Space-Efficient Dynamic Orthogonal Point Location,

Segment Intersection, and Range Reporting

Guy E. Blelloch*

Abstract

We describe an asymptotically optimal data-structure for
dynamic point location for horizontal segments. For n
line-segments, queries take O(logn) time, updates take
O(logn) amortized time and the data structure uses O(n)
space. This is the first structure for the problem that
is optimal in space and time (modulo the possibility of
removing amortization). We also describe dynamic data
structures for orthogonal range reporting and orthogonal
intersection reporting. In both data structures for n points
(segments) updates take O(logn) amortized time, queries
take O(logn+ klogn/loglogn) time, and the structures use
O(n) space, where k is the size of the output. The model of

computation is the unit cost RAM.

1 Introduction

Let S = {s1,892,...,5n} be a set of horizontal segments
in R2, where each s; = (z;,2},vi), z; < 2. We consider
two well-studied problems that maintain a data struc-
ture for S while supporting queries: horizontal point lo-
cation supports queries on a point p = (zp, yp) returning
the segment max,{(z,2’,y) € S|z <z, < 2’y < yp},
and orthogonal segment intersection supports queries on
a vertical segment s = (zs,ys,y.) returning the seg-
ments {(z,z',y) € S|z < x5 < 2',ys <y < y.}. The
dynamic versions allow for the insertion and deletion
of segments in S. Tables 1 and 2 summarize previous
bounds along with our bounds on these problems. Our
results are the first which are asymptotically optimal
(modulo the possibility of removing amortization) for
horizontal point location. For orthogonal segment inter-
section they are the first results that use O(n) space and
polylogarithmic query and update times. The horizon-
tal point location problems has applications to retroac-
tive data structures [6]. In particular our results allow
for a fully retroactive ordered dictionary with O(logn)

~ *Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213. This work was supported in part by
the National Science Foundation as part of the Aladdin Center
(www.aladdin.cmu.edu) under grant CCR-0122581. This version
of Jan 17, 2008 differs from the version published in SODA 2008
in that some typos have been fixed.

amortized time retroactive updates and O(logn) time
retroactive queries.

Let P = {p1,p2,---,pn} be a set of points in R
The orthogonal range reporting problem is to maintain
a data structure for P while supporting queries on a box
b= (zv, x}, Ys, y,) returning the points {(z,y) € Play <
z < z,y <y <y} The dynamic version allows
for the insertion and deletion of points in P. Table 3
summarizes bounds on the problem.

To develop our structures we introduce a reasonably
general tree structure, which we refer to as compact
subset trees, and use it for all the problems we consider.
As is standard in many geometric structures, the tree is
used to store auxiliary ordered lists within each node
(e.g., segment trees). Similarly to the static range-
reporting structures of Chazelle [4] we save space by
not storing the data within the tree but rather just
supplying a way to follow a path back to the data, which
is stored at the root. Within the tree we make use of
locally allocated data structures in which the pointers
within a structure only use O(log!) bits for a structure
using [locations. By using fractional cascading [5, 10]
with bridges between the lists and locally allocated data
structures between the bridges in each list we need only
O(loglogn) bits per list element on average.

To achieve O(logn) time we use and extend ideas
from Mortensen [11, 12| to support trees with an
O(log® n) branching factor for some 0 < € < 1 and hence
a depth of O(logn/loglogn). Mortensen described a
method to assign colors to the elements of a list L and
support reporting all elements between two elements
of the list which are assigned any subset of colors in
O(loglog |L| 4 k) time, for k results. We extend this to
allow predecessor queries on subsets of colors.

2 Preliminaries

We assume the RAM model with words of size w =
©(logn) where n is the number of bits in our data
structure. We sometimes refer to space in number of
words and sometimes in bits, but try to be specific.
We use table lookup to implement certain operations
on words. In all cases the table lookup runs in O(«)
time using static shared tables of size O(2%/). Since

Model | Space Query Insert Delete
Mehlhorn and Naher [10] | pointer | nlogn | lgnlglgn tlgnlglgn tlgnlglgn
Dietz and Raman [7] RAM | nlogn | lgnlglgn lgnlglgn lgnlglgn
Arge, et. al. [2]* RAM n ilgn Ttlgnlg't€lgn | $1lg%n/lglgn
In this paper RAM n lgn tlgn tlgn

Table 1: Horizontal Point Location (f amortized, I expected, * works for non-horizontal segments). Space bounds

are in words.

Segment Intersection Model Space Query Insert Delete
Mehlhorn and Naher [10] | pointer | nlgn | lgnlglgn+k | tlgnlglgn | tlgnlglgn
Dietz and Raman [7] RAM nlgn | lgnlglgn+k | lgnlglgn lgnlglgn
Mortensen [11] RAM 15;” lgn+k lgn lgn
In this paper RAM n lgn + kléglg”n tlgn tlgn
Table 2: Orthogonal Segment Intersection
Range Reporting Model Space Query Insert Delete
Mehlhorn and Naher [10] | pointer nlgn lgnlglgn+k | tlgnlglgn | flgnlglgn
Dietz and Raman [7] RAM nlgn lgnlglgn+k lgnlglgn lgnlglgn
Nekrich [13] RAM nlglgn lgn + kloglogn g% n lgnloglogn
Mortensen [12] RAM | nlg"/8+en lgn+k lgn lgn
In this paper RAM n lgn+k lglglgnn tlgn tlgn

Table 3: Orthogonal Range Reporting

we only use a constant number of such operations the
space for the tables is O(n) bits for some constant .

For a set of points S we use the notation max, (S)
and max,(S) to indicate the point from S with the
maximum x coordinate or y coordinate respectively. We
assume that max® = 1 and min@® = T. For a node u in
a rooted tree T we use P(u) to indicate the path from
the root to the node u, and use p(u) to indicate the
parent of u. We say a tree is ordered if the children of
every node are totally ordered. For two lists L1 and Lo
we use L1 C Lo to indicate that Ly is a subsequence
of Ly (i.e., Ly is any subset of the elements of Lo
maintaining the same order.)

We use various data structures that maintain colors
on the elements. Consider a set of colors C, and the set
of integers I,, = [0...m — 1]. The colored predecessor
problem maintains a set S C I, x C while supporting
the following operations, where C' C C:

insert(S,i,¢): inserts (4,c) into S,

delete(S,4,c): delete (i,¢) from S,

pred(S,i,C) = max{i : (i',c) € Llc € C,i < i},
report(S,i,i",C) ={i' : (i’,c) € Slee C,i <i' <i"}.

For a set of colors C the colored list problem maintains
a list of elements L such that each e € L is assigned
a set of colors C, C C, while supporting the following
operations:

insert(L,e): for e € L create a new element e’ in L
immediately following e and return e’

delete(L,e): for e € L with C, = (), delete e from L,
color(L,e,c): for e € L add color ¢ € C to C,
uncolor(L,e,c): for e € L remove color ¢ from C.,

compare(L, e, e’): compares the locations of e and e’
in L returning <, = or >,

pred(L,e,C): foree L, C CC,
return max{e’ € L|Co N C # 0, ¢’ < e},

report(L,e, e’ C): for e and ¢’ in L, C C C,
return {¢’ € LICe NC # e < e < e}

In this paper for both colored predecessors and lists
we assume |C| = O(w). We can therefore represent
subsets of colors as a bit vector in a constant number
of words. For an element e in a list L we define its
weight ||e]| as |Ce|, and define the weight of a list ||L|]
as e r (1+ [lel).

We use two additional operations which can be
implemented with the operations above but for which
we need more efficient versions. The reportAll(L,C)
query reports all elements in L with colors in C. The
filter(L, f, g,1) operation takes a sequence of colored
lists £, a constant-time predicate function f on elements
of that list, a constant-time color map function g and
a size parameter [. It copies all elements from £ that
pass the predicate f into a new sequence of lists each of

size | (except perhaps the last). The order of elements
(within each colored list and across lists) is preserved
and the color map function g maps the current colors of
each element to a possibly new set of colors.

We say that a data structure is locally allocated if
all of its memory is allocated from within a contiguous
region of memory. In such a structure local pointers
within the structure need only be big enough to point
to any location within the region allowing us to pack
multiple pointers within a word. For a structure
that uses a polylogarithmic number of locations, for
example, such local pointers only require O(loglogn)
bits. We refer to the local pointers within a structure
as short pointers and pointers to the outside as external
pointers and assume external pointers require O(logn)
bits. We assume each region contains a number of
bits that is within a constant factor of the number
of bits used by the structure. Since the number of
bits required by a dynamic structure can grow and
shrink, the region might need to be resized, which could
require moving the contents of the region to a new
location. If a structure touches a constant fraction of
the locations it allocates, the cost of these resizings can
be amortized against the operations on the structure
between resizings.

3 The Compact Sublist Tree Problem

A sublist tree T is a pair (T, £) where T is a rooted tree
with node set U, and £ = {L,,u € U} is a collection
of lists with the condition that for all nodes except the
root, L, C Ly). We refer to the list associated with
the root r of T as the root list L,, and refer to |L,|
as the root size. The root list defines a total order on
the elements. We assume |U| € O(|L,|). Although not
as general as fractional cascading [5], sublist trees are
sufficient for the problems we consider.

To achieve the desired space bounds we consider a
compact version of sublist trees that only allows data
to be associated with elements in the root list. For
elements in other lists one must return to the root
to retrieve data. To traverse the tree we assume an
algorithm can hold a handle to an element within any
list L,,, but only handles in the root are persistent across
updates—i.e., an update invalidates all handles except
for those to elements in L, and any returned by the
update. The compact sublist tree problem is to support
a sublist tree with the following operations.

up(7,h): for handle h in L, return a handled to the
same element in Ly,

down(7, h,c): for h to element e in L, and a child ¢ of
u, return a handle to e’s predecessor in L.

insertRoot(7,h): for h in L, insert a new element

immediately following h and return its handle.

copy (7, h,c): for h to element e in L, and for child ¢
of u, copy e into L. returning the new handle.

delete(7,h): for h to element e in L,, delete e from
L, returning the handle to up(7, h).

We also support the colored list operations color,
uncolor, compare, pred, and report on each list L,
(see Section 2). In addition to “user” assigned colors
we assign each child ¢ of a node u a color o, and color
elements in L, with o, iff they appear in L.. We define
the weight of a sublist tree (T, L) as >, .. ||L]|.

THEOREM 3.1. The sublist tree problem with root size
n, weight m, mazimum degree d = O(log®n), for some
0 < e <1, and with O(d) colors can be solved such that
up and compare take O(1) time, down and pred take
O(loglogn) time, insertRoot, copy, delete, color,
and uncolor take O(loglogn) amortized time, and
report takes O(loglogn + k) time where k is the size
of the result. The space is bounded by O(nlogn +
mloglogn) bits.

The remainder of this section is the proof.

As is standard in fractional cascading [5, 10], we
maintain cross linkings between each list L, and its
neighboring lists. In particular, we maintain a partition-
ing of each list into blocks, place a bridge preceding each
block, and associate each bridge with the block that fol-
lows it. For every bridge in a node u we include a bridge
copy in every neighbor of u (parent and children). We
form a list A, from the union of L, and bridge copies
placed in the appropriate order with respect to the po-
sitions of their bridges'. We refer to elements from L,
as the proper elements of A,. For each child ¢ of a node
u the data structure assigns an internal color r. to all
bridge copies in A,, for which the corresponding bridge
is in ¢. We maintain the A, so they are partitioned into
blocks of weight ©(log®n) (bridge copies have constant
weight), except perhaps the last block.

The child blocks of an element e € L,, are the blocks
in which e appears in the children of u. The parent block
is the block in which e appears in its parent. We will
refer to a pointer to a bridge as a bridge pointer. All
cross pointers between neighboring lists in the sublist
tree consist of a combination of bridge pointers and
short pointers within a block. For the root list we
maintain an auxiliary doubly linked list for all elements
to store any associated data.

TFor a bridge in u there can be a choice of where to put the

bridge copy in p(u). We assume any choice is valid.

Blocks. We use locally allocated structures for the
blocks. For each block b we keep its elements properly
ordered in a doubly linked list and store the elements
with their colors in an instance of the colored list data
structure. Using the results of Lemma 5.4 and the
fact that blocks have weight W = O(log®n), insert,
delete, color, uncolor and pred take O(loglogn)
time, report takes O(loglogn+ k) time, compare takes
O(1) time, and reportAll takes O(k) time. The
space for the structure is O(W loglogn) bits. All short
pointers within a block only require O(loglogn) bits.

For each element in b we also maintain a parent
pointer and child pointers defined as follows and illus-
trated in Figure 1. For a bridge copy, the parent or child
pointer is a bridge pointer to the corresponding bridge
(the other is empty). These are external pointers and
require O(logn) bits. For a proper element e each child
pointer consists of a short-pointer to the location of e
within a child block of e. The parent pointer consist
of a short-pointer to the location of e within its parent
block, and an additional short pointer to the previous
parent-bridge copy in b, if any. Finally for each block b
we keep a head bridge pointer to the parent block of the
first element in b. This is an external pointer.

Bridge structure and space bounds. The
bridges for each list L, are placed into a colored list
data structure. Each bridge is colored with all the col-
ors that appear in its block. We call this the bridge
structure. Using the results of Lemma 5.3 we have that
compare takes O(1) time, color, uncolor, and pred
take O(loglogn) time, report takes O(loglogn + k)
time, and insert and delete take O(log>"“ nloglogn)
time. The structure uses O(|L,|log® ?n) bits and
is therefore a low-order term relative to the desired
bounds. We also maintain for each bridge a pointer to
each of its bridge copies. Each such pointer consists of
a bridge-pointer to the block in which the copy appears
and a short-pointer to the location of the copy within
that block.

To analyze the total space taken by the structures
we first consider the space for all bridge pointers. A
bridge in a node u with d children will have d + 1
bridge copies each contributing O(logn)-bits (a bridge
pointer in each direction). Every block also has a head
bridge pointer, which can be charged to the previous
bridge. Consider all the bridges in each node except
for the last bridge in the node. Because the block
sizes are maintained with weight ©(log®n), and the
degree is bounded by O(log®n), there are at most
O(m/ log® n) such bridges each contributing O(log' ™ n)
bits for a total o(m) bits. The last bridge in each node
can have a total of O(n) children across all of them,
and will therefore contribute another O(nlogn) bits.

Now consider the space taken by all local pointers and
the block structures. Within a block every element e
requires only O(loglogn) bits per color so the total
number of bits across all elements is O(mloglogn). The
tree T itself will require O(nlogn) bits for parent and
child pointers. This gives the desired space bounds of
O(nlogn + mloglogn).

Time bounds. We now consider how to imple-
ment all the operations. We assume handles to an ele-
ment e in A, consist of a pair (b, s) where b is the block
in which e belongs and s is a short pointer to the ele-
ment e within b. We note that updates can change how
lists are blocked and this is why handles are invalidated
by updates.

The up(7, h) operation for h = (b, s) can be imple-
mented using the parent pointer of s, which consists of
the previous parent-bridge copy, used to find the parent
block b’ of s, and the desired offset s’ within that block.
The handle (¥, s") is returned. If there is no previous
parent-bridge copy we use the head bridge pointer of b.
This all takes constant time.

The pred(7, h, C) operation for h = (b, s) in A, is
implemented using the colored list structure within b to
find the previous element s’ matching a color from C. If
none is found, the bridge structure for node u is used to
find the previous block &’ that contains one of the colors
in C and then the colored list structure in &’ can be used
to identify the required element s’. The handle (V/,s’)
is returned. All operations take O(loglogn) time.

The down(7, h,c) operation for h in L, is imple-
mented by first using pred(7,h, {o.}) to identify the
previous proper element h’' from A, that appears in
¢, and pred(7,h',{r.}) to identify the previous bridge
copy h” from A, for a bridge that appears in c. For
a child pointer b of h”, and child pointer s’ or h’ we
return the handle (b', s’).

The compare(7,h,h') operation can be imple-
mented using the colored list structure within a block
when elements are in the same block, or the bridge
structure when not. This takes constant time.

The report(7,h,h',C) operation with h = (b, s)
and b’ = (b/,s') is implemented with a report query
within b if b = b and otherwise using the bridge
structure to report all the blocks between b and b’ that
contain a color in C. For each of these blocks we use the
reportAll operation to report the desired elements. We
use report in b and b’ to report elements in those blocks
starting at h for b and finishing at h’ for ¥’. The overall
time is O(loglogn + k) time where k is the number of
elements reported.

The copy(7,h,c) operation for h in L, is imple-
mented by first using down(7, h,c) to find the handle
R = (¥,s') after which to put the copy. The copy of

— bridge pointer

I bridge bridge copy D proper element

Figure 1: Pointer structure for a list A, and two child lists A, and A,,. Only some of the pointers are shown.

h then needs to be inserted immediately following s’
in '. Insertion in the doubly linked lists is straight-
forward. Insertion into the colored lists is described in
Lemma 5.4. We also need to execute color(7,h, {o.})
to mark the fact that h now appears in c¢. Either the
color operation or the insertion of the element in b’
can cause a block to overflow. An overflow creates a
splitBlock operation which is described below.

The color(7,h,c) operation for h = (b,s) in A,
is implemented by coloring s in b and if it is the only
element in the block of the given color, then the color
is also added to b in the bridge structure. This takes
O(loglogn) time. If the weight of the block becomes
too large because of the extra color then the block will
overflow invoking a splitBlock operation.

A splitBlock takes a block and breaks it into two
blocks of approximately equal weight. When applied to
a block b in a list A, it consist of (1) finding an element
of b that partitions b approximately in half based on
weight, (2) creating a bridge between the two parts,
(3) copying the elements from b into two new blocks by
and bo on either side of the bridge, (4) placing a copy
of the new bridge in each neighbor, and (5) updating
the neighboring copies of elements in b to point to their
locations within b; or bs. Copying the elements into by
and by takes O(|b|loglogn) time by reinserting in the
colored list data structure.

For step (4) let h be the handle of the element
just before the split point found in step 1 and r be
the new bridge generated in step 2. The bridge copies
of r can be inserted into each child ¢ of u by finding
h' = down(7, h,c) and inserting the copy immediately
following h’. Assuming wu is child ¢ of p(u), the
bridge copy of r can be inserted into the parent by
finding b’ = up(7,h) and inserting the copy following
B/ and then adding to the copy color r.. This takes
O(log® nloglogn) time. We also need to insert the new
bridge into the bridge structure. This all takes O(log® n)
time.

For step (5) we need to update parent pointers of

child elements and child pointers of parent elements
of b. For a child element s in a block b we have
to update both the short pointer to the corresponding
element in b and perhaps also the pointer to the previous
parent bridge within o’. For a parent element we
need only update its child pointer. Since a handle for
each required element and bridge copy can be found in
O(loglogn) time this takes O(|b|loglogn) time. The
head bridge pointers to b also need to be updated. Note
that each blocks with such a head bridge copy must
contain a copy of an element from b. We can therefore
charge these updates against the elements of b.

Since the blocks are kept at weight @(log3 n), the
overall time for a splitBlock is O(log®nloglogn)
worst case time. This can be amortized against the
previous @(log3 n) operations that were applied in order
to cause the split. The amortized cost of each operation
is therefore O(loglogn). The delete and uncolor
operations can be implemented symmetrically to copy
and color. Merging of blocks might be required and
this is similar to splitBlock.

4 Balanced Sublist Trees

So far we have assumed the tree structure 7" of a sublist
tree T = (T, L) is static. Since it is hard to bound
update times on the tree without putting some limits on
the way lists can be colored, here we specialize sublist
trees in a way that is sufficient for our applications.

A doubly ordered set E,, is a set of elements E
with two independent total orderings <, and <, on
the elements. An ordered sublist tree is a sublist tree
(T, L) in which T is ordered. We say that an ordered
sublist tree (7', £) supports a doubly ordered set E,,, if
(1) each leaf of T contains a unique element of E,, (2)
the elements at leafs are ordered in T" based on <., and
(3) for every internal node u, L, contains the union of
its descendants ordered by <,,.

A coloring of a sublist tree (T, L) is an assignment
of colors to all elements in all L,, € L. A coloring scheme
for a class of doubly ordered sets &, is a mapping

from every set E,, € &, and every sublist tree that
supports F,, to a coloring of sublist tree. We place some
restrictions on the coloring scheme so that we can bound
the cost of updates to the tree. An efficient coloring
scheme is one in which (1) for any tree with branching
factor O(log®n),0 < e < 1 and depth d every element
has O(d) colors total across all nodes, (2) insertion of
an element at leaf x only affects O(d) colors and only
on the path P(x), (3) when a node u € T is split into u;
and usy partitioning the children of w, at most O(|Ly|)
colors are affected in neighboring nodes, and (4) all color
changes due to a split are local—they depend only on
the existing colors of an element, the colors of its copy
in the split parent or child, and the side to which an
element split. Note that an efficient coloring scheme
can change more than O(|L,|) colors on the elements in
L,, during a split.

Since color updates are local we assume that the
user supplies a color function g that maps for each
element in L, a set of of existing local colors and the side
of the split to a set of new colors for the element. Similar
functions g, and g. are given for recoloring the child
and parent neighbor copies of elements in L,. Since
the number of “local” colors is small, these functions
can always be implemented in constant time using table
lookup.

THEOREM 4.1. An ordered sublist tree (T,L) that
supports a class of doubly ordered sets E,y with
an efficient coloring scheme can be maintained in
O(n) words (O(nlogn) bits) such that T has depth
O(logn/loglogn) and new elements can be inserted or
deleted from E, (and hence T') in O(logn) amortized
time.

Proof. (sketch). We maintain the tree T as weight
balanced B tree (WBB trees) [3, 12]. Let I(u) be the
number of leaf descendants of a node u. A WBB
tree has a branching parameter p > 6 such that all
leafs are at the same level and for all non-root internal
nodes at height h, p" < |I(u)| < 4p", and for the root
|l(u)| < 4p", p > 2. This implies all internal nodes
have degree less than 4p. We use p = log®n,0 < e < 1
giving a tree of depth d € O(logn/loglogn). We only
consider insertions—deletions can be handled using lazy
deletion [14].

In a WBB tree a node v is split into two nodes u;
and us when its weight becomes too large. The children
are divided, selecting the divide point to best balance
l(uy) and I(uz). The nodes u; and us are added as
children to the parent, or a new root is generated if the
root is split. As long as the time for splitting a node
u is bounded by O(|L,|loglogn), we can amortize the
split against the Q(|L,|) insertions into L, since the last

split. We note that taking Q(||L,||) time will not suffice.

The split operation can be implemented by (1)
copying all elements from A, into two new lists A,
and A,,, (2) creating new bridges for these lists and
inserting copies of these bridges into the neighboring
lists, (3) deleting the bridge copies in neighbors for
bridges in A,,, (4) updating all child and parent pointers
for elements in neighboring lists to point to their copies
in A,, or A,,, and (5) performing any color updates.

The copy into A,, and A,, can be done in O(|L,|)
time by using filter (Lemma 5.4). A new bridge is
then created for each block. Note that bridge copies
of bridges in p(u) need to be copied into both lists,
but all other elements from A, only go into one or
the other list. Updating neighboring child and parent
pointers can be done in O(|L,|loglogn) time. For step
(5) first consider updating colors on neighbors of L.
We note that only O(]L,]|) colors need be updated by
the definition of an efficient coloring scheme. Each color
change can be determined from g. or g, applied to one
of the neighboring elements and executing the color
change takes O(loglogn) amortized time. Updating
the neighbor colors therefore takes O(|L,|loglogn)
amortized time. The color changes on the list L, can
be performed by the filter used for copying into wu
and us using the color change function g.

Insertion takes O(logn) amortized time since we
add at most O(logn/loglogn) elements and colors
across all levels and each takes O(loglogn) amor-
tized time. Since there are n elements in the tree
and with an efficient coloring scheme each has total
weight O(logn/loglogn), the weight of the tree is
O(nlogn/loglogn) and by Theorem 3.1 the sublist tree
uses O(nlogn) bits.

5 Colored Predecessors and Lists

In this section we show various results on data struc-
tures for the colored predecessor and list problems.

LEMMA 5.1. The colored predecessor problem on
I,,m < 2% with O(y/w) elements and O(\/w) colors
can be supported such that all operations take O(«)
time, using static shared tables of total size O(2/%).

Proof. We first describe the pred(S,i) operation that
returns the predecessor of an integer ¢ in a set of integers
S—i.e., does not use colors. This follows directly from
results of Ajtai et. al. [1] and Fredman and Willard [9].

We view integer keys as bit strings of length [< w,
and bit locations go from 0 (the least significant bit)
to I — 1 (the most significant bit). In some places we
use three values for bits {0,1,0} where () indicates we
don’t care what the value of that bit is. We use table
lookup to implement certain operations on bit-strings

including msb(s), which returns the most-significant-bit
of s, and pack(s,b) which packs the bits in s where the
corresponding bit in b is a 1 into a contiguous locations
in a new word. All operations take O(«a) time with a
static shared table of size O(I*/).

Consider a set of [-bit keys X = xg, x1, ..., Tx_1 and
a trie built on these keys. Let B = by, b1,...,b._1 be
the bit locations (0 < b; < b;41 < 1) in which there
is a branch in the trie. Note that r < k. Let the full
sketch sx(y) of a key y be the subsequence of bits of
y taken from the locations B, and the partial sketch
px(z),z € X be the same subsequence but wherever
a bit position is not at a branch point of the path to
z; include a @ bit. For k = O(y/w) we can store all
the partial sketches P(X) = px(xo),...,px(zk—1) in a
constant number of words. We use Py(X) to indicate
the set of partial sketches of X in which all @ bits are
replaced with zeros.

To implement pred(X, y) we find the predecessor z,,
and successor xs of sx(y) in Py(X). We do this using
word parallelism and table lookup in constant time. We
note that although the partial sketches properly order
the elements of X, they do not necessarily properly
locate y in X. To properly place y we identify the msb
in which z, and z, differ from y and pick the lesser
of these two by. This represents the position at which
y diverges (branches) from the existing tree, which is
not necessarily in B. We refer to the existing branch
from which it diverges as D and it is the keys in this
branch for which y might not be properly ordered. We
propagate the value of the bit stored at by in y (y[ba])
to the lower order bits of sx(y) to give s’, and locate
s' in Py(X). This location will properly locate y with
respect to the full keys since it locates y with respect to
all the keys in D and y was already located with respect
to other keys.

To implement insertion and deletions of an element
y we find y in X and then update the partial sketches
in P(X). For insertion this involves possibly adding a
bit to B (at location by), making space in each sketch
for the bit, and setting the bit appropriately to 0, 1 or
(). Note that all keys in D will have their bits set to 0
at by or all to 1 (they branch from y at this position).
All other keys will be set to @ at bg. Therefore only a
constant number of keys have to be looked at in their
entirety during the search, so all operations can be done
on a constant number of words in constant time using
bit-parallelism and table lookup. Deletion can be done
similarly.

To handle colors (pred (S, i, C)) we store a bit vector
of O(v/w) colors with each partial sketch. All such
vectors fit within a constant number of words. When
finding the predecessor z, and successor xs of sx(y)

or ' in Py(X) we can ignore all sketches that do not
match a color in C'. Such matching can be determined
with word parallelism in constant time. This will return
the predecessor just among the keys with a color in
C. Adding and deleting colors just updates the color
bit vectors. report(S,y,y’,C,) can be implemented
by finding the successor of y, the predecessor of 3 and
using bit-parallelism to find the elements in B that fall
between the two and match a color in C.

We now present an extension of the results by
Mortensen [12, Theorem 1] to allow for predecessor
queries (Mortensen just describes report queries).

LEMMA 5.2. The colored predecessor problem on
Iy,,m < 2% with ¢ = O(y/w) colors can be supported
such that insert, delete, and pred take O(loglogm)
time, report queries take O(loglogm + k) time, and
the space required is O(cmlogm) bits, in addition to a
O(2%/)-bit static shared table.

Proof. The solution is based on the van Emde Boas
et. al. data structure (EKZ) [15]. Mortensen [12]
described report queries so we just describe pred
queries.

We first review the EKZ structure. The structure is
defined recursively. We use V,,, to indicate a structure
that can store a set S C {1,...,m}. It consists of min
and max slots, a top structure T' : V 77, and an array
A of bottom structures A; : V\/E,O < i < y/m. The
min and max slots are used to store the minimum and
maximum elements in S, and the rest of the elements
are stored in one of the bottom structures. In particular
a key i is stored in A, s using key (i mod y/m). The
top structure stores a key j if there are any elements in
A;. For report queries the EKZ structure also stores all
elements ordered in a linked list.

To insert a new element i, and assuming there are
already two distinct elements in the structure occupying
min and max, we check which is the median of min,
max and 4, call it j. We then insert j mod y/m into
Aj ym- W Aj) s is empty, then the insert returns
immediately after installing j mod y/m as the min and
max of A,/ /. In this case we insert the key j/\/m into
the top structure to identify that it is no longer empty.
Note that at most one recursive call is made to insert,
either to the bottom structure if not empty, or to the top
structure if empty. The time for insertion is therefore
bounded by T'(m) = T'(v/m) + O(1) = O(loglogm).
The delete operation is symmetrical.

To determine pred(V;,,:), if ¢ is less than min
we return | indicating no predecessor is found, and
otherwise we recursively call pred(4;, /,i mod \/m).
If this returns 1 (in constant time), then let j =

pred(T,i/\/m). If j = L then return min from V,,
else return max from the structure A;. Note that in all
cases only one non-trivial recursive call is made so again
the runtime is O(loglogm).

We now consider the multicolor version. Instead
of storing min and max we store arrays Min and Max,
each containing c elements corresponding to the min
and max of each color. Since we have O(y/w) colors we
can use Lemma 5.1 to store Min and Max so that we can
find the predecessor (or successor) for any set of colors
C C Cin each array in constant time. To distinguish the
predecessor on Min and Max we refer to it as predS. The
pred(V,,,i,C) operation is a version of the uncolored
predecessor routine in which each lookup in Min or Max
is done in “parallel” using predS. It proceeds as follows:

proc pred(V,i,C)
m=|V]|
a = predS(V.Min, i, C)
if a = L then return L
else
b= pred(V.4;, /m,i mod y/m,C)
if b # L then return max(a,b)
else
c=pred(V.T,i//m,C)
if ¢ = L then return a
else return max(a, preds(V.Max, T,C))

As with the uncolored version this takes O(loglogm)
time since if b = L then the recursive call on V.4, =
took constant time, and otherwise no recursive call is
made on V.T. Insertion and deletion for a given color
¢ proceed as in the uncolored case treating the color
independently from the others.

LEMMA 5.3. The colored list problem with O(n) ele-
ments and ¢ = O(w€) colors, for some 0 < e < 1, can
be supported such that compare takes O(1) time, color,
uncolor, and pred take O(loglogn) time, report takes
O(loglogn + k) time, and insert and delete take
O(clog® nloglogn) time, with O(cnlogn) bits.

Proof. We use the list numbering scheme of
Willard [16], which maintains a list with insertions and
deletions at any position such that all elements are
assigned an integer in the range [1,O(n)] in order of the
list. Every update modifies at most O(log®n) elements
and takes O(log2 n) time. We use the integers assigned
by this algorithm in the color predecessor results
of Lemma 5.2. FEach insertion or deletion therefore
requires O(log?n) updates each taking O(loglogn)
time per color for a total of O(clog®nloglogn) time.
The color and uncolor do not need to update the list,
but just add/remove a color. The compare operation
uses the integers directly.

LEMMA 5.4. The colored list problem on list L with
n = |L| = O(w®) elements and O(w/logw) colors, for
any constant ¢ can be supported with O(||L||logn) bits
such that insert, delete, color, uncolor and pred
take O(logn) time, compare takes O(1) time, report
takes O(log n+k) time, reportAll takes O(k) time, and
filter on m total elements takes O(m) time, where k
1s the size of the output.

Proof. The structure is hierarchical with a tree at the
top level and each leaf a group at the lower level. For
external reference we maintain a home cell for each
element in a fixed location, and link these in a doubly-
linked list. The data for an element e, stored elsewhere,
consists of a pointer back to the home cell and an array
of color fields, one for each color it is assigned. For each
color in the array we store the color identification, and
pointers to the cell for the previous and next element
with that color thus creating a linked list for each color.
We store this all as an adjacent block of bits. This uses
O(|le]|log n) bits which fits within a constant number of
words. We partition the elements into groups of weight
©(w/logn) based on their ordering within the colored
list (except the last group which can be smaller). We
pack the data for each element in a group one after the
other within O(1) words. The home cell points to the
group in which the element belongs.

We can use word parallelism and table lookup to
execute color, uncolor, insert, delete, and pred on
a group in O(1) time, and report in O(k) time. As
usual the table lookup can be done in O(«) time with
a static shared table of size O(2*/®). For color and
uncolor we also need to splice the color into (or out of)
the linked list for that color. Insertions and deletions
can cause the group to overflow or underflow. The group
can then be split and/or joined with the groups on either
side to maintain ©(w/logn) elements per group. Again
this can all be done in O(1) worst-case time.

The groups are organized in a balanced binary tree
with each group as a leaf and ordered in the tree (left to
right). Each internal node maintains a bit-array with
a flag for each color indicating whether that color is
present in the subtree. The bit-array for a node can fit
in O(1) words and logical operations can be used to test
if there is any element from a color subset C’ in the array
and hence in the subtree. Insertion or deletion into this
tree is required when a group overflows or underflows
and takes O(logn) time using standard balanced tree
implementations.

When executing pred(x,C’) we first search in the
group. If nothing is found in the group we traverse
the tree from the group in which x belongs up toward
the root until a left parent is found which contains
one of the colors in C’'. We can then traverse down

starting at the left child of that parent searching for the
rightmost group that contains one of the colors. Finally
we search within that group for the greatest element
with a color from C’. This all takes O(logn) time.
Implementing delete, color, uncolor, and report, are
all straightforward using the bit masks. We can use
an order maintenance structure [8] on the groups to
support compare in constant time. We can use the
linked lists for each color to answer a reportAll query.

We can charge the space for each internal node of
the tree to the leaves of the tree. The space for the
leaves of the tree is bounded by O(]|L||logn) bits since
each element uses O(||e||logn) bits.

The filter(L, f,l) operation works as follows.
When processing a particular list L € £ we scan the
elements using the linked list on the home cells copying
the ones we keep (that pass the predicate f) into a new
colored list structure L’. As we scan we maintain a pre-
decessor array with an entry for every available color
each containing a pointer to the home cell in L’ of the
previous kept element that contained that color. This
array fits within one word. When we get to an element
e for which the predicate f passes we extract its colors,
use g to generate new colors, and find the previous kept
element for each new color using the predecessor array
(all using word parallelism in constant time). We can
also update the predecessor array with pointers to the
home cell of e. When L’ is full we build the tree and do a
back pass to create color links in the other direction. We
then start with a new colored list structure. Building
the tree takes O(n) time for n total elements. Main-
taining the colors in “parallel” is important in avoiding
spending time that is proportional to the total weight
of the elements instead of the number of elements.

6 Applications

We now describe bounds on horizontal point location,
segment intersection and range reporting that are based
on the sublist tree bounds described in Section 3. For
simplicity we assume all points are in general position
(do not share an x or y coordinate) except for those at
the endpoints of a segment. In all the structures we use
a root tree, which is a balanced search tree ordered by
y coordinate containing pointers to the elements in L,
of a sublist tree.

THEOREM 6.1. The dynamic horizontal point location
problem can be solved using O(n) words (O(nlogn) bits)
so that insertions and deletions take O(logn) amortized
time and queries take O(logn) worst-case time.

Proof. Let S be a set of n horizontal segments s; =
(x4, 25, y:), ¢ < and let E be the set of 2n endpoints
of the segments, where each (z;,y;) is a left endpoint

and (zf,y;) is a right endpoint. The set E is doubly
ordered based on the x and y coordinates and assuming
(i, yi) <y (z},v:). Let (T, L) be an ordered sublist tree
that supports E.

We use the following coloring scheme. For a node
u with children ci, ca, . .., cq assign left color I, to each
left endpoint of a segment (z,z’,y) for which (z,y) €
L, N(2',y) & L, (i.e., the left endpoint is in child j of u
and the right endpoint is not in u), assign right color r,
to each right endpoint of a segment (x,2’,y) for which
(2',y) € Le; A (2,y) & Ly, and assign a cross color a,
to each left endpoint of a segment (z,z’,y) for which
(x,y) € Le;, N (2',y) € Lo, Ni < § < k (i.e., the left
endpoint is in child ¢ and the right endpoint is in child
k and child j is between them). We say a segment with
an endpoint in u covers a child ¢; if its left endpoint is
to the left of all points in ¢; and its right endpoint is to
the right. For each child ¢; we define the cover colors
Ci = {le;,j <iyUHre;»J > i} U{ac, }. A segment with
an endpoint in u covers ¢; iff one of its endpoints in «
has a color in C;.

Based on the coloring scheme described, a point
p = (xp,yp) can be located by a simple search from
the root to a leaf and then returning to the root to
identify the segment. At the root we locate the handle
h = maxy{(z,y) € L,|y < y,} using a binary search on
the root tree. At each internal node u given a handle
h we identify the child ¢; in which z, belongs, point
locate p with respect to segments that cover ¢; using
h' = pred(h, C;), locate the handle h in child ¢; using
down(7, h,¢;), and move to child ¢;. When returning
to the root, if the child returns h” the node returns
max(h', k") (using compare). Once we reach the root
we identify the desired segment. Each level of the search
takes O(loglogn) time for a total of O(logn) time.

Insertion of a new segmented is implemented by
inserting both of its endpoints in the balanced sublist
tree and the root tree. The coloring scheme is efficient
since it assigns at most O(logn/loglogn) colors to
each element (O(logn/loglogn) along each path to an
endpoint and O(log® n) at the least common ancestor of
the paths), and it is not hard to verify that a split causes
at most O(1) color changes per element in neighbors
(although it can cause up to O(log®n) color deletions
within the node itself), and is local. By Theorem 4.1
the space is bounded by O(n) words and insertion and
deletion take O(logn) amortized time.

THEOREM 6.2. The dynamic segment intersec-
tion problem can be solved wsing O(n) words
(O(nlogn) bits) so that insertions and deletions
take O(logn) amortized time and intersection queries
take O(logn + klogn/loglogn) worst-case time, where
k is the size of the result.

Proof. For segment intersection we maintain the exact
same data structure as for point location, but the query
is different. For a intersection query for a segment
(z,y,y’) we locate the successor of y and the predecessor
of ¢ in L, using the root tree returning two handles
h; and h,. We pass both handles down in the search
and at each node instead of doing a predecessor search
pred(h,C;) we do a report query report(hy,h,,C;).
This will return a set of handles and to extract the
segments we need to return to the root for each handle
using up operations. Therefore each reported segment
will require O(logn/loglogn) time. Since traversing
the tree takes O(logn) time the total time is O(logn +
klogn/loglogn).

THEOREM 6.3. The dynamic range reporting problem
can be solved using O(n) words so that insertions and
deletions take O(logn) amortized time and range report-
ing queries take O(logn + klogn/loglogn) worst-case
time, where k is the size of the result.

Proof. The set of points P is doubly ordered based on
the = and y coordinates. Let (T,L£) be an ordered
sublist tree that supports P. We need no colors
beyond the colors o., so the coloring scheme is efficient.
Therefore by Theorem 4.1 the space is bounded by O(n)
words and insertion and deletion can be implemented in
O(logn) amortized time. For a range query with a box
(z,2',y,y’) let P and P’ be the search paths to z and
z' in T, v be the node at which they separate, P, be
the part of P below v and P, the part of P’ below v
(not inclusive). Let x and y be in child ¢; and child ¢
of v, respectively. In v we do a report query on colors
C ={o.,,i < j <k}, for each u € P, where z is in child
i we do a report query on colors C' = {o.,,i < j}, and
for each u € P where 2’ is in child k we do a report
query on colors C' = {o.,|j < k}. As with segment
intersection reporting each element requires returning
to the root which takes O(logn/loglogn) time. Since
traversing down the tree along two paths to start the
report queries takes O(logn) time, the total time is
O(logn + klogn/loglogn).

7 Conclusion

In the paper we described various structures that
achieve asymptotically optimal space bounds and op-
timal time bounds in the term that is not output sen-
sitive. This was mainly achieved by using local data
structures and short pointers. It remains open whether
the output-sensitive cost can be reduced. For the static
range-reporting problem Chazelle showed O(n) space
(in words) and O(logn + klog®(2n/k)) time queries for
a constant € > 0 [4]. These are tighter than our dy-
namic bounds in the output sensitive costs. One might

also try to remove the amortization.
References

[1] M. Ajtai, M. L. Fredman, and J. Komlos. Hash
functions for priority queues. Information and Control,
63(3):217-225, Dec. 1986.

[2] L. Arge, G. Brodal, and L. Georgiadis. Improved
dynamic planar point location. In Proc. 47th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), 2006.

[3] L. Arge and J. S. Vitter. Optimal dynamic interval
management in external memory. In Proc. 87th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 560-569, 1996.

[4] B. Chazelle. A functional approach to data structures
and its use in multidimensional searching. SIAM J.
Comput., 17:427-462, 1988.

[5] B. Chazelle and L. Guibas.
Algorithmica, 1:133-196, 1986.

[6] E.D. Demaine, J. Iacono, and S. Langerman. Retroac-
tive data structures. In Proc. 15th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 274-283, 2004.

[7] P. F. Dietz and R. Raman. Persistence, amortization
and randomization. In Proc. 2nd Annual ACM-SIAM
Symposium on Discrete algorithms (SODA), pages 78—
88, 1991.

[8] P. F. Dietz and D. D. Sleator. Two algorithms for
maintaining order in a list. In Proc. 19th Annual ACM
Symposium on Theory of Computing (STOC), pages
365-372, 1987.

[9] M. L. Fredman and D. E. Willard. Trans-dichotomous

algorithms for minimum spanning trees and shortest

paths. Journal of Computer and System Sciences,

48(3):533-551, June 1994.

K. Mehlhorn and S. Naher. Dynamic fractional cas-

cading. Algorithmica, 5(2):215-241, 1990.

C. W. Mortensen. Fully-dynamic two dimensional or-

thogonal range and line segment intersection report-

ing in logarithmic time. In Proc. 14th Annual ACM-

SIAM Symposium on Discrete algorithms (SODA),

pages 618627, 2003.

C. W. Mortensen. Fully dynamic orthogonal range

reporting on RAM. SIAM J. Comput., 35(6):1494—

1525, 2006.

Y. Nekrich. Space efficient dynamic orthogonal range

reporting. In Proc. 21st Annual Symposium on Com-

putational geometry, pages 306-313, 2005.

M. H. Overmars. Design of Dynamic Data Structures.

Springer-Verlag, New York, 1987.

P. van Emde Boas, R. Kaas, and E. Zijlstra. Design

and implementation of an efficient priority queue.

Mathematical Systems Theory, 10:99-127, 1977.

D. E. Willard. A density control algorithm for doing

insertions and deletions in a sequentially ordered file in

good worst-case time. Information and Computation,

97(2):150-204, 1992.

Fractional cascading.

[10]

(11]

(12]

(13]

(14]

15]

[16]

