challenging even for
sequential programs, but the concurrent setting makes it sig-
nificantly more difficult. In particular, concurrent programs
can suffer from read-reclaim races [12] with potentially dis-
astrous results. For example, one thread could overwrite a
location containing a pointer to an object, and then reclaim
the memory for that object since it is not being referred to
anymore. Another thread executing concurrently could read
the location just before it is overwritten. It could then access
the contents of the object, which by now might have been
reclaimed and perhaps even been reallocated for another use,
or returned to the operating system.
Over the past two decades, researchers have developed

a broad set of techniques to avoid such read-reclaim races.
The goal of these techniques is to delay the destruction and
reclamation on an object until it can be ensured that no
thread can still access the object. These techniques are gen-
erally referred to as safe memory reclamation (SMR), and
include approaches such as read-copy-update (RCU) [10],
epoch-based-reclamation (EBR) [8], hazard-pointers [19],
pass-the-buck [13], pass-the-pointer [4], interval-based recla-
mation (IBR) [30], Hyaline [25], and others [2, 27]. All these
approaches replace the destruction of an object with a retire
operation, which delays the actual destruction until it is safe.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

61

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3519939.3523730
https://doi.org/10.1145/3519939.3523730
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519939.3523730&domain=pdf&date_stamp=2022-06-09

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

The SMR approaches differ in how they ensure the recla-
mation and destruction is safe. The approaches can be parti-
tioned broadly into two classes. Protected-region techniques,
such as RCU, EBR, IBR, and hyaline, protect regions of code,
while protected-pointer techniques, such as hazard-pointers,
pass-the-buck, and pass-the-pointer, are based on protecting
individual pointers. The protected-region techniques tend
to be faster since they only need a memory barrier on ev-
ery critical region instead of every read, but require more
space due to longer delays between a retire and reclamation.
Both classes of manual techniques, however, are difficult to
use and can lead to subtle and hard to reproduce bugs. As
evidence, Anderson et al. [1] noted several instances where
manual techniques of both kinds were applied incorrectly.

An alternative approach for memory management in lan-
guages without built-in garbage collection (or even with)
is to use reference counting. Reference counting requires
very few modifications for programmers to integrate into
their code, and provides memory safety and leak freedom
automatically as long as the programmer does not create
reference cycles. Reference counting is still vulnerable to
read-reclaim races , but the race can be managed by the
reference counting library itself instead of by the user.

Reference cycles can be broken with so-called weak point-
ers [16], allowing the cycles to be collected. Weak pointers
do not prevent the collection of the objects they point to,
but are different from raw pointers in that they provide a
way of checking if the object they point to is still alive (i.e.
not yet reclaimed), and if so, they can be upgraded to strong
pointers. Weak pointers can be used to store back/parent
pointers in many data structures or for other pointers that
would have otherwise caused a troublesome cycle. As long
as a node is not part of any strong reference cycle by the
time it becomes unreachable, it will be automatically freed.

Owing to the ease of use of automatic reference counting,
there has been increasing interest in concurrent (atomic)
reference-counted pointers (both strong and weak), as evi-
denced by their inclusion in the most recent C++ standard
(C++20), and many recent papers on the topic [1, 4, 29]. Early
approaches [6, 13] suffered severe performance issues due
to contention on the reference counts, but more recent ap-
proaches, such as FRC [29], OrcGC [4], and CDRC [1], have
been able to avoid this problem by temporarily protecting
pointers without incrementing the reference counts. How-
ever, even these recent efficient concurrent reference count-
ing approaches can have significant performance degrada-
tion relative to manual reclamation. The CDRC paper reports
up to a factor of two in performance degradation relative
to manual collection via EBR. The main issue is the use of
protected-pointer techniques which require extra memory
barriers on every read (even if the count is not incremented).
In this paper, we show that reference counting can be

nearly as fast as any manual technique while using a similar
amount of memory (in most cases), thus showing that the

ease-of-use of automatic approaches comes at no significant
cost to practical performance. Our method is based on CDRC,
which combines reference counting and hazard pointers in
a novel way. Unlike traditional methods which use hazard
pointers to protect a block of memory from being freed, the
key insight in CDRC is that hazard pointers can be used to
protect the reference count itself from being decremented.
This simple insight leads to two crucial patterns. First, de-
ferred decrements allow increments to proceed without fear
of racing with a decrement that might set the counter to zero,
thus solving the read-reclaim race. Second, and critically for
performance, being able to temporarily protect the reference
count from decrements enables readers to safely read the
managed object without fear of its destruction and without
the performance cost of incrementing the reference count.

One of the contributions of this paper is generalizing the
CDRC technique so that the hazard pointer scheme can be re-
placed with just about any standard SMR scheme to yield an
automatic version of that scheme with a similar performance
profile. We apply this to three (very different) state-of-the-art
manual techniques, EBR, IBR and Hyaline, to yield automatic
versions of all three. To the best of our knowledge, this is the
first time reference counting has been combined with any
manual technique outside of variations of hazard-pointers.
The resulting algorithms are all lock-free, assuming that the
SMR scheme being automated is lock-free.
As a second contribution, we show how this framework

can be extended even further to support lock-free atomic
weak pointers that also allow safe reads without increment-
ing the reference count. We use them to implement a concur-
rent doubly-linked-list based queue [26], and show that our
implementation is several times faster than the only other
lock-free atomic weak pointer that we are aware of [32].

A key challenge with weak pointers is supporting the up-
grade to strong pointers efficiently. This requires being able
to atomically increment the reference count only if it is not
already zero. This operation is typically implemented us-
ing a CAS-loop [17] which takes up to 𝑂 (𝑃) amortized time
per process if 𝑃 processes perform this upgrade at the same
time. Instead, we show how to implement a so-called sticky
counter primitive that supports an increment-if-not-zero op-
eration so that reading and incrementing/decrementing take
only 𝑂 (1) time in the worst case.

Contributions.

• We show that a wide range of manual SMR techniques can
be made automatic using reference counting.

• We show experimentally that our automatic techniques
have similar throughput and memory usage to their man-
ual counterparts. (This represents a 2x-3x throughput im-
provement over existing concurrent reference counting
implementations.)

• We show how to extend our reference counting techniques
to efficiently support atomic weak pointers.

62

Turning Manual Concurrent Memory Reclamation into Automatic Reference Counting PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

• To do so, we implement a theoretically and practically
efficient sticky counter primitive.

• We show that our weak pointers significantly outperform
existing weak pointers in practice.

Outline. In Section 2, we introduce some important back-
ground information and we defer a broader discussion of
related works to Section 6. Section 3 describes a general tech-
nique for making manual memory reclamation automatic.
In Section 4, we show how to extend our algorithms with
support for weakly reference-counted pointers to handle ref-
erence cycles. An experimental evaluation of the techniques
described in this paper is presented in Section 5. Finally, we
conclude in Section 7.

2 Preliminaries

Model. We work in the concurrent shared memory model
with 𝑃 asynchronous processes assuming sequential consis-
tency [15]. Memory barriers or memory ordering instruc-
tions are needed for weaker memory models, and are in-
cluded in our C++ implementations. We use the standard
definitions of wait-free, lock-free and linearizability [15]. Es-
sentially, lock-freedom guarantees that some process makes
progress, while wait-freedom guarantees that every process
makes progress. Roughly speaking, linearizability means
that each operation appears to take effect atomically at some
point during its execution interval. Beyond reads and writes,
we assume the existence of three atomic read-modify-write
primitives: compare_and_swap (CAS), fetch_and_store (FAS),
and fetch_and_add (FAA). All three instructions are sup-
ported by modern processors.

Manual SMR. Most manual SMR schemes have similar
interfaces built around a common set of operations. These
operations include:

• retire(𝑥): Indicate that an allocated object 𝑥 is no longer
reachable by the program, i.e., that it is safe to delete after
all readers currently reading it are finished.

• eject(): Returns a previously retired object that is now safe
to delete. The caller should then free this object.

The retire operation is the critical one; it is what replaces
completely manual memory management (explicit freeing).
A retire operation is essentially a łdelayed freež. Rather than
being freed immediately, the object is freed once any lin-
gering readers have finished with it. The eject operation is
optional and is often performed implicitly by retire, but sep-
arating the two can allow the programmer greater control
over exactly when or how memory is freed.
The difference between protected-pointer and protected-

region techniques is in how they determine when the lin-
gering readers have finished with a retired object, making
it safe to free. Protected-region techniques implement the
following pair of operations:

• begin_critical_section(): Indicate the beginning of a read
critical section.

• end_critical_section(): Indicate the end of the current read
critical section.

For correctness, all reads of objects that are protected by the
SMR scheme must be performed while inside a read critical
section. A retire operation is able to deduce that a retired
object 𝑥 is safe to eject once all critical sections that were
active at the time of its retirement have ended. Protected-
pointer techniques use the following operations instead:

• acquire(𝑚): Indicate the intention to read the contents of
a shared pointer located at the memory location𝑚, and
return the current value of the shared pointer.

• release(𝑝): Indicate that the pointer obtained from a shared
location by acquire is no longer being read.

All reads of objects that are protected by the SMR scheme
must be done so via an acquire operation, and ended by a
corresponding release operation. A retire operation is then
able to safely deduce that a retired object 𝑥 is safe to eject
once all active acquires of it at the time of its retirement have
been released. Note that in many protected pointer schemes
such as hazard-pointer and pass-the-buck, the acquire op-
eration can fail, forcing the program to retry or take a data
structure specific fallback plan.
The difference between protected-pointer and protected-

region techniques is that protected-region techniques pre-
vent all objects from being ejected during their read critical
sections, while protected-pointer techniques are more granu-
lar and only protect the objects actually being read. Protected-
region techniques are therefore usually faster since they
require less bookkeeping, but accumulate more garbage be-
cause they overprotect objects from being ejected.

CDRC. The key idea behind CDRC is to combine manual
SMR and reference counting by using hazard pointers (a
protected-pointer technique) to defer reference-count decre-
ments until they no longer race with increments. Essentially,
instead of protecting an object from being freed, an acquire
operation protects an object’s reference count from being
decremented until a corresponding release is issued, and a
retire operation issues a delayed decrement, which is per-
formed by an eject at a later time when it is not protected
by an active acquire.

To achieve this, Anderson et al. [1] introduce an interface
called acquire-retire, which exposes the same four operations
as protected-pointer schemes: acquire, release, retire,
and eject, but generalizes hazard pointers by allowing a
pointer to be retired multiple times, which is not allowed by
traditional hazard pointers. This additional feature is impor-
tant because each retire corresponds to a delayed decrement,
and there could be multiple of those on the same pointer.
This interface allows them to implement reference-counted
pointers as follows:

63

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

• To copy a shared reference-counted pointer, it is first ac-
quired to protect the reference count from being decre-
mented below one (which would destroy the object and
create a race). The reference count is then incremented,
the protection released, and a new copy of the pointer is
safely returned.

• To overwrite a shared reference-counted pointer with a
new value, the reference count of the desired value is
incremented, and the previous value is replaced via an
atomic exchange (i.e. fetch_and_store). The previous
value is then retired, which issues a deferred decrement to
its reference count, which will be applied by a later eject
once it is no longer protected by a corresponding acquire.

Using this idea, CDRC implements a C++ library containing
three reference-counted pointer types: atomic_shared_ptr,
shared_ptr, and snapshot_ptr. Applying this library in-
volves replacing raw pointers with one of these three smart
pointer types. The interface they support is closely modeled
after atomic<shared_ptr> and shared_ptr from the C++
standard. atomic_shared_ptr supports arbitrary concur-
rent accesses, but is the most expensive to use. shared_ptr
supports everything except read-write races. snapshot_ptr
avoids incrementing reference counts in common case and
is the most efficient, but cannot be shared between threads.
Figure 1 shows a code snippet from Natarajan-Mittal’s

BST [21] using both manual SMR and CDRC. It shows that
manually calling retire sometimes adds non-trivial code. For
example, all the code between lines 12 and 20 can be avoided
with CDRC. This loop is responsible for retiring all the nodes
removed by the pointer swing on line 10. This loop is easy
to forget because in the common (sequential) case, each
pointer swing only removes one internal node, and this bug
has appeared in the artifacts of several papers [4, 5, 9, 23,
30]. Therefore, reference counting techniques like CDRC are
often easier to use and less error-prone.

3 Making Manual SMR Automatic

In this section, we describe how to make manual SMR auto-
matic by combining it with reference counting. Our approach
extends CDRC [1], our previous concurrent reference count-
ing algorithm, which uses a hazard-pointer-like technique
called acquire-retire to delay reference count decrements un-
til they no longer race with increments. Our insight is that
this approach would work for virtually any manual SMR
technique, not just hazard-pointers. Note that the process
of converting from manual to automatic SMR is not auto-
matic, but we present an easy-to-apply framework and show
examples of how to use it.

To generalize CDRC, we first generalize its acquire-retire
interface and then show that this generalized interface can be
implemented from a wide range of manual techniques. Then
we show how to implement concurrent reference counting
using this generalized interface.

1 class Node { K key; atomic<Node*> left, right; };

2 class SeekRecord { Node *ancestor, *successor, *parent, *leaf;};

3 thread_local SeekRecord seekRecord;

5 void cleanup() { // helper function called by remove()

6 Node* ancestor = seekRecord.ancestor;

7 Node* successor = seekRecord.successor;

8 ...

9 /* Update the left child of ancestor to point to sibling */

10 if(ancestor->left.compare_and_swap(successor, sibling)) {

11 /* retire nodes on path from successor to sibling */

12 for(Node* n = successor; n != subling;) {

13 Node* tmp = n;

14 if(getFlag(n->left)) {

15 retire(n->left);

16 n = n->right;

17 } else {

18 retire(n->right);

19 n = n->left; }

20 retire(tmp); }

21 return true;

22 } else return false; }

(a)Manual SMR

23 class Node { K key; atomic_shared_ptr<Node> left, right; };

24 class SeekRecord {

25 snapshot_ptr<Node> ancestor, successor, parent, leaf; };

26 thread_local SeekRecord seekRecord;

28 void cleanup() { // helper function called by remove()

29 snapshot_ptr<Node>& ancestor = seekRecord.ancestor;

30 snapshot_ptr<Node>& successor = seekRecord.successor;

31 ...

32 /* Update the left child of ancestor to point to sibling */

33 return ancestor->left.compare_and_swap(successor, sibling));}

(b) Reference Counting

Figure 1. Code snippet from Natarajan-Mittal’s BST [21]
using (a) manual SMR and (b) reference counting (C++-like
pseudocode).

3.1 Generalized Acquire-Retire Interface

Our generalized acquire-retire interface shown in Figure 2
has several advantages over the original. The original inter-
face is well-suited for capturing protected-pointer SMR tech-
niques (because acquire protects a specific pointer), but not
for capturing other types of SMR techniques. We added three
newmethods to make the interface more general: alloc, and
begin_ and end_critical_section. Adding alloc to the
interface is important for techniques like IBR and HE, which
tag each object with a birth timestamp on allocation.

Beyond generality, another benefit of the interface in Fig-
ure 2 is that it gives us a clean way of implementing snap-
shot pointers. In CDRC, supporting snapshot pointers re-
quires reaching into the internals of their acquire-retire im-
plementation. So unlike the rest of their reference counting
algorithm, their algorithm of snapshot pointers only works
for their specific implementation of acquire-retire. We fix
this problem by breaking their acquire into two operations,
an acquire and a try_acquire. Both operations return a
pointer as well as a guard variable that protects the pointer.
The pointer can be unprotected at any point by passing the

64

Turning Manual Concurrent Memory Reclamation into Automatic Reference Counting PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

1 class AcquireRetire<T> {

2 // Allocate object of type T

3 Function alloc(): T*

5 // Delays destructing ptr

6 Function retire(T* ptr): void

8 // Returns a previously retired pointer

9 // that is no longer protected.

10 Function eject(): optional<T*>

12 Function begin_critical_section(): void

13 Function end_critical_section(): void

15 // Reads a pointer from shared memory and protects it.

16 // Can only protect one pointer at a time.

17 Function acquire(T** ptraddr): pair<T*, Guard>

19 // Reads a pointer from shared memory and tries to protect it

20 // Can fail and return ⊥.

21 Function try_acquire(T** ptraddr): optional<pair<T*, Guard>>

23 // Releases protection

24 Function release(Guard guard): T* };

Figure 2. Generalized acquire-retire interface.

1 class AcquireRetireEBR<T> {

2 using Guard = void; // empty type, never used

3 using Epoch = int;

4 Epoch ann[P]; // initialized to INT_MAX

5 Epoch curEpoch = 0;

6 thread_local List<pair<T*, Epoch>> retired;

8 T* alloc() { return new T(); }

9 void begin_critical_section() { ann[pid] = curEpoch; }

10 void end_critical_section() { ann[pid] = INT_MAX; }

11 void release(Guard guard) {}

13 pair<T*, Guard> acquire(T** ptraddr) {

14 return [*ptraddr, void]; }

16 optional<pair<T*, Guard>> try_acquire(T** ptraddr) {

17 return [*ptraddr, void>]; }

19 // retire + eject implemented as in Figure 2 of [30] };

Figure 3. Generalized acquire-retire implemented with
epoch-based-reclamation. We assume each process knows
its process id 𝑝𝑖𝑑 .

guard variable to release. In HP and HE, this guard variable
would be a pointer to the announcement slot that protects
the pointer. acquire can only protect one pointer at a time,
so the user must alternate between calling acquire and
release. try_acquire on the other hand can protect mul-
tiple pointers with different guards. However try_acquire
may fail and return ⊥ if it runs out of guards (e.g. running
out of hazard-pointers). We use try_acquire to implement
snapshot_ptrs in a black box manner in Section 3.4.

Lastly, just like in the original acquire-retire interface, the
retire operation in Figure 2 takes as input a pointer which
will be returned by a future eject operation when it is no
longer protected.

3.2 Implementing Generalized Acquire-Retire

This new acquire-retire interface can be implemented from
almost any manual SMR technique. Figures 3 and 4 show
implementations from EBR and IBR, respectively. In this

1 class AcquireRetireIBR<T> {

2 using Guard = void; // empty type, never used

3 using Epoch = int;

4 Epoch emptyann = INT_MAX;

5 Epoch beginAnn[P], endAnn[P]; // initialized to emptyann

6 Epoch curEpoch = 0;

7 thread_local Epoch prev_epoch = emptyann;

8 thread_local int counter = 0;

10 void begin_critical_section() {

11 beginAnn[pid] = endAnn[pid] = prev_epoch = curEpoch; }

12 void end_critical_section() {

13 beginAnn[pid] = endAnn[pid] = emptyAnn; }

14 void release(Guard guard) {}

15 class Tagged<T> { Epoch birthEpoch; T t; };

17 T* alloc() {

18 Tagged<T>* taggedObj = new Tagged<T>();

19 taggedObj->birthEpoch = curEpoch;

20 if(counter++ % epoch_freq == 0) curEpoch.fetch_add(1);

21 return addressof(taggedObj->t); }

23 pair<T*, Guard> acquire(T** ptraddr) {

24 while(true) {

25 T* ptr = *ptraddr;

26 Epoch cur_epoch = curEpoch;

27 if(prev_epoch == cur_epoch) return [ptr, void];

28 else endAnn[pid] = prev_epoch = cur_epoch; } }

30 optional<pair<T*, Guard>> try_acquire(T** ptraddr) {

31 return acquire(ptraddr); }

33 // retire + eject implemented as in [30] };

Figure 4. Generalized acquire-retire implemented with
interval-based-reclamation (specifically, 2GEIBR).

section, we will discuss some general patterns in these im-
plementations. Most manual SMR algorithms combine the
functionality of retire and eject into a single retire op-
eration, but this is easy to split into two operations. A more
important difference is that manual SMR is typically used to
delay freeing objects. So instead of returning retired point-
ers to the user, their retire function calls free on pointers
that are no longer protected. We require pointers to be re-
turned to the user because our retire can be used to delay
arbitrary operations on the pointer, for example decrement-
ing the pointer’s reference count. In our implementation
of weak pointers in Section 4, we use three instances of
AcquireRetire, each delaying a different type of operation.

Another reason for having eject return a pointer instead
of directly applying the delayed operation is to prevent eject
from recursively calling itself. For example, if the delayed
operation is a reference count decrement, then this might
trigger recursive reference count decrements, which might
lead to recursive calls to eject. The eject operation is not
guaranteed to behave correctly if called recursively, so we
disallow this possibility by not applying the delayed oper-
ation inside the eject. The final difference between our
retire and the one supported by existing SMR techniques
is that we allow a pointer to be retired any number of times
before it is ejected a single time. Luckily, most SMR algo-
rithms work properly in this kind of situation even though

65

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

they were not designed with it in mind. Protected-pointer ap-
proaches sometimes need to be modified to keep track of the
number of times a pointer is retired and acquired. eject
also has to be modified so that it returns only the pointers
that have been retired more times than acquired. No such
modifications are needed for protected region approaches.
Next, we focus on how to implement acquire, release,

and try_acquire. For protected-region SMR techniques
like EBR, and Hyaline, these operations are trivial to im-
plement because the critical section on its own is enough
to protect all the pointers returned by acquire. So acquire
and try_acquire simply load the pointer and release is a
no-op. For protected-pointer approaches like HP and PTB,
try_acquire has to look for an empty announcement slot
to act as the guard. If all announcement slots are in use,
then try_acquire fails, returning ⊥. For acquire, we re-
serve a special guard / announcement slot that cannot be
used by try_acquire. This ensures that acquire always
succeeds but it means that only one pointer can be protected
by acquire at a time.
Finally, the operations for beginning and ending a crit-

ical section are implemented in the exact same way as in
the corresponding manual SMR technique. So for EBR, they
would just announce and unannounce an epoch, and for
protected-pointer approaches, they would be no-ops.

3.3 Defining Correctness

Just like with the original acquire-retire interface, the tricky
part of defining correctness for the generalized version is
handling the case where a pointer gets retired multiple times
before any copy gets ejected. Fortunately, we can use the
original correctness definition with just some small modi-
fications. The idea behind the original definition is to map
acquires to retires and ejects to retires such that if an acquire
and an eject get mapped to the same retire, then the acquire
must be inactive by the time the eject is executed. This for-
malizes the intuition that a pointer can only be returned by
eject if it is not protected by any active acquire. We begin by
defining what it means for an acquire to be active.

Definition 3.1 (active vs. inactive acquires). We say that

an acquire or a successful try_acquire is active between
when it was invoked and when the guard it returns is passed

to release. After its guard is released, we say it is inactive.

Our acquire-retire interface imposes some restrictions on
how it can be used. These restrictions are captured in the
following definition of proper executions.

Definition 3.2 (proper execution). We say that a concur-

rent execution involving acquire-retire operations is proper
if (1) each active acquire is contained in a critical section, (2)

each guard returned by acquire or try_acquire is passed to

release at most once, and (3) a process cannot call acquire

while its previous acquire is still active.

1 class snapshot_ptr<T> { T* ptr; optional<Guard> guard; };

3 AcquireRetire<T> ar;

5 snapshot_ptr<T> atomic_shared_ptr<T>::get_snapshot() {

6 auto ptr, guard = ar.try_acquire(addressof(this->ptr));

7 if(guard != ⊥) return snapshot_ptr<T>(ptr, guard);

8 ptr, guard = ar.acquire(addressof(this->ptr));

9 increment(ptr); // increment reference count

10 ar.release(guard);

11 return snapshot_ptr<T>(ptr, ⊥); }

13 void snapshot_ptr<T>::release() {

14 if(this->guard != ⊥) ar.release(this->guard);

15 else decrement(this->ptr); }

17 void begin_critical_section() { ar.begin_critical_section(); }

18 void end_critical_section() { ar.end_critical_section(); }

Figure 5. Implementing snapshot pointers using the gener-
alized acquire-retire interface from Figure 2.

The first property in Definition 3.2 is easy to ensure by be-
ginning a critical section before any calls to acquire and
making sure all acquires are inactive before ending the crit-
ical section. The third property just says that acquire can
only be used to protect a single pointer at a time. Now we
are ready to formally define the sequential specifications of
acquire-retire.

Definition 3.3 (acquire-retire). Any proper, concurrent exe-

cution can be linearized to a sequential history with the fol-

lowing guarantees:

• Successful try_acquire(pptr) and acquire(pptr) oper-

ations return the pointer currently stored in ∗𝑝𝑝𝑡𝑟 .

• Let 𝑓 be a function that maps each acquire returning 𝑝 and

each successful try_acquire returning 𝑝 to either a later

retire(p) or ⊥. Let 𝑔 be an injective (one-to-one) function

that maps each eject returning 𝑝 to an earlier retire(p).

For all 𝑓 , there is a 𝑔 such that whenever 𝑓 (𝐴) = 𝑔(𝐸), the

acquire or try_acquire 𝐴 is inactive by the time eject

𝐸 is executed.

3.4 Concurrent Reference Counting

Using the generalized acquire-retire interface, we can imple-
ment concurrent reference counting in much the same way
as CDRC. The main difference is in our implementation of
snapshot_ptrs shown in Figure 5. The code for the other
two reference-counted pointer types, atomic_shared_ptr
and shared_ptr, remains the same except for some minor
updates to use the new acquire-retire interface.
We support snapshot pointers by implementing an oper-

ation called get_snapshot which loads an atomic shared
pointer and creates a snapshot_ptr, and by implement-
ing a release operation which destructs a snapshot_ptr.
get_snapshot first tries to take the fast path which consists
of protecting the pointer with just a try_acquire. If this
try_acquire fails, then it reverts to the slow path which
consists of protecting the pointer using an acquire, then
incrementing the reference count of the pointer, and then

66

Turning Manual Concurrent Memory Reclamation into Automatic Reference Counting PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

releasing the previous acquire since the pointer is now pro-
tected by the incremented reference count. In the slow path,
get_snapshot then constructs and returns a snapshot_ptr
with its guard field set to⊥ to indicate that the slow path was
taken. A snapshot_ptr’s destructor calls ar.release() if
it was constructed via the fast path and decrement other-
wise. As long as a process does not hold on to too many
snapshot_ptrs, get_snapshot will always take the fast
path and not perform any reference count updates. This
is why snapshot_ptr can be cheaper than shared_ptrs.
This is different from CDRC’s get_snapshot implemen-

tation which only works for a specific acquire-retire im-
plementation based on hazard-pointers. In their algorithm,
get_snapshot first looks for an empty announcement lo-
cation and if all of them are taken, it evicts one of the an-
nouncement hazard pointers and increments the reference
count of the evicted pointer to ensure that it stays protected.
Then get_snapshot uses the newly emptied announcement
location to protect the pointer it reads.
Another difference from CDRC’s implementation is that

we require all racy1 reads and writes on atomic shared point-
ers as well as all snapshot pointer lifetimes to be contained
in a critical section. When applying our reference counting
algorithm to a concurrent data structure, this requirement
can be satisfied by wrapping each data structure operation
in a critical section and only holding on to snapshot pointers
during the operation.

4 Weak Pointers

The second classical drawback of reference counting is its
inability to clean up garbage that contains cyclic references.
A common approach to mitigate this issue at the library
level is to include a łweak pointerž type. Weak pointers com-
plement shared pointers (or łstrong pointersž) by holding
a reference to a shared object without contributing to the
reference count. If the reference count of the managed object
reaches zero, it is destroyed, despite any weak pointers that
may have a reference to it.

The advantage of weak pointers over raw pointers is that,
unlike raw pointers, which are unsafe to dereference if they
might point to an already freed object, weak pointers can
tell whether they point to a managed object that has already
been destroyed. This is usually achieved by storing a second
reference count that counts the number of weak pointers
to the managed object. When the (strong) reference count
reaches zero, the managed object is destroyed, but the control
data containing the reference counts is kept intact until both
the strong and weak reference counts reach zero. This allows
weak pointers to safely check that themanaged object is alive
by checking that the strong reference count is non-zero.

1Two operations are said to race if they both access the same atomic shared

pointer and one of them is a write.

The C++ standard library includes support for weak point-
ers, and, as of C++20, support for atomic weak pointers.
However, currently the only standard library implementa-
tion of atomic weak pointers is Microsoft’s STL [20], and it is
lock-based. We know of one commercial implementation in
the just::thread library [32]. We describe how our approach
can be extended to efficiently support weak pointers.

4.1 Library Interface

We add the following types to the reference-counted pointer
library. Figure 6 depicts the relationship between them.

• atomic_weak_ptr: Analogous to atomic_shared_ptr,
an atomic_weak_ptr facilitates atomically loading, stor-
ing, and CASing a weak_ptr into a shared mutable loca-
tion. In addition to load, it also supports a get_snapshot
method, which grants safe local access to the managed
object without modifying the reference count.

• weak_ptr: A weak_ptr is modeled after C++’s standard
weak pointer. Unlike shared_ptr, a weak_ptr cannot be
directly dereferenced. To access the managed object, the
weak_ptr must be upgraded to a shared_ptr. If the man-
aged object has expired, the obtained shared_ptr will be
null to indicate this.

• weak_snapshot_ptr: A weak_snapshot_ptr allows safe
access to the object managed by the atomic_weak_ptr as
of the time it was created, even if the reference count of the
managed object reaches zero during its lifetime. Creating
and reading a weak_snapshot_ptr does not incur a mod-
ification to the reference count. A weak_snapshot_ptr

will be null if the managed object has expired at the time
of its creation.

The subtle difference between a weak_snapshot_ptr and a
snapshot_ptr is that a snapshot_ptr guarantees that the
managed object doesn’t expire (has reference count at least
one) throughout its lifetime, while a weak_snapshot_ptr

only guarantees that the managed object is safely readable,
though it may expire (reach reference count zero) during the
lifetime of the snapshot.

We first describe the main primitives needed to implement
deferred reference counting with weak pointers. We then
describe how to support the main operations on the various
weak pointer types in our library.

4.2 Managing the Managed Object

First, to implement weak pointers, each managed object is
augmented with a second reference count. We distinguish
between the original (strong) reference count and the new
(weak) reference count. When the strong reference count
reaches zero, the managed object is ready to be destroyed.
However, the control data attached to the managed object
(the reference counts plus any extra scheme-specific meta-
data) cannot be destroyed and freed yet, because there might
still exist weak pointers that attempt to access those fields.

67

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

atomic_shared_ptr

snapshot_ptr shared_ptr weak_ptr weak_snapshot_ptr

atomic_weak_ptr

raw pointer

make_shared

Figure 6. The managed pointer types in our library. Arrows between types denote that it is possible to store/load one type
in/from the other, or that it is possible to convert from one type to the other. The three types snapshot_ptr, shared_ptr, and
weak_snapshot_ptr can be safely dereferenced/converted into raw pointers.

Only once both the strong and weak reference counters hit
zero can the entire control block (the managed object plus
the control data) be freed. To correctly detect when both
counters hit zero in the presence of concurrent updates, we
use the standard trick [17, 20] of storing

weak_cnt = #weak refs +

{

1 if #strong refs > 0

0 otherwise.

When the strong count hits zero, it can destroy the managed
object and decrement one from the weak count. To be pre-
cise, this destruction and corresponding decrement must be
delayed in the presence of weak pointers. We will discuss
this in Section 4.4. When the weak count hits zero, the entire
control block is ready to be freed immediately.
In the strong-only setting, the reference count will only

ever be incremented when there already exists at least one
reference, and hence the increment can always be performed
with a fetch-and-add operation. In the weak setting, how-
ever, it is possible that a weak pointer points to a managed
object whose strong reference count could be decremented
to zero at any moment. Attempting to increment the strong
reference count with a fetch-and-add could therefore result
in incrementing the counter from zero, thus resurrecting a
dead object. Our algorithms therefore require an increment-

if-not-zero operation, which can return false if the reference
count is zero, and hence should not be incremented.

The increment-if-not-zero operation is traditionally imple-
mented as a simple CAS loop, which continuously attempts
to add one to reference count as long as it is not zero, or
returns false otherwise. This results in the increment having
lock-free but not wait-free progress. In the next section, we
describe a simple, but to the best of our knowledge, novel im-
plementation of a constant-time wait-free counter that sup-
ports the increment-if-not-zero operation. This data struc-
ture in general is sometimes referred to as a sticky counter.
Specifically, our data structure implements an atomic counter
that supports increment-if-not-zero, decrement, and load, all
in constant time using single-word atomic instructions.

4.3 Wait-Free Increment-if-Not-Zero

Our algorithm can implement a 𝑏-bit wait-free counter using
𝑏 + 2 bits, that is, we use two bits for bookkeeping purposes.
The main idea is simple, we use the highest bit of the refer-
ence counter to indicate whether the reference count is zero.
Any bit pattern in which the highest bit is set is interpreted as
zero, and otherwise is not. Note importantly, that this means
that the stored value being zero is not interpreted as the
reference count being zero! The implementation is described
below and depicted in Figure 7. This technique of using the
high bits to store a flag above a counter is similar to that
of Correia and Ramalhete [3] who implement reader-writer
locks that store a count of the number of shared readers.
Our technique generalizes theirs by allowing constant-time
linearizable reads of the counter.

Increment. Since the presence of the high bit indicates
whether the counter is zero, the increment operation can
just perform a fetch-and-add operation, and check whether
the result has the high bit set. If so, it returns false.

Decrement. The decrement operation should decrement the
reference count and return true if the reference count was
brought to zero, or false otherwise. To decrement the counter,
the algorithm uses a fetch-and-add and checks whether the
counter hits zero. If it does, it must attempt to set the high
bit to indicate this. This is done with a CAS. Note that if the
CAS fails, it must be the case that an increment occurred
that brought the counter back up from zero. In this case,
the decrement can simply act as if the increment occurred
before it, and hence report that it did not bring the counter
to zero. A decrement that races with a load must handle one
additional case described in the next paragraph.

Load. At first glace, the algorithm could try to just load
the stored value, and return zero if the high bit is set. This
however, is not necessarily correct if the stored value is zero.
If the stored value is zero, the high bit might be about to be
set, but an increment might race with it and bring the counter
above zero. Reporting zero would therefore be incorrect. In
order to achieve wait-freedom, the load operation therefore

68

Turning Manual Concurrent Memory Reclamation into Automatic Reference Counting PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

unsigned int zero = 1 << (b - 1);

unsigned int help = 1 << (b - 2);

unsigned int x;

bool increment_if_not_zero() {

auto val = x.fetch_add(1);

return (val & zero) == 0; }

bool decrement() {

if (x.fetch_sub(1) == 1) {

unsigned int e = 0;

if (x.compare_exchange(e, zero)) return true;

else if ((e & help) && (x.exchange(zero) & help)) return true;

} return false; }

unsigned int load() {

auto e = x.load();

if (e == 0 && x.compare_exchange(e, zero | help)) return 0;

return (e & zero) ? 0 : e; }

Figure 7. An implementation of a wait-free reference
counter with constant time increment-if-not-zero, decre-
ment, and load. Note that the compare_exchange operation,
if unsuccessful, atomically loads the value of x into e.

attempts to help set the high bit. If it successfully sets the
high bit, it can return zero. If it fails, the unsuccessful CAS
will return the current value of the counter.

If the load operation successfully helps to store the high
bit, one of the decrements still needs to take responsibility for
being the one who brought the counter to zero. To achieve
this, the helping operation additionally writes the second-
highest bit, to indicate to the decrement operation that it was
helped. If a decrement operation fails to CAS the high bit but
detects the helper bit, it can then perform a fetch-and-store
(exchange in C++) to remove the helper bit. If it removes the
helper bit, it takes credit for bringing the counter to zero.

4.4 Primitives for Weak Reference Counting

The addition of a weak reference count requires us to make
changes to the use of the acquire-retire interface used behind
our reference counting scheme. In the strong-only setting, a
retired pointer always corresponds to a delayed decrement
of the reference count. In the weak setting, our algorithm
also needs to be able to delay decrements of the weak count.

Additionally, in the strong-only setting, obtaining a snap-
shot pointer to a managed object meant that the strong ref-
erence count was at least one, and since the pointer through
which it was obtained is protected, it is guaranteed to remain
at least one. However, this property cannot be guaranteed for
a weak snapshot, because a thread might be about to decre-
ment the last remaining strong reference right as we acquire
it. Therefore, to make weak snapshots safe, an additional
round of deferral is required to defer the destruction of the
managed object after its reference count hits zero. This guar-
antees that after an acquire, if the strong reference count
is at least one, the object will not be destroyed until after
the protection of the snapshot is released. We refer to the
destruction of the managed object as a dispose operation.

1 AcquireRetire<T> strongAR, weakAR, disposeAR;

3 void delayed_decrement(T* p) {

4 strongAR.retire(p);

5 auto x = strongAR.eject();

6 decrement(x); }

8 void delayed_weak_decrement(T* p) {

9 weakAR.retire(p);

10 auto x = weakAR.eject();

11 weak_decrement(x); }

13 void delayed_dispose(T* p) {

14 disposeAR.retire(p);

15 auto x = disposeAR.eject();

16 dispose(x); }

18 T* load_and_increment(T** p) {

19 auto ptr, guard = strongAR.acquire(p);

20 if (ptr) increment(ptr);

21 strongAR.release(guard);

22 return ptr; }

24 T* weak_load_and_increment(T** p) {

25 auto ptr, guard = weakAR.acquire(p);

26 if (ptr) weak_increment(ptr);

27 weakAR.release(guard);

28 return ptr; }

30 bool increment(T* p) {

31 return p->ref_cnt.increment_if_not_zero(); }

33 void weak_increment(T* p) {

34 p->weak_cnt.increment_if_not_zero(); }

36 void decrement(T* p) {

37 if (p->ref_cnt.decrement(1)) {

38 delayed_dispose(p); } }

40 void dispose(T* p) {

41 destroy(p->object);

42 weak_decrement(p); }

44 void weak_decrement(T* p) {

45 if (p->weak_cnt.decrement(1)) {

46 delete p; } }

48 bool expired(T* p) {

49 return p->ref_cnt.load() == 0; }

Figure 8. Primitives for implementing deferred reference
counting with support for weak pointers.

To facilitate these additional needs, instead of using a
single instance of acquire-retire, our enhanced algorithm
makes use of three instancesÐone for strong reference count
decrements, one for weak decrements, and one for disposals.

Integrating these ideas, we extend the set of primitives for
deferred reference counting with weak pointers as follows.
Pseudocode is given in Figure 8. The delayed_decrement,
delayed_weak_decrement, and delayed_dispose opera-
tions make use of three different instances of acquire-retire
to delay a decrement to the strong or weak reference count,
or the destruction of the managed object, until it is no longer
protected by a corresponding acquire.
load_and_increment andweak_load_and_increment

atomically load the value of the pointer stored at the given lo-
cation and perform a safe increment of the strong or weak ref-
erence count respectively. Note that load_and_increment

69

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

does not check whether the increment was successful, be-
cause these functions are only ever called on a pointer loca-
tion that is storing a strong or weak reference respectively,
and hence the reference count is already guaranteed to not
be zero. It is a precondition violation to call this function on a
pointer location that stores an object whose strong reference
count is already zero.
increment and weak_increment attempt to increment

the reference count orweak reference count respectively. The
first returns true if successful. Note that weak_increment
does not need to check for success because objects with a
zero weak reference count are instantly destroyed, and hence
it would be unsafe to attempt to increment the counter any-
way. decrement decrements the strong reference count, and
if it reaches zero, queues up a delayed dispose. A dispose

destroys2 the managed object and decrements the weak ref-
erence count. Similarly, weak_decrement decrements the
weak reference count, and if it hits zero, immediately frees
the managed object and its control data. Lastly, expired
checks whether the managed object is still considered alive
by checking that the reference count is not zero.

4.5 Algorithms for Atomic Weak Pointers

Using the primitives from Figure 8, the algorithms for stor-
ing and loading to/from and CASing into an atomic weak
pointer are very similar to those in CDRC [1]. The main dif-
ference is that we must be careful to use the correct instance
of acquire-retire for protection, and the correct kinds of in-
crements/decrements. The algorithm that is most different
from its strong counterpart is get_snapshot. Pseudocode is
given in Figure 9 and described below.

Storing a weak_ptr in an atomic_weak_ptr. This works
the same as storing a shared_ptr in an atomic_shared_ptr.
The algorithm first increments the weak reference count of
desired, then uses a fetch-and-store (exchange in C++) to
swap the managed object with the given one, and finally
performs a delayed decrement of the weak reference count
of the previously stored object.

Loading a weak_ptr from an atomic_weak_ptr. This is
essentially the same as loading from an atomic_shared_ptr.
The managed object is atomically loaded and has its weak
reference count safely incremented, returning a weak_ptr
to the managed object.

CASing into an atomic_weak_ptr. Compare and swap
begins by protecting the pointer owned by desired. If the
CAS is successful, it increments the weak reference count
of desired and performs a delayed decrement of the weak
reference count of expected. Note that the guard must be
acquired before performing the CAS because otherwise, the

2We use destroy in the object-oriented sense to mean to recursively destroy

all of its fields. If any of its fields are themselves reference-counted pointers,

this would trigger their reference count decrements.

1 void atomic_weak_ptr<T>::store(const weak_ptr<T>& desired) {

2 if (desired.ptr) weak_increment(desired.ptr);

3 auto old_ptr = this->ptr.exchange(desired.ptr);

4 if (old_ptr) delayed_weak_decrement(old_ptr); }

6 weak_ptr<T> atomic_weak_ptr<T>::load() {

7 auto ptr = weak_load_and_increment(addressof(this->ptr));

8 return weak_ptr(ptr); }

10 bool atomic_weak_ptr<T>::compare_and_swap(

11 const weak_ptr<T>& expected, const weak_ptr<T>& desired) {

12 auto ptr, guard = weakAR.acquire(addressof(desired.ptr));

13 if (compare_and_swap(this->ptr, expected.ptr, ptr)) {

14 if (ptr) weak_increment(ptr);

15 if (expected.ptr) delayed_weak_decrement(expected.ptr);

16 weakAR.release(guard);

17 return true; }

18 else {

19 weakAR.release(guard);

20 return false; } }

22 weak_snapshot_ptr<T> atomic_weak_ptr<T>::get_snapshot() {

23 while (true) {

24 auto ptr, weak_guard = weakAR.acquire(addressof(this->ptr));

25 auto _, dispose_guard=disposeAR.try_acquire(addressof(ptr));

26 if (dispose_guard == ⊥ && ptr) increment(ptr);

27 if (ptr && !expired(ptr)) {

28 weakAR.release(weak_guard);

29 return weak_snapshot_ptr(ptr, dispose_guard); }

30 else {

31 disposeAR.release(dispose_guard);

32 weakAR.release(weak_guard);

33 if (ptr == null || this->ptr == ptr)

34 return weak_snapshot_ptr(null); } }

36 void weak_snapshot_ptr<T>::release() {

37 if (this->guard != ⊥) disposeAR.release(this->guard);

38 else decrement(this->ptr); }

Figure 9. C++-like pseudo-code for atomic weak pointers.

CAS might succeed while another process clobbers desired,
destroying it before the reference count increment happens.

Creating a snapshot from an atomic_weak_ptr. Creat-
ing a snapshot from an atomic_weak_ptr is slightly more
complicated than taking one from an atomic_shared_ptr.
The main idea is to try to acquire a protected pointer to the
managed object that prevents the object from being disposed,
and, if the managed object has not expired (the strong refer-
ence count is at least one), return a snapshot containing the
protected pointer. If the try_acquire fails, the backup plan
is to attempt to increment the reference count3. In case the
managed object has already been disposed before protecting
the pointer, the algorithm first acquires protection against a
possible weak decrement, since, otherwise, the control data
could be deleted mid-operation.

If the strong reference count is zero, the obvious algorithm
would just return a snapshot containing a null pointer. How-
ever, this strategy would result in the operation not being
linearizable, because the reference count could be in the pro-
cess of being decremented right as the pointer is acquired.
This would allow for situations where the atomic_weak_ptr

3This only happens with the hazard pointer implementation if too many

snapshots are held at once such that the announcement array runs out of

slots. EBR, IBR and Hyaline never fail.

70

Turning Manual Concurrent Memory Reclamation into Automatic Reference Counting PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

1 class doubly_linked_queue<V> {

2 struct Node {

3 V value;

4 atomic_shared_ptr<Node> next;

5 atomic_weak_ptr<Node> prev;

6 Node(V v) { value = v; next = null; prev = null; } };

8 atomic_shared_ptr<Node> head, tail;

10 void enqueue(V v) {

11 shared_ptr<Node> new_node = shared_ptr<Node>::make_shared(v);

12 critical_section_guard guard;

13 while (true) {

14 snapshot_ptr<Node> ltail = tail.get_snapshot();

15 new_node->prev.store(ltail);

16 // Help the previous enqueue set its next ptr

17 weak_snapshot_ptr<Node> lprev = ltail->prev.get_snapshot();

18 if (lprev && lprev->next == null) lprev->next.store(ltail);

19 if (tail.compare_and_swap(ltail, new_node)) {

20 ltail->next.store(std::move(new_node));

21 return; } } }

23 std::optional<V> dequeue() {

24 critical_section_guard guard;

25 while (true) {

26 snapshot_ptr<Node> lhead = head.get_snapshot();

27 snapshot_ptr<Node> lnext = lhead->next.get_snapshot();

28 if (!lnext) return {}; // Queue is empty

29 if (head.compare_and_swap(lhead, lnext)) {

30 return {lnext->value}; } } } };

Figure 10. Ramalhete and Correia’s concurrent doubly-
linked queue [26] implemented using our weak pointer in-
terface (C++-like pseudocode).

always points to a live object, but the snapshot may return
null if the object was replaced in between the acquire and
the read of the reference count. Therefore, if the reference
count is zero, the algorithm only returns a null pointer if the
atomic_weak_ptr still manages the same acquired pointer.
If not, the algorithm retries from the beginning. This retrying
causes get_snapshot to be lock-free but not wait-free.

4.6 Example Usage

An example of how to apply our weak_ptr interface to Ra-
malhete and Correia’s doubly-linked queue [26] is shown
in Figure 10. The prev pointer of each node is stored in an
atomic weak pointer, whereas the next pointers are stored
in atomic shared pointers. The critical_section_guard
(on lines 12 and 24) is only needed if generalized acquire-
retire was implemented from a protected-region SMR tech-
nique. The critical_section_guard is responsible for call-
ing begin_critical_section in its constructor and also
end_critical_section in its destructor.

5 Experimental Evaluation

We implemented our techniques as a C++ library4 and evalu-
ated them on a series of benchmarks. Our experiments were
run on a 4-socket 72-core machine (4× Intel(R) Xeon(R) E7-
8867 v4, 2.4GHz) with 2-way hyperthreading, a 45MB L3
cache, and 1TB of main memory. Memory was interleaved

4Available at https://github.com/cmuparlay/concurrent_deferred_rc

across sockets using numactl -i all, and we used the jemalloc

allocator [7]. Experiments were written in C++ and com-
piled with GCC 9.2.1 with O3 optimization. Our experiments
vary the number of threads from 1 to 192, which allows us
to measure the effect of oversubscription, as our hardware
supports 144 threads.

5.1 Comparing Manual and Automatic Techniques

We applied the approach in Section 3 to three different
manual SMR techniques, EBR [8], IBR (more specifically,
2GEIBR) [30], and Hyaline (more specifically, Hyaline-1) [22],
to construct three new concurrent reference counting imple-
mentations, which we call RCEBR, RCIBR, and RCHyaline,
respectively. The goal of this section is to understand the
overhead of making manual techniques automatic as well as
to compare the performance of RCEBR, RCIBR, and RCHya-
line with the fastest existing reference counting algorithm.
The two fastest existing reference counting algorithms that
we are aware of are FRC [29] and CDRC [1]. We chose to
compare with CDRC because FRC does not support marked
pointers which are required in all of our benchmarks. For
consistency, we rename CDRC to RCHP in the graphs as it
is a combination of hazard-pointers and reference counting.

As for manual techniques, we compare with HP, EBR, IBR,
and Hyaline. An important parameter to tune when using
EBR and IBR is how often the global epoch gets incremented.
Incrementing too often could bottleneck scalability whereas
incrementing infrequently would increase memory usage.
For EBR and RCEBR, we found a good rate to be one incre-
ment every 10 allocations and for IBR and RCIBR, we found
this to be one increment every 40 allocations.
For both HP and RCHP, we found that prefetching ap-

propriately significantly increased throughput. In particular,
before announcing a pointer in the hazard array, we prefetch
the cache line that it points to because there is a good chance
we will dereference the pointer after succeeding in announc-
ing it. The benefit of this is that we can start loading the
cache line before the memory barrier, which is an expensive
operation. Note that due to this prefetching optimization,
our throughput reported here for HP and RCHP is greater
than the throughput of the same schemes in the CDRC paper.
To benchmark performance, we applied these memory

reclamation techniques to three different lock-free data struc-
tures: Harris-Michael list [11, 18], Michael hash table [18],
and Natarajan-Mittal tree [21].

It has been noted that HP and IBR are not safe to use with
the Natarajan-Mittal tree directly [1]. This is because tra-
versals in the Natarajan-Mittal tree can continue through
marked nodes. We still include these numbers in our exper-
iments for reference, even though these experiments occa-
sionally crash. Modifying the Natarajan-Mittal tree to work
with HP and IBR would likely make it slower. Note that
an advantage of RCHP and RCIBR is that they work with
Natarajan-Mittal tree without any such modifications.

71

https://github.com/cmuparlay/concurrent_deferred_rc

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

1 28 56 84 112 144 172 200
Number of threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

op
/s

)

1 28 56 84 112 144 172 200
Number of threads

0

50

100

150

Ex
tra

 n
od

es
 (T

ho
us

an
ds

)
(a) List. N=1000, updates=10%. Throughput (L), Memory (R)

1 28 56 84 112 144 172 200
Number of threads

0

100

200

300

400

Th
ro

ug
hp

ut
 (M

op
/s

)

1 28 56 84 112 144 172 200
Number of threads

0

200

400

600

800

Ex
tra

 n
od

es
 (T

ho
us

an
ds

)

(b) Hashtable. N=100K, updates=10%. Throughput (L), Memory (R)

1 28 56 84 112 144 172 200
Number of threads

0

50

100

150

Th
ro

ug
hp

ut
 (M

op
/s

)

1 28 56 84 112 144 172 200
Number of threads

0

200

400

600

800

1000

Ex
tra

 n
od

es
 (T

ho
us

an
ds

)

(c) BST. N=100K, updates=10%. Throughput (L), Memory (R)

1 28 56 84 112 144 172 200
Number of threads

0

10

20

30

Th
ro

ug
hp

ut
 (M

op
/s

)

1 28 56 84 112 144 172 200
Number of threads

0

50

100

150

Ex
tra

 n
od

es
 (T

ho
us

an
ds

)

(d) BST. N=100M, updates=10%. Throughput (L), Memory (R)

1 28 56 84 112 144 172 200
Number of threads

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

op
/s

)

1 28 56 84 112 144 172 200
Number of threads

0

50

100

Ex
tra

 n
od

es
 (T

ho
us

an
ds

)

(e) BST. N=100K, updates=1%. Throughput (L), Memory (R)

1 28 56 84 112 144 172 200
Number of threads

0

20

40

60

80
Th

ro
ug

hp
ut

 (M
op

/s
)

1 28 56 84 112 144 172 200
Number of threads

0

500

1000

1500

2000

Ex
tra

 n
od

es
 (T

ho
us

an
ds

)

(f) BST. N=100K, updates=50%. Throughput (L), Memory (R)

Figure 11. Benchmark comparing manual and automatic SMR techniques. Figure 12a shows results for a Harris-Michael list,
Figure 12b for a Michael hash table, and Figures 12cś12f for various workloads on a Natarajan-Mittal tree.

Range query workload.We begin by analyzing the ex-
periment shown in Figure 11. In this workload, we initialized
the Natarajan-Mittal tree with 100K keys randomly selected
from the key range [0, 200𝐾), and then performed update
operations (half insert, half delete) and range queries. We use
a sequential range query algorithm, which is not linearizable.
with equal probability. Each update operation selects a uni-
form random key from [0, 200𝐾) to insert/delete and each
range query selects a uniform random key 𝑘 from the same
range and queries for all keys in the interval [𝑘, 𝑘+64). In this
experiment, we found that RCEBR, RCIBR, and RCHyaline
outperform RCHP by more than 7x on 144 threads. This is be-
cause during a range query, the entire path from the current
node to the root needs to be protected by snapshot_ptrs, so
RCHP eventually runs out of announcement locations and
starts relying on reference count increments, which is signif-
icantly more expensive. RCEBR, RCIBR, and RCHyaline also
performs similarly to their manual counterparts, performing
within 10-15% at 144 threads.

Other workloads. Figure 12 shows the throughput and
memory usage of these SMR technique on a wide variety of
workloads. These workloads only contain updates and single
point lookups. For example, Figure 12c shows a workload

where the Natarajan-Mittal tree is initialized with 100K keys,
and each process performs 10% update operations and 90%

lookups. Again, all keys are chosen uniformly randomly from
a key range twice the initial size of the data structure. For the
hash table experiments, we initialized the number of buckets
so that the average load factor is 1.
When update frequency is low (Figure 12e), RCEBR has

almost the exact same throughput as EBR and RCHyaline is
actually slightly faster than Hyaline. However, RCIBR ends
up being about 20% slower than IBR and this overhead comes
from two main factors. First, RCIBR adds both a reference
count and a birth epoch to each node, and this increase in size
accounts for about half of the performance difference. Sec-
ond, each try_acquire in RCIBR requires reading a thread
local variable storing the process id and this access is surpris-
ingly slow, accounting for the other half of the performance
difference. Overall, on the BST experiments with 144 threads,
RCEBR performs within 10% of EBR (in terms of through-
put) and RCHyaline performs within 15% of Hyaline. Also,
RCEBR is up to 1.7x faster than RCHP in Figure 12c.
In the non-oversubscribed scenarios, the automatic ver-

sion of each memory reclamation scheme tends to use a simi-
lar amount of memory to the manual version. However in the

72

Turning Manual Concurrent Memory Reclamation into Automatic Reference Counting PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

1 28 56 84 112 144 172 200
Number of threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

op
/s

) EBR
IBR
Hyaline
RC (HP)
RC (EBR)
RC (IBR)
RC (Hyaline)

Figure 12. Natarajan-Mittal tree - Range query experiments:
50% updates, 50% range queries of size 64.

0 50 100 150 200
Number of threads

0.0

0.2

0.4

0.6

0.8

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

Our Weak Pointers

Original

just::thread

Figure 13. Benchmark results for atomic weak pointers.
Original is the optimized doubly linked queue of Ramal-
hete and Correia [26] that uses a custom manual memory
management technique. Our algorithm uses atomic weak
pointers powered by the hazard pointer implementation
of acquire-retire. just::thread is a commercial library of
atomic shared and weak pointers.

linked list experiment and also in oversubscribed cases, the
automatic version tends to have several times more memory
overhead. This is because in reference counting techniques,
each retired pointer could recursively prevent the collection
of many nodes beyond the one it directly points to.

5.2 Evaluation of Atomic Weak Pointers

We compare our implementation of atomic weak pointers
with the best known existing lock-free implementation, the
just::thread library [32], and against a manually memory-
managed data structure. For our comparison we use the
doubly linked queue of Ramalhete and Correia [26]. This
queue is a good candidate since it uses back pointers that
can be represented using weak pointers. For this comparison,
we use our reference counting library powered by the hazard
pointer implementation of acquire-retire. We found that the
main bottleneck of the throughput of the data structure is the
contention on the CAS operations, and hence the different
choices of acquire-retire implementation only made minor
differences to the performance.

The original implementation of the data structure does
not use a general purpose memory management scheme,
but actually uses a customized version of hazard pointers
specifically engineered for it. This modified hazard pointers
scheme allows announced nodes to protect not only them-
selves, but also the nodes adjacent to them. This reduces the
number of memory barriers required by the algorithm. For
this reason, it is not likely that a general purpose memory
management scheme would outperform it.

In our experiment, we initialize a single queue with 𝑃 ele-
ments, and have 𝑃 threads. Each thread repeatedly pops an
element from the queue and then reinserts it. We then mea-
sure the number of such operations that were performed per
second. Each benchmark is repeated five times for stability.
The results of this experiment are depicted in Figure 13.

The biggest difference in performance occurs at 𝑃 = 1

(not depicted on the plot due to scale), where the original im-
plementation is 4.5x faster than our weak pointers, and 67x
faster than just::thread. At 𝑃 = 8 threads, our weak pointer
implementation is just 19% slower than the manual approach,
and 4.2x faster than just::thread. This trend roughly contin-
ues to 𝑃 = 192, where our weak pointers are 33% slower than
the manual approach, but 10x faster than just::thread. Given
that the original implementation uses a memory manage-
ment approach that is customized to the data structure at
hand, these results are very promising for a completely auto-
matic approach. Furthermore, we substantially outperform
the best existing automatic approach at all thread counts.

6 Related Work

6.1 Manual SMR

Manual SMR techniques can be broadly classified as either
protected-pointer-based or protected-region-based.

Protected-pointer-based methods. These methods work
by identifying specific objects or memory locations that are
currently in use and hence should not be destroyed/freed.
The collection part of the algorithm is responsible for en-
suring that it never frees something that is currently in
use. Hazard-pointers [19] is one of the most widely used
protected-pointer-based techniques. The main idea is that
every process has some globally visible array of łhazard
pointersž. When a process wishes to read a mutable shared
pointer, it announces its intention to do so by writing the
pointer into one of the hazard pointers. This may require a
retry if the value of the pointer changes before the announce-
ment is complete. When the process has finished reading or
manipulating the shared object, it releases the hazard pointer
by clearing the announcement. When a process removes a
node from the data structure and wishes to free it, it instead
retires the node, which places it in a retired list of nodes
pending deletion. A process that wishes to reclaim memory
must scan the hazard array of every process to ensure that

73

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

it does not reclaim anything currently announced. Nodes in
the retired list that are not announced are safe to free.

Several variants of hazard pointers exist, many of them de-
signed to help implement othermemory reclamation schemes.
Herlihy et al. [13] develop Pass The Buck (PTB), which is
used to implement their algorithm for lock-free reference
counting. Correia et al. [4] develop pass-the-pointer (PTP),
which improves on the memory bounds of traditional haz-
ard pointers and is used to implement their own lock-free
reference counting algorithm, OrcGC. Anderson et al. [1]
introduce acquire-retire, the first constant-time implemen-
tation of hazard-pointers, which also allows a pointer to be
retired multiple times concurrently.

Protected-region-based methods Rather than protecting
specific objects/memory locations, protected-region-based
methods protect groups of objects. This generally results
in lower synchronization cost (fewer memory barriers) and
hence higher throughput, but at the cost of wasting more
memory, since many objects will be protected even when
they do not need to be. Epoch-based reclamation (EBR) [8]
and Read-copy-update (RCU) [10] are the most widely used
protected-region-based techniques. In EBR, the algorithm
maintains a global timestamp called the epoch. Whenever a
memory location is retired, it is placed in a retired list cor-
responding to the current epoch. When the user wishes to
begin an operation that will access or modify shared state,
the executing thread announces the value of the current
epoch. When every thread has announced the value of the
current epoch, the retired list from the previous epoch can
be freed and the epoch can advance to the next value. Note
that this is safe because if an object is retired at epoch 𝑒 and
every process has subsequently announced epoch 𝑒 + 1, then
any thread that was performing an operation at the time of
the retire has since completed. DEBRA [2] is an optimized
implementation of EBR with better practical performance.
Hazard Eras (HE) [23, 27] is a combination of protected-

pointer- and protected-region-based methods. In HE, ac-
quired pointers do not announce the pointer itself, but rather
the epoch on which it was read. If the epoch changes infre-
quently, this results in fewer memory barriers than a full-
blown protected-pointer-based scheme. In HE and Interval-
based Reclamation (IBR) [30], each allocated object is tagged
with a birth epoch. In IBR, a retired object is safe to reclaim
when no announced epoch intersects its birth-death interval.

Hyaline [22, 25] is a variant of EBR that tags each retired
object with a counter corresponding to the number of active
operations. When an operation completes, it can decrement
one from every object that retired during it. The operation
that brings a counter to zero is responsible for freeing it.
Crystalline [24] extends Hyaline with wait-freedom.

6.2 Lock-Free Reference Counting

Lock-free reference counting (LFRC) was first described by
Detlefs et al. [6], but their algorithm requires a DCAS op-
eration (a CAS on two independent words), which is not
supported by any current architecture. Herlihy et al. [13] use
their PTB technique to obtain an algorithm for single-word
lock-free reference counting (SLFRC). The idea is to use PTB
to protect the reference count of the object from being freed
while a process is attempting to increment it. Sundell [28] de-
veloped the first wait-free algorithm for reference counting,
however, some of their operations cost 𝑂 (𝑃) time.
The split reference count technique [31] is a non-SMR-

based lock-free solution for atomic reference counting. It
involves splitting the reference count into an internal count,
and an external count on each mutable shared reference.
Loads from shared references increment the corresponding
external count, while local releases decrement the internal
count instead. When a shared reference is discarded, its ac-
cumulated external count minus one is added to the internal
count. While this technique doesn’t rely on SMR, it tends to
scale poorly in practice since loads must be performed with
a double-word CAS to increment the external count.
The major performance drawback of reference counting

is the necessity to increment the reference count each time
an object is read. Recent work has addressed this by devel-
oping solutions for reference counting that allow safe reads
without incrementing the reference count. Tripp et al. [29]
implement Fast Reference Counter (FRC). FRC uses deferred
reference counting and a per-thread root set (equivalent
to an announcement array of hazard pointers) to achieve
low contention and enable safe reads of managed objects
without incrementing the reference count. Correia et al. [4]
develop OrcGC, which uses their PTP technique to imple-
ment reference-counted pointers that can also be safely read
without incrementing. Finally, Anderson et al. [1] develop
Concurrent Deferred Reference Counting (CDRC), which
uses the acquire-retire technique to defer reference count
decrements and also enable safe reads without increments.

7 Conclusion

In this work, we showed that an automatic memory reclama-
tion technique can compete with the best manual techniques,
and showed that such a technique can also support atomic
weak pointers. Though perhaps it is not yet time to com-
pletely retire manual memory reclamation, we believe that
these results show, even more strongly than previous re-
sults, that we are getting close, and that automatic memory
management should be preferable in a majority of situations.

Acknowledgments

We thank the anonymous referees for their comments and
suggestions. This researchwas supported by NSF grants CCF-
1901381, CCF-1910030, CCF-1919223, and CCF-2119069.

74

Turning Manual Concurrent Memory Reclamation into Automatic Reference Counting PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

References
[1] Daniel Anderson, Guy E Blelloch, and Yuanhao Wei. 2021. Concurrent

deferred reference counting with constant-time overhead. In ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI). 526ś541.

[2] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free

Data Structures: There has to be a Better Way. In ACM Symposium on

Principles of Distributed Computing (PODC). 261ś270.

[3] Andreia Correia and Pedro Ramalhete. 2018. Strong trylocks for reader-

writer locks. In ACM Symposium on Principles and Practice of Parallel

Programming (PPoPP).

[4] Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2021. OrcGC:

automatic lock-free memory reclamation. In ACM Symposium on Prin-

ciples and Practice of Parallel Programming (PPoPP). 205ś218.

[5] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asyn-

chronized concurrency: The secret to scaling concurrent search data

structures. In ACM SIGARCH Computer Architecture News, Vol. 43.

ACM, 631ś644.

[6] David Detlefs, Paul Alan Martin, Mark Moir, and Guy L. Steele Jr. 2002.

Lock-free reference counting. Distributed Computing 15, 4 (2002),

255ś271.

[7] J. Evans. 2019 (accessed November 5, 2019). Scalable memory alloca-

tion using jemalloc. https://www.facebook.com/notes/facebook-engineering/

scalable-memory-allocation-using-jemalloc/480222803919.

[8] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University

of Cambridge, Computer Laboratory.

[9] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E Blelloch,

and Erez Petrank. 2020. NVTraverse: in NVRAM data structures, the

destination is more important than the journey. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI).

377ś392.

[10] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole. 2008. The

read-copy-update mechanism for supporting real-time applications

on shared-memory multiprocessor systems with Linux. IBM Systems

Journal 47, 2 (2008), 221ś236. https://doi.org/10.1147/sj.472.0221

[11] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking

Linked-Lists. In International Symposium on Distributed Computing

(DISC). 300ś314. https://doi.org/10.1007/3-540-45414-4_21

[12] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and

Jonathan Walpole. 2007. Performance of memory reclamation for

lockless synchronization. J. Parallel Distrib. Comput. 67, 12 (2007),

1270ś1285. https://doi.org/10.1016/j.jpdc.2007.04.010

[13] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005.

Nonblocking Memory Management Support for Dynamic-sized Data

Structures. ACM Trans. Comput. Syst. 23, 2 (May 2005).

[14] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2002. The Re-

peat Offender Problem: A Mechanism for Supporting Dynamic-Sized,

Lock-Free Data Structures. In International Symposium on Distributed

Computing (DISC). 339ś353. https://doi.org/10.1007/3-540-36108-1_23

[15] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Pro-

gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA.

[16] Richard Jones, Antony Hosking, and Eliot Moss. 2011. The Garbage

Collection Handbook: The Art of Automatic Memory Management (1st

ed.). Chapman & Hall/CRC.

[17] The GNU C++ Library. 2019 (accessed November 5, 2019). The GNU

C++ Library. https://gcc.gnu.org/onlinedocs/libstdc++/.

[18] Maged M Michael. 2002. High performance dynamic lock-free hash

tables and list-based sets. In ACM Symposium on Parallelism in Algo-

rithms and Architectures (SPAA).

[19] Maged M Michael. 2004. Hazard pointers: Safe memory reclamation

for lock-free objects. IEEE Transactions on Parallel and Distributed

Systems 15, 6 (2004), 491ś504.
[20] Microsoft. 2021 (accessed November 17, 2021). Microsoft’s C++ Stan-

dard Library. https://github.com/microsoft/STL.

[21] Aravind Natarajan and Neeraj Mittal. 2014. Fast concurrent lock-free

binary search trees. In ACM Symposium on Principles and Practice of

Parallel Programming (PPoPP).

[22] Ruslan Nikolaev and Binoy Ravindran. 2019. Hyaline: fast and trans-

parent lock-free memory reclamation. InACM Symposium on Principles

of Distributed Computing (PODC).

[23] Ruslan Nikolaev and Binoy Ravindran. 2020. Universal Wait-Free

Memory Reclamation. In ACM Symposium on Principles and Practice

of Parallel Programming (PPoPP). 130ś143.

[24] Ruslan Nikolaev and Binoy Ravindran. 2021. Brief Announcement:

Crystalline: Fast and Memory Efficient Wait-Free Reclamation. In

International Symposium on Distributed Computing (DISC).

[25] Ruslan Nikolaev and Binoy Ravindran. 2021. Snapshot-free, trans-

parent, and robust memory reclamation for lock-free data structures.

In ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). 987ś1002.

[26] Pedro Ramalhete and Andreia Correia. [n. d.]. DoubleLink - A Low-

Overhead Lock-Free Queue. http://concurrencyfreaks.blogspot.com/2017/

01/doublelink-low-overhead-lock-free-queue.html.

[27] Pedro Ramalhete and Andreia Correia. 2017. Brief announcement:

Hazard eras-non-blocking memory reclamation. In ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA). ACM, 367ś369.

[28] Håkan Sundell. 2005. Wait-Free Reference Counting and Memory

Management. In International Parallel and Distributed Processing Sym-

posium (IPDPS).

[29] Charles Tripp, David Hyde, and Benjamin Grossman-Ponemon. 2018.

FRC: a high-performance concurrent parallel deferred reference

counter for C++. Acm Sigplan Notices 53, 5 (2018), 14ś28.

[30] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and

Michael L Scott. 2018. Interval-based memory reclamation. ACM

SIGPLAN Notices 53, 1 (2018), 1ś13.

[31] Anthony Williams. 2012. C++ concurrency in action: practical multi-

threading. Manning Publ.

[32] Anthony Williams. 2019 (accessed November 5, 2019). just::thread

Concurrency Library. https://www.stdthread.co.uk.

75

https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://doi.org/10.1147/sj.472.0221
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1007/3-540-36108-1_23
https://gcc.gnu.org/onlinedocs/libstdc++/
https://github.com/microsoft/STL
http://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-overhead-lock-free-queue.html
http://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-overhead-lock-free-queue.html
https://www.stdthread.co.uk

	Abstract
	1 Introduction
	2 Preliminaries
	3 Making Manual SMR Automatic
	3.1 Generalized Acquire-Retire Interface
	3.2 Implementing Generalized Acquire-Retire
	3.3 Defining Correctness
	3.4 Concurrent Reference Counting

	4 Weak Pointers
	4.1 Library Interface
	4.2 Managing the Managed Object
	4.3 Wait-free increment-if-not-zero
	4.4 Primitives for Weak Reference Counting
	4.5 Algorithms for Atomic Weak Pointers
	4.6 Example Usage

	5 Experimental Evaluation
	5.1 Comparing Manual and Automatic Techniques
	5.2 Evaluation of Atomic Weak Pointers

	6 Related Work
	6.1 Manual SMR
	6.2 Lock-free Reference Counting

	7 Conclusion
	References

