
Parallel Algorithms for Asymmetric Read-Write Costs

Naama Ben-David† Guy E. Blelloch† Jeremy T. Fineman‡ Phillip B. Gibbons†
Yan Gu† Charles McGuffey† Julian Shun∗

†Carnegie Mellon University ‡Georgetown University ∗UC Berkeley
{nbendavi,guyb,gibbons,yan.gu,cmcguffe}@cs.cmu.edu

jfineman@cs.georgetown.edu jshun@eecs.berkeley.edu

ABSTRACT
Motivated by the significantly higher cost of writing than reading
in emerging memory technologies, we consider parallel algorithm
design under such asymmetric read-write costs, with the goal of
reducing the number of writes while preserving work-efficiency
and low span. We present a nested-parallel model of computa-
tion that combines (i) small per-task stack-allocated memories with
symmetric read-write costs and (ii) an unbounded heap-allocated
shared memory with asymmetric read-write costs, and show how
the costs in the model map efficiently onto a more concrete machine
model under a work-stealing scheduler. We use the new model to
design reduced-write, work-efficient, low-span parallel algorithms
for a number of fundamental problems such as reduce, list con-
traction, tree contraction, breadth-first search, ordered filter, and
planar convex hull. For the latter two problems, our algorithms
are output-sensitive in that the work and number of writes decrease
with the output size. We also present a reduced-write, low-span
minimum spanning tree algorithm that is nearly work-efficient (off
by the inverse Ackermann function). Our algorithms reveal several
interesting techniques for significantly reducing shared memory
writes in parallel algorithms without asymptotically increasing the
number of shared memory reads.

1. INTRODUCTION
We are on the cusp of the emergence of a new wave of nonvolatile

memory technologies that are projected to become the dominant
type of main memory in the near future [1, 2, 40, 54]. A key
property of these new memory technologies (e.g., phase-change
memory, spin-torque transfer magnetic RAM, and memristor-based
resistive RAM) is their asymmetric read-write costs: Writes can be
an order of magnitude or more higher energy, higher latency, and
lower (per-module) bandwidth than reads [3, 8, 11, 12, 15, 22, 23,
32, 33, 36, 46, 52]. This high cost for writes motivates the design of
models that reflect this asymmetry and “write-efficient” algorithms
that perform well under such models by reducing their number of
writes.

Prior work has studied read-write asymmetries in several contexts.
Work targetting NAND Flash memory [9, 24, 25, 44, 45, 51] has
focused on the fact that on NAND Flash chips (i) bits can only
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11-13, 2016, Pacific Grove, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935767

be cleared by incurring the overhead of erasing a large block of
memory and/or (ii) individual cells can quickly wear out due to too
many writes to the cell. Emerging memories, in contrast, can write
arbitrary bytes in-place and system software can use the virtual-to-
physical mapping to balance application writes across individual
physical cells. Other prior work has targeted database query process-
ing [18, 50, 51] or systems considerations [19, 32, 39, 53, 55, 56].
Our recent paper [12] defined an Asymmetric PRAM model that dif-
fers from the classic PRAM in charging ω > 1 for writes (reads are
unit cost), as well as a variety of external-memory-style models that
transfer data in blocks. Write-efficient algorithms were presented
for sorting, FFT and matrix multiplication. Our follow-on paper [11]
presented write-efficient sequential algorithms for a number of fun-
damental problems, and defined the sequential (M,ω)-Asymmetric
RAM model that combines a small symmetric-cost memory of size
M with a large asymmetric-cost memory. Finally, Carson et al. [15]
recently presented a number of interesting results for models with
asymmetric read-write costs. Specifically, they considered (i) se-
quential algorithms on a model with a small symmetric memory
and a large asymmetric memory, both cache-oblivious and not, and
(ii) parallel algorithms on a distributed memory model where the
last level of the memory hierachy on each node has asymmetric
read-write costs. On the latter model, they presented upper and
lower bounds for various linear algebra problems and direct N-body
methods, restricted to the class of “communication-avoiding” algo-
rithms, i.e., parallel algorithms that minimize the (unweighted) sum
of reads and writes.

In this paper, we focus on parallel algorithm design under asym-
metric read-write costs, extending prior work in two important ways.
First, we define the Asymmetric Nested-Parallel model, which com-
bines features of the sequential (M,ω)-Asymmetric RAM model
and the popular nested-parallel model but with a distinctive memory
allocation scheme. Specifically, it is comprised of small stack-
allocated memories with symmetric read-write costs and an un-
bounded heap-allocated shared memory with asymmetric read-write
costs. Stack-allocated memory is allocated by a task, available to
the task and any children it forks, but is invalid when the task fin-
ishes. We show that the model, with its costs analyzed based on
the computation DAG (with no notions of processors or scheduling)
maps efficently onto a more concrete machine model, when using a
work-stealing scheduler. In particular, the model’s careful account-
ing for task memory usage yields good bounds on the number of
writes incurred during a steal, because it can accurately capture the
true working set sizes that need to be transferred. Note that our
use of small amounts of symmetric memory along with the large
asymmetric memory matches the expected reality of real machines.

Second, we use the new model to design the first reduced-write,
work-efficient, low-span (a.k.a., low-depth) parallel algorithms for

Table 1: Results for the Asymmetric Nested-Parallel Model

problem work span

reduce Θ(n+ ω) Θ(logn+ ω)

ordered filter Θ(n+ ωk)† O(ω logn)†
list contraction Θ(n) O(ω logn)†
tree contraction Θ(n) O(ω logn)†

minimum spanning tree
O(α(n)m+

O(ω polylog(m))†
ωn log(min(m

n
, ω)))†

2D convex hull
O(n(log k + O((ω + log k) ·
ω log log k))‡ log2 n log log h)†

BFS tree Θ(m+ ωn)‡ O(ωD logn)†

ω=write cost; k=output size; †=with high probability; α=inverse Ackerman;
m=number of edges; ‡=expected; D=graph diameter

reduce, list contraction, tree contraction, breadth-first search (BFS),
ordered filter, and planar convex hull. For the latter two problems,
our algorithms are output-sensitive in that the work and number of
writes decrease with the output size. We also present a reduced-write,
low-span minimum spanning tree (MST) algorithm that is nearly
work-efficient (off by the inverse Ackermann function). See Table 1
for a summary of our results. All of these algorithms significantly
reduce the number of writes over the best prior algorithms, e.g., by a
factor of ω for list/tree contraction. While some of these results are
relatively straightforward, our algorithms for tree contraction, MST,
and convex hull are more novel. Our algorithms reveal several inter-
esting techniques for significantly reducing shared memory writes
in parallel algorithms without asymptotically increasing the number
of shared memory reads, such as the random exponential growing-
with-filtering technique used in MST and BFS, the balanced tree
partitioning technique used in tree contraction, and the pre-bucketed
divide-and-conquer technique used in convex hull.

2. ASYMMETRIC NESTED-PARALLEL
In this paper we use a parallel variant of the (M,ω)-Asymmetric

RAM (ARAM) model [11] to analyze algorithms. The (M,ω)-
ARAM is a sequential RAM with two memories: a small symmetric
memory of size M for which both reads and writes take unit time,
and a large asymmetric memory of unbounded size for which reads
take unit time but writes take time ω > 1. We extend the model to
allow for multiple parallel tasks. Our goal is to allow for dynamic
parallelism and to analyze algorithms using work and span (also
called depth or critical path length). We therefore use the nested-
parallel model [10] extended with asymmetric memory, which we
refer to as the Asymmetric Nested-Parallel (NP) model. We include
some detail on the model because there are some subtleties on how
the small symmetric memory is defined in a dynamically parallel
model, and some care was given to the particular formulation we
give here. We also describe a more concrete machine model and
map costs from the Asymmetric NP model to it.

2.1 Asymmetric NP model
In the nested-parallel model a computation starts and ends with

a single root task. Each task has a constant number of registers,
and runs a standard instruction set from a random access machine
(RAM), except it has one additional instruction called FORK. The
FORK instruction takes an integer n and creates n child tasks,
which can run in parallel. Child tasks get a copy of the parent’s
register values, with one special register getting an integer from 1
to n indicating which child it is. The parent task suspends until all

its children finish1 at which point it continues with the registers in
the same state as when it suspended, except the program counter
advanced by one. We say that a computation has binary branching
if n = 2. In the model a computation can be viewed as a (series-
parallel) DAG in the standard way. We assume every instruction
has a weight (cost). The work (W) is the sum of the weights of the
instructions, and the span (D) is the weight of the heaviest path.
The nesting depth (δ) is the maximum depth of forked tasks during
the computation.

In the Asymmetric Nested-Parallel (NP) model we assume a
stack allocated symmetric small memory, and a heap allocated
asymmetric large memory. Stack allocated memory is memory
allocated by a task, available to the task and its children, but invalid
when the task finishes. It is under this model, for example, that the
memory bounds for work stealing are shown [13]. Heap allocated
memory is allocated by a task and can be accessed by any other task,
including ancestor tasks (it is completely shared memory). Each
instruction has weight one, except writes to the heap memory, which
have weight ω ≥ 1 (in practice, ω � 1).2 When doing analysis of
an algorithm, the term “writes” will be used to refer to the number
of writes to heap allocated memory. In this paper we assume the
amount of stack memory allocated by all but the leaf tasks (tasks
with no forks) is constant. The amount of symmetric stack memory
a leaf task can allocate is bounded by a parameter Ml. This sep-
aration into stack and heap allocated memory, and the distinction
between leaf and non-leaf tasks for stack memory size, is made both
because it is a convenient model for using the different memories,
and also because it enables an efficient mapping onto a fixed number
of processors, as justified below.

Note that the Asymmetric NP is an algorithmic cost model, as op-
posed to a machine model, enabling reasoning about nested-parallel
computations without worrying about mapping the computation to
machines. We address this scheduling issue next.

2.2 Scheduling Asymmetric NP Computations
This section shows that the algorithmic cost metrics of Asym-

metric NP are sufficiently descriptive to capture the performance of
Asymmetric NP computations when using good schedulers.

The Asymmetric NP model has been designed in a manner that
yields an efficient mapping to an (M,ω)-Asymmetric PRAM [12]
machine model. In this model, there are P processors, each run-
ning its own instructions using a small symmetric local memory
of size M . The processors share an unbounded asymmetric global
memory, to which concurrent reads and writes are allowed. We also
allow any processor to read the local memory of another processor
(concurrently), but not to write to it. A request to read the local
memory of another processor is viewed as requiring a write out to
the global memory in order to enable the read, and hence is charged
ω. On each processor any write to the global memory also takes
ω time. All other instructions take unit time. For synchronizing
we assume an atomic fetch-and-add to the global memory that can
be performed in constant span and work linear in the number of
processors.

The challenge with Asymmetric NP computations is that stack
variables must be written out to global memory before tasks can
be migrated to a different processor from the one that forked it.

1We assume, as in the RAM, there is a FINISH instruction.
2We treat the write cost, ω, as a parameter in our model in order to highlight
its impact on algorithm design and analysis. To further highlight, we also
state bounds on the number of writes in each of our algorithms. Because of
our interest in practical algorithms, we seek algorithms where the constant
factors hidden by the Big-O notation are small, so that the gains from using
fewer writes matter.

The naïve approach would forego the stack and instead write all
O(1) stack variables for non-leaf tasks directly to global memory,
making each FORK cost Θ(ω). For fine-grained parallelism espe-
cially, where the number of FORKs for an algorithm with work
W is Ω(W), this approach would yield running time no better
than Ω(ωW/P). In other words, one may as well consider every
instruction a write if adopting the naïve scheduler.

Here we show that a variant of a work-stealing scheduler [13]
achievesO(W/P+ωD) expected time when limited to binary fork-
ing. In standard (symmetric-memory) work stealing, each worker
(or processor) maintains a double-ended queue called a deque of
tasks that are ready to execute. Whenever a worker executes a (bi-
nary) FORK instruction, the processor continues working on the
“left” child task and places the “right” child on the bottom of its
deque. When a worker completes a task by executing its FINISH
instruction, there are two options. If that task enabled another one,
i.e., the completed task was the last outstanding child of its par-
ent, then the worker continues working on the now-enabled parent.
Otherwise, the worker removes the bottom task from its deque and
executes it. If the deque is empty, the worker instead steals, meaning
that it chooses a random victim processor and takes the task from the
top of that processor’s deque if the deque is non-empty. In the event
that the steal is unsuccessful, the worker will continue to attempt to
steal until it successfully steals a task or the computation is finished.

In the Asymmetric NP model, working locally on a deque is cheap,
and in general stack frames need not be written out. For example, if
the entire computation runs sequentially on one processor, then no
stack-related writes occur (assuming that the local memory is large
enough to hold the stack depth).

There are still some challenges, however, most notably on steals.
Because a task has access to any stack variables of its ancestor tasks,
any unwritten stacks of ancestor tasks must be written out to global
memory when a steal occurs. This situation is particularly challeng-
ing to analyze as it may cause steals to take time proportional to ω
times the nesting depth. To cope with this challenge, Lemma 2.1
shows that a simple modification to work stealing results in at most
a constant number of frames needing to be written. We assume that
a steal request somehow interrupts its target task (e.g., all tasks can
regularly poll to check if there are any outstanding steal requests),
and if work is available, the registers for the stolen task and relevant
ancestors are written to the asymmetric global memory. There is
a similar potential issue when a task completes: its return value
must be written to its parent task, which may no longer be local, and
hence a write to global memory could be required.

LEMMA 2.1. There exists a variant of work stealing such that
on each steal (or steal attempt), only O(1) stack frames are written
to global memory.

PROOF. The lemma can be achieved either by modifying work
stealing or by an equivalent program transformation. The program
transformation is as follows. Transform every FORK into two
FORKs as follows. First FORK two tasks: the left child performs
the intended FORK, which we call a forking task, and the right child
is a dummy task that does nothing. The dummy task is inserted onto
the deque, whereas the worker continues on to execute the forking
task. (In Cilk-like work-stealing, e.g., [13], expressing the FORK as
two “spawns” followed by a “sync” would automatically create a
similar dummy task as a continuation from the second spawn.)

We claim that for the topmost task on the deque (i.e., the one that
can be stolen), at most its parent and grandparent have not already
been written out to global memory. In order for a task to be on the
deque and hence stealable, it must be the right child of its parent.
A simple induction shows that for any task on a deque, all right

children of ancestors have either been stolen already or are on the
same deque. (A similar claim is proven as Lemma 3 in [7].) Thus, a
steal need only write-out the frames corresponding to the longest
right-only path in the computation graph. The longest is three nodes,
which we can show by cases. A forking task is always the left child
and hence not stealable. A real task (i.e., one existing before the
transformation) is always the child of a forking task, so it can have
at most one unwritten ancestor frame: the parent forking task. A
dummy task is always the right child of a real task, so stealing a
dummy task could entail writing out three frames.

THEOREM 2.2. Consider a computation in the Asymmetric NP
model with binary branching factor, W work, D span, δ nesting
depth, and Ml leaf stack memory. There exists a work-stealing
scheduler that executes the computation inO(W/P+ωD) expected
time on a P -processor (O(δ) +Ml, ω)-Asymmetric PRAM.

PROOF. We adopt the potential-based analysis from [7]. But we
need to modify the argument to cope with the fact that (1) steals
involve writing out to global memory, and (2) finishing tasks may
also entail writing out to global memory, i.e., if the parent frame is
in global memory.

The main idea of the original potential-based analysis [7] is as
follows. On each timestep, each processor places a token in either a
work bucket, if it is making progress on a task, or a steal bucket, if
it is attempting to steal. Since at most W units of progress can be
made on tasks, there are at most W work tokens. Moreover, every
processor places a token on each timestep, so the parallel running
time is the total number of tokens divided by P . It follows that if
S steal attempts occur during the course of the execution, then the
running time is O(W/P + S/P). One can bound S = O(PD)
in expectation through a clever potential analysis [7]. The details
are not important here, but the main idea is that each Θ(P) steal
attempts are “likely” to steal the shallowest ready tasks, and hence
progress is made on the span of the computation. Thus, the expected
running time is O(W/P + D) in the symmetric memory setting
where writes are constant time.

In our case, a steal attempt does not correspond to a constant-
time event. Instead, we may need to write out several stack frames.
By Lemma 2.1, a steal occupies two processors for at most O(ω)
timesteps. Thus, the cost of a steal token is increased by this much.
We must also account for the fact that work in the computation may
increase elsewhere if writes to global memory occur. In particular,
assuming local memory is large enough to hold the entire stack (i.e.,
O(δ) +Ml)), the only additional writes that occur are when a child
returns to a parent task that resides in global memory, i.e., it has been
stolen. This event corresponds to a more expensive write token, but
the number of these heavy write tokens is bounded by the number of
steals. We thus have a total running time that is O(W/P + ωS/P),
where S is the number of steal attempts. The potential analysis on
the number of steal attempts [7] can be applied to the augmented
computation as usual, and we are left with an expected running time
of O(W/P + ωD′), where D′ ≤ 2D is the span of the augmented
computation created using the process described in Lemma 2.1.

The above theorem provides justification for charging only unit
cost for FORK, and for example, means that the standard reduce via
a binary tree incurs only Θ(n + ω) work instead of Θ(ωn) work
on the Asymmetric NP, as discussed in Section 3. Note also that
our separate accounting for leaf stack memory in the Asymmetric
NP model, and the observation that the non-leaf tasks of all the
algorithms in this paper each allocate only O(1) stack memory,
means that the bound in the lemma is only a constant number of
writes per steal, whereas without the separate accounting, it would
be O(Ml) writes per steal.

Bulk-Synchronous Computations. Many of the algorithms in this
paper are bulk-synchronous algorithms for which there is only one
level of nesting (δ = 1). The root task proceeds in a sequence of
R rounds. In each round i it forks ni child tasks (each a leaf) and
waits for them to finish. The root task can run arbitrary computation
between such rounds. We define the iteration count I as

∑R
i=1 ni.

The following lemma for scheduling bulk-synchronous algorithms
provides additional support for the model.

LEMMA 2.3. A bulk-synchronous computation with arbitrary
branching on the Asymmetric NP model with W work, D span,
R rounds, I iteration count, and Ml leaf stack memory, can be
simulated on an (O(Ml), ω)-Asymmetric PRAM with P processors
in O((W + ωI)/P +D + ωR) time.

PROOF. The idea is that the root task runs on some processor
and when it gets to a fork, it sets up the registers for the children and
sets a count to n. The processors then grab tasks by decrementing
this count (using the fetch-and-add). When the count reaches zero
idle processors quit for that round and wait for a later round when
it is again set to some non-zero number. A separate counter can be
used to detect when all processors are done, and the processor that
detects termination can continue with the root task. The additional
work done for accessing the counter is O(ωI) and the charge to the
span is O(ωR) so using Brent’s scheduling principle [14], (T ≤
W/P +D), we have the given time bounds.

Each child task takes O(Ml) local memory. Since the nesting
depth is one, the total memory needed by a child task is O(Ml + 1).
This gives the memory bound.

3. BASIC PARALLEL PRIMITIVES
In this section we consider two basic parallel primitives. We note

that some primitives inherently require as many writes as reads. For
example, all prefix sums needs to write out all the sums. However,
when they are used as a step for some other purpose, then the final
generation of the values can be folded into whatever needs the values.
This idea is used in the output sensitive filter described below.

3.1 Reduce
Summing a sequence of values with respect to an associative

function f(x, y) is surely the most common parallel function. Of
course it only requires a single result so it should be possible to make
it write efficient. In the Asymmetric NP there are two methods to do
this. The first is simply to use a divide-and-conquer algorithm that
recurses on the two halves in parallel, and when they return add the
two results. The base case can either be a single element orO(logn)
elements, and then sum those elements sequentially. A fork can be
used to generate two child tasks for the calls. The interesting feature
of our model is that this will only require a single write, which is
to write the final answer. All other computation can be done in the
constant space per task stack space. This may seem impossible since
the processors need to communicate. Recall, however, that when we
simulate the Asymmetric NP (with binary branching) on a machine,
we account for the steals in the cost. These steals are communicating
the values among processors. The divide-and-conquer algorithm
leads to the following result.

LEMMA 3.1. The reduction of n elements can be done in Θ(n+
ω) work and Θ(logn + ω) span using Θ(1) writes on the Asym-
metric NP model.

A second way to do a reduce is with bulk-synchronous steps. The
first step forks n/ω tasks, each of which sums ω values and writes
its sum to large memory. This can be repeated logω n times to get

the sum. The resulting algorithm does Θ(n + ω) work and has
Θ(ω logω n) span.

3.2 Output-Sensitive Ordered Filter
Given an array A of size n and a predicate ρ on the elements

of A, we want to filter out the entries x ∈ A for which ρ(x) = 0,
and get a new array A′ of size k ≤ n, where k is the number of
elements x ∈ A for which ρ(x) = 1 and A′ preserves the relative
order of the elements in A. In the classic nested-parallel model, this
is easily done in linear work and logarithmic span by first creating
a new array that holds the result of applying ρ to each element,
computing a prefix sum on that array to determine the position in
A′ of each element to be moved, and then moving those elements.
However, this requires Θ(n) writes. In the Asymmetric NP model,
this number of writes can be problematic; there exist algorithms
where the number of writes depends on k rather than n except for
the filtering step.

Our goal is an (output-sensitive) ordered filter algorithm whose
writes are proportional to the output size rather than the input size,
thereby matching the lower bound on writes. We show the following
result:

LEMMA 3.2. Ordered filter on an array of size n such that k
elements satisfy the given predicate can be done in Θ(n+ωk) work
and O(ω logn) span using Θ(k) writes w.h.p. on the Asymmetric
NP model.

Our algorithm proceeds as follows: we first apply a REDUCE
operation with ρ to find k, and allocate an array B of size O(k).
Recall that in our model, a reduce operation takes only O(1) writes.

If k ≤ n
logn

, then we hash the k entries, along with their indices
inA intoB. This takes onlyO(k) writes and can be done efficiently
in parallel, since we expect few collisions. We then sort the array by
the original indices to get an array A′ of size k that preserves the el-
ements’ relative order in the input array. Because there are less than
n

logn
entries, we can sort them in O(n+ ωk) work and O(ω logn)

span w.h.p., using a write-efficient parallel sorting algorithm [12].
If k > n

logn
, we divide the array into k equal parts, and then in

parallel process each part sequentially. This sequential filtering need
only write each non-filtered element once, and it takesO(logn+ω)
span since each part is small. Finally, we concatenate the results to
get our output array. This concatenation can be done in O(ω logn)
span by counting the elements in each part and using a prefix sum
to find starting indices for each part’s output in the final array. Since
the prefix sum is only applied to the set of k parts, it uses only O(k)
writes.

4. LIST AND TREE CONTRACTION
In this section we introduce efficient parallel algorithms for list

and tree contraction that reduce the number of writes without in-
creasing the reads. In both problems, our goal is to divide up the
problem into sub-problems that can be processed in parallel. We
say that an equal partition of a structure of size n is a partition into
O(s) contiguous parts, each of which is of size O(n/s) for some
s ≤ n. For example, the partition based on m-critical nodes in [26]
is an equal partition.

The list contraction algorithm we present is relatively simple,
and uses a common approach to partition the problem size using
random samples. Tree contraction however, becomes more challeng-
ing when we limit the writes to main memory. We are not aware
of any existing tree contraction algorithms (even sequential ones)
that solve the problem using bounded local memory. Furthermore,
designing a parallel version is hard because we cannot explicitly

3 5

2 4

1

Figure 1: The Euler tour of this rooted binary tree is
(1, 2, 3, 2, 5, 2, 1, 4, 1), obtained by following the arrows on the
edges starting at the root node 1.

record information on the tree nodes (this would require too many
writes).

Previous parallel tree contraction algorithms use either a top-down
approach [34, 42, 43, 48] or a bottom-up approach [26]. All of them
require a linear number of writes, and we are unaware of any non-
trivial modifications to these algorithms that can reduce the number
of writes to o(n). To solve this problem, our algorithm a uses a
bottom-up approach. It is based on a new tree-partition algorithm
that, instead of partitioning the tree based on sub-tree sizes as done
in [26], uses the Euler tour as a tool to refine our partition after
randomly selecting sample nodes. Then we prove that the partition
we get is an equal partition using a surprisingly simple argument.
With this partitioning of the tree, we can combine a sequential space-
bounded tree contraction algorithm that we describe with any of
the existing tree contraction algorithms to obtain a write-efficient
parallel tree contraction algorithm in the Asymmetric NP model.

4.1 List Contraction
A linked list is a list of nodes in which each node has a pointer to

the next node in the list. A segment on the linked list is defined as
the elements between two given nodes. The list contraction problem
is to contract a linked list of length n into a single node (possibly
combining values). It has many applications, including list ranking
and Euler tours [34]. Sequentially, we can just loop over all nodes
by following the pointers which takes a linear number of reads and
work, and a constant number of writes to main memory. In the
symmetric setting (ω = 1), the standard parallel approach using
random mate [5] requires O(logn) span and linear reads and writes.

Our algorithm partitions the list in two steps. In the first step, each
element in the list is randomly marked with probability s/n for some
parameter s. Then in the second step, we start with each marked
node, and in parallel, follow the list with the pointers and mark every
bn/sc’th element. The longest chain we have to follow here has
lengthO((n logn)/s) w.h.p., which can be shown using a Chernoff
bound. Now clearly all segments between two consecutively marked
nodes have size no more than bn/sc. With the marked nodes, we
contract all segments in parallel, with each one done sequentially
(terminating when the next marked node is encountered). After that,
a standard symmetric version of parallel list contraction is applied
on the marked nodes. Each step of the algorithm performs O(s)
writes.

The new list contraction algorithm takes linear work, O(ω +
(n logn)/s) span, and O(s) writes in the Asymmetric NP model.
This algorithm is efficient when running on a share-memory machine
with p = O(n/(ω logn)) cores. In this case we can just plug in s =
n/ω and get the bounds shown in Table 1. The list partition routine
described above is used as a subroutine in our tree contraction
algorithm described next.

4.2 Tree Contraction
The tree contraction problem is to contract a tree with n nodes

into a single node (possibly combining node values), and has many
applications in parallel computing [34, 42, 43]. We assume that

Algorithm 1 A parallel tree partitioning algorithm.
Input: A rooted binary tree T .
Output: O(s) partition nodes.
1: Apply the parallel list partitioning algorithm on the Euler tour

of tree T and mark no more thanO(s) tree nodes such that each
sublist has length less than n/s

2: for each marked node v do
3: Traverse the Euler tour from the position of v’s last appear-

ance to the next marked node v′

4: Mark the highest node in this range
5: return all marked nodes

the input is a rooted binary tree and each tree node has pointers to
its parent, left child, and right child (if they exist). When the tree
is viewed as a directed graph that contains two directed edges for
each edge in the tree, the Euler tour [49] of the tree is an Eulerian
circuit of the directed graph (see Figure 1 for an example). It can
be constructed implicitly: given the current node and the previous
edge, we can check whether the previous edge is from the parent or
child of the current node, and according to this information, decide
which edge to take next. We define a component of a tree to be a
set of tree nodes that are connected. A subtree is a component, but
not vice versa.

In the symmetric setting (ω = 1) doing tree contraction sequen-
tially in linear work is trivial, and classic parallel tree contraction
algorithms [34, 42, 43, 26] take O(logn) span and O(n) writes.
However, many applications, such as arithmetic expression evalua-
tion and subtree size queries on a set of tree nodes, have a sublinear
output size. Thus, a natural question to ask is whether we can design
a parallel tree contraction algorithm with a sublinear number of
writes. We describe such an algorithm in this section.

4.2.1 A new tree partitioning algorithm
The goal of this algorithm is to findO(s) partition nodes such that

each tree component has size at most n/s. The high-level idea of
the algorithm is to compute an equal partition of the Euler tour and
mark the lowest common ancestor of each component as a partition
node. The pseudocode is provided in Algorithm 1, and we explain
the details below.

Since we cannot afford to store information per node, our solu-
tion is to run the parallel list partitioning algorithm described in
Section 4.1 on the Euler tour of the tree. However, generating the
Euler tour is too expensive, as it would require a linear number
of writes. Thus, we need to simulate the parallel list partitioning
algorithm. We do so as follows. First, we randomly sample O(s)
nodes on the tree. Then, from each sampled tree node, we follow
the Euler tour in every direction in parallel. In each direction, we
mark every bn/(3s)c’th element along the path, until we reach the
next sampled node on the Euler tour. This step is similar in the list
partitioning algorithm, but each node may correspond to multiple
(up to three) different locations in the Euler tour, so we traverse
the list from all different locations. In expectation, the distance
between two samples will be at most O((n/s) logn) w.h.p. We
will mark another O(s) nodes during the second step. This process
corresponds to Line 1 of the pseudocode.

With the O(s) marked nodes, the algorithm now finds and marks
O(s) partition nodes, which corresponds to Lines 2–4 of Algo-
rithm 1. A partition node is the highest node (closest to the root)
in a tree component consisting of tree nodes in a segment of the
Euler tour. For every segment that starts with the first or second
appearance of a marked interior node v, the partition node is just the
first node in the segment, because the segment cannot go beyond the
subtree of v and it terminates no later than the next appearance of v

Y X

Y

Y

XX

X

Figure 2: An example of how the tree is partitioned into compo-
nents. A component consists of tree nodes from at most three
segments of the Euler tour.

in the Euler tour. Hence, we need to do nothing for these segments
since the partition nodes are already marked. We only consider the
segments that start with the last appearances of marked nodes. The
partition node of each such segment can be computed with constant
space by traversing through the segment: we always maintain a
pointer p to the highest node so far in the traversal. We start by
pointing at the first node in the segment, and whenever we go from
our current top node to its parent in the traversal, we update p to
point to its parent as well. When the traversal finishes, the node
pointed by p is marked. It is easy to see that this marked node is the
highest node in the segment.

The partition nodes provide a partitioned tree with O(s) compo-
nents if we form the tree components by ignoring edges from all
partition nodes to their parents. We now show that this partition is
an equal partition.

LEMMA 4.1. The marked nodes generated in Algorithm 1 par-
tition the tree such that each tree component contains at most n/s
tree nodes.

PROOF. We prove this by showing that each component consists
of tree nodes from at most three segments of the Euler tour, which
is shown in Figure 2. Recall that in the algorithm, we marked every
bn/3sc’th element in the Euler tour, so showing this suffices to
prove our claim.

In Figure 2, nodes marked by the list partitioning algorithm are
shown with the letter “X”, and the newly-added partition nodes
corresponding to the highest nodes in each segment are marked with
“Y”. Both types of nodes are considered marked nodes. We claim
that for each tree component rooted by either an X node or a Y node
(e.g., the blue region in Figure 2), there exist at most two subtrees
(e.g., the two yellow regions in Figure 2) that contain marked nodes
and are rooted at nodes that are direct children of this component.
More specifically, there will be at most one such subtree in each of
the left and right subtrees of the root node (we will refer to these two
subtrees as left-side and right-side marked subtrees). The segment
from the last X node in the left subtree (if it exists) on the Euler tour
to the first X node in the right subtree (if it exists) marks the root of
this component. To see that there is at most one subtree on each side,
assume for the sake of contradiction that there are two marked nodes
on the same side of the root but not in the same marked subtree
(yellow region). Then the lowest common ancestor of these two
nodes will be marked as a Y node. This node is assumed to be in
this component (the blue region) but actually it will be marked and
removed from this component, which leads to a contradiction.

Hence, each component only consists of nodes from at most three
segments from the Euler tour. The first segment is the one that

enters this component in the Euler tour, and ends at the first X node
(based on the Euler tour) in the left-side marked subtree, which
is shown as the red arrows in Figure 2. The second segment is
illustrated as the orange arrows, starting from the last X node in
the left-side marked subtree and ending in the first X node in the
right-side marked subtree. The last segment, shown as the green
arrows, is symmetric to the first segment and leaves this part from
the last X node. If there are no marked node in the left side, then the
first and second segments are merged into one, and similarly on the
right side. Thus each component consists of vertices from at most
three segments of the Euler tour.

Since we can guarantee that each segment has size no more than
n/3s, each tree component contains no more than n/s nodes.

The overall cost is the sum of the cost of partitioning the Euler
tour and the cost of traversing a subset of the segments (starting for
the up-edge of each X node). This takes linear work, O(s) writes
and O((n/s) logn) span w.h.p.

Remark: Notice that our tree partition is done by removing (actu-
ally ignoring) edges but not vertices (as done in [26]) since this is
more efficient on both work and writes in practice. This algorithm
also works on all constant-degree trees. However, for an arbitrary
tree our algorithm would not work. In fact, if the given tree is a star,
then there does not exist any equal partition of non-constant (ω(1))
size, which means that no top-down approaches by tree partitioning
will give a write-efficient solution in this case. Therefore, a prepro-
cessing step that converts the input to a binary tree with linear writes
is required before running our algorithm, but if the tree contraction
is run multiple times on a given tree, there is still an advantage in
using this algorithm.

4.2.2 A sequential algorithm
We now discuss a sequential and space-bounded tree contraction

algorithm that will be used as a subroutine in our parallel algorithm.
Previous tree contraction algorithms [42, 43, 48, 26] take either
linear space or linear writes to the main memory, which is too
costly in the asymmetric setting. Instead we would like to design
an algorithm that uses a small amount of local (small) memory
and performs no writes to main memory. The tool we use is the
tree partitioning algorithm discussed in the previous section, which
can be used to partition a tree into components of size no more
than n/s using O(s) writes. Our algorithm then contracts each
tree component down to a single node, and after that we apply a
standard tree contraction algorithm on the marked nodes. To restrict
the number of components as well as the size of the components
so that all intermediate results fit into a small memory and require
no writes, the we recursively apply the tree partitioning algorithm
until each component fits in small memory. Suppose that the cutoff
size for the base case of the recursion is c. Then the required small
memory size is O(s logs(n/c) + c), and the work and number of
reads is O(n logs(n/c)). By setting s to either O(εnε) or some
constant greater than 1, we obtain the following lemma.

LEMMA 4.2. The sequential algorithm presented above con-
tracts a tree of size n requiring O(1) writes, and using a small
memory of size O(nε) and linear work, where 0 < ε < 1, or a
small memory of size O(logn) and O(n logn) work and reads.

4.2.3 A parallel algorithm
We now describe a parallel tree-contraction algorithm that uses the

tree partitioning algorithm and sequential tree contraction algorithm
as subroutines.

The high-level idea for the parallel algorithm is to first partition
the tree into small, almost equal-sized components using the tree

partitioning algorithm, and then contract each component indepen-
dently in parallel using the sequential contraction algorithm. Finally,
we use a standard parallel tree contraction algorithm to contract the
remaining nodes. This step requires a number of writes proportional
to the number of remaining nodes, which is much smaller than the
original tree size. The algorithm takes s as a parameter and consists
of three steps as described below.

Step 1: Tree Partitioning. The first part of the algorithm computes
a tree partition such that each component has size O(n/s), where
s is a parameter of the algorithm. This step requires O(n) work,
O(ω + (n logn)/s) span w.h.p. and O(s) writes, if implemented
by Algorithm 1.

Step 2: Tree Contraction on Components. With the partition
nodes computed in Step 1, we now have a set of components each
with size at mostO(n/s). Since the tree components are themselves
trees, we can apply our sequential tree contraction algorithm on each
of them. The contraction is restricted to be inside each component by
not contracting any partition node. Also, we leave the root node of
each component uncontracted. After contraction, each component’s
root has at most one left and one right child, which is either the
marked child (the Y nodes in the yellow regions in Figure 2) or the
a descendant of the root that is in the component (if no marked child
on the side). Hence, if the local memory has size O((n/s)ε), this
step takes linear time and O(n/s) span, and yields an intermediate
contracted tree with no more than O(s) nodes.

Step 3: Contraction of Remaining Nodes. In the last step, we
apply any existing parallel tree contraction algorithm with linear
work and logarithmic span to contract the tree generated from the
last step to a single node. This step costs O(s) reads, writes and
work, and O(ω logn) span.

To reduce the number of writes without increasing the asymptotic
work complexity, we choose s = n/ω. Hence, the size of the
components is at most ω. The following theorem gives the cost of
our parallel tree contraction algorithm.

THEOREM 4.3. Algorithm 1 can be used to contract a tree with
size n using O(n) work, O(ω logn) span and O(n/ω) writes with
O(ωε) local memory in the Asymmetric NP model.

5. MINIMUM SPANNING TREES
This section extends Karger, Klein and Tarjan’s (KKT) [35] se-

quential linear-work randomized algorithm for minimum spanning
tree/forest. At a high level, their algorithm proceeds as follows: Ran-
domly sample half of the edges, and calculate a minimum spanning
forest on these sampled edges. Use the sampled forest to filter out
edges that cannot be part of the overall minimum spanning forest.
Specifically, identify all edges e = (x, y) of the graph such that
e is the heaviest edge on the cycle it closes in the sampled forest.
These edges are discarded. Next, recurse on the remaining graph and
perform a constant number “Borůvka steps” to reduce the number
of nodes in the graph. The proof that this algorithm runs in linear
work hinges on two main facts: first, that the filtering can be done
in linear work, and second, that the number of edges filtered out is
large in expectation. We will use the following definitions in this
section.

DEFINITION 1. For a given tree T in the graph, and two vertices
x, y ∈ V , the path connecting x and y in T (if such a path exists) is
denoted by τ(x, y).

DEFINITION 2. An edge e = (x, y) is said to be heavy with
respect to a tree T on the graph if e closes a cycle in T and it is

the heaviest edge in that cycle. That is, w(e) ≥ max(w(e′) | e′ ∈
τ(x, y)). Any edge that is not heavy with respect to T is said to be
light with respect to T .

Recall the well-known cycle property of MSTs: a tree T is an
MST in a graph G if and only if every non-tree edge closes a cycle
in T and is the maximum weight edge on that cycle. Therefore, if
all edges of a graph not in T are heavy, then T is an MST of that
graph.

The filtering-out of heavy edges is achieved via minimum span-
ning tree verification algorithms. These algorithms take a tree and
a graph as input and determine whether the tree is an MST in the
graph. They operate by labeling each edge as light or heavy with
respect to the tree. There is extensive work on the verification of
minimum spanning trees, and several algorithms are known to oper-
ate in linear work [21, 37, 31]. The KKT algorithm then throws out
any edges labelled heavy by the verification algorithm, and recurses
on the remainder of the graph.

To be efficient, the KKT algorithm requires that when a minimum
spanning forest is built on a random subset of the graph, a large
fraction of edges in the remaining graph can be filtered out. They
show that this holds using the following lemma:3

LEMMA 5.1 (SAMPLING LEMMA). For a random subsetR ⊆
E of size r, and a random subset S ⊆ E of size s, the expected
number of edges in S that are light with respect to the MST of R is
less than sn/r.

Using this lemma, Karger et al. prove that their algorithm requires
O(m) work with high probability.

5.1 Write-efficient MST
Our goal is to find an MST algorithm that minimizes the number

of writes performed without significantly increasing the number
of reads. A slight modification of Borůvka’s algorithm yields an
algorithm which executes in O(m logn+ ωn) work in the (M,ω)-
ARAM model [11]. That is, we can achieve the optimal number
of writes (O(n)) using O(m logn) reads. However, we want to
find an algorithm that more closely matches the optimal work of the
algorithm of Karger et al. [35].

We present an MST algorithm that uses the KKT algorithm as
a subroutine, and requires O(α(n)m) reads (where α(·) is the in-
verse Ackermann function) and O(n log(min(m/n, ω))) writes,
resulting in O(α(n)m+ ωn log(min(m/n, ω))) work.

The algorithm is iterative, and proceeds as follows. It begins by
taking an O(n) sized random sample of the edges and running KKT
on them to find a minimum spanning forest of the sampled graph.
Then, in each round, it takes a random sample that is twice as large
as the previous one, filters out the edges in the sample that are heavy
with respect to the most recently calculated spanning forest, and
then runs KKT again on the remaining part of the sample. In each
such round, with high probability, we will only be left with O(n)
edges from the sample that pass the filtering, and so each round will
needO(n) writes. The algorithm proceeds in this way until the final
sample includes all edges in the graph. The pseudocode for this
algorithm is presented in Algorithm 2.

5.2 Analysis
We start with a sample set S of edges with size max(2n,m/ω),

and run the KKT algorithm on this sample to calculate a minimum
spanning forest on it. We then double the size of the sample set in
3The statement of this lemma is a slight variation of the version given in [17]
and is different from the original paper [35].

Algorithm 2 Write efficient MST algorithm
Input: A graph G = (V,E).
Output: An MST with a set T of edges.
1: sampleSize← max(2n,m/ω)
2: Edge set T ← {}
3: while sampleSize < m do
4: The set of light edges SL ← {}
5: for s← 1 to sampleSize do
6: Randomly pick an edge e ∈ E
7: if e cannot be filtered with respect to T then
8: SL ← SL + {e}
9: T ← KKT(SL ∪ T)

10: sampleSize← 2 · sampleSize
11: SL ← {}
12: for all e ∈ E do . Take all edges in final round
13: if e cannot be filtered with respect to T then
14: SL ← SL + {e}
15: T ← KKT(SL ∪ T)
16: return T

each round and recalculate, until all edges are processed. However,
to save writes, instead of storing all the samples, we use an online
filtering algorithm to throw out the edges that are heavy, and only
keep the light sample edges. We sample slightly (a constant factor)
more than our desired sample size to account for collisions. Note
that once the sample size is linear in m, we can sample by flipping a
coin with appropriate probabilities for each edge, without increasing
the algorithm’s total work. We define the edge set SL to be the
subset of S that contains light edges (with respect to the current
spanning forest in this round), and the edge set SH to be the subset
consisting of heavy edges. Clearly, S = SH ∪ SL.

LEMMA 5.2. At the end of round i of the algorithm, we have a
minimum spanning forest on Θ(2i−1 max(n,m/ω)) edges of the
graph in expectation.

PROOF. In round i, we have at least Θ(2i−1 max(2n,m/ω))
sample edges in expectation, but only build a minimum spanning
forest using the edges in SL, along with the tree we already have.
Let T be the set of edges in the current forest, as shown in the
pseudocode. Note that by the definition of heavy edges, T is a
minimum spanning forest in the graph whose edge set is SH ∪ T .
Therefore, the MST of T ∪ SL is also a minimum spanning forest
on T ∪ SL ∪ SH .

Therefore, at the end of round dlog2(min(m/n, ω))e, we have
an MST on the entire graph, and we are done. Note that in the last
round, we simply consider all of the edges (without sampling) to
ensure that we’ve seen every edge.

LEMMA 5.3. In every round, the expected size of SL, the num-
ber of edges that pass the filtering, is Θ(n).

PROOF. By Lemma 5.2, the MST used to filter edges in round i is
a minimum spanning forest on at least c12i−1n edges in expectation
for some constant c1. The sample size in round i is c22in in expec-
tation for some constant c2. By the Sampling Lemma, the expected

size of SL in round i is less than
sn

r
=
c2(2in)n

c12i−1n
= Θ(n).

By Lemmas 5.2 and 5.3, it is easy to see that, excluding any work
needed for the filtering, the total number of writes required for this
algorithm is O(n log(min(m/n, ω))), and the number of reads is∑dlog2(min(m/n,ω))e
i=1 Θ(2in) = O(m).

Ideally, we would like the filtering step to take no more thanO(n)
writes per round, and a constant number of reads per edge. There
are several MST verification algorithms that take work linear in the
number of edges [21, 37, 31]. However, all of these algorithms also
take O(m) writes, and are therefore not suitable for us. Alon and
Schieber [4] present an online algorithm for minimum spanning
tree verification that operates in O(n) preprocessing work, and then
α(n) work per queried edge. The queries are done through a look-
up in the data structure built in the preprocessing stage, and require
no writes. Using their algorithm allows us to execute the entire
write-efficient MST algorithm in O(n log(min(m/n, ω))) writes
and O(α(n)m) reads.

Alon and Schieber also prove a matching lower bound for the
problem of answering online tree product queries, which is a gener-
alization of the MST verification problem. However, they show this
lower bound looking at the worst case query. It may be possible to
improve upon this result by considering the query time amortized
over all of the edges.

5.3 Parallel Analysis
We can parallelize each of the steps of the algorithm. Clearly,

the sampling of edges can be done in parallel in constant span. We
then use a parallel version of Alon and Schieber’s algorithm [4]
to filter out heavy edges. This takes polylogarithmic span. Cole
et al. [20] presented a parallel version of the KKT algorithm that
takes linear work and polylogarithmic span, which we can use
instead of the sequential version whenever we call KKT. So simply
by using the parallel versions of these algorithms, we achieve a
work-efficient polylogarithmic span algorithm (we only sample
O(log(min(m/n, ω))) times, and the span is only increased by a
factor of O(log(min(m/n, ω)))).

However, we need to be precise with the number of writes re-
quired in the parallel version. After using Alon and Schieber’s
algorithm to check whether each sampled edge can be filtered out,
we need to pack out the edges that passed the filtering to use them
in the next round of the algorithm. A standard packing algorithm
would execute a number of writes proportional to the total size of
the sample, which is too many writes for us. For this, we use the
output sensitive filter algorithm presented in Section 3.2.

We thus obtain the following theorem:

THEOREM 5.4. Given a graph G with m edges and n vertices,
an MST of G can be found in O(α(n)m+ ωn log(min(m/n, ω)))
work, O(ω polylog(n)) span and O(n log(min(m/n, ω))) writes
w.h.p. in the Asymmetric NP model, where α(·) is the inverse Acker-
man function.

6. OUTPUT-SENSITIVE CONVEX HULL
The planar convex hull problem takes as input a set of points

in 2D and generates the smallest polygon (represented as a list of
segments) that contains all of the points. The fastest algorithms for
computing a convex hull either require O(n logn) work if the algo-
rithm is insensitive to the output size, or O(n log h) work, where h
is the number of points on the hull. Naive implementations of these
algorithms would require O(n logn) or O(n log h) reads/writes,
respectively, while the minimum number of writes required is much
lower since only the h points and segments on the hull need to be
written. Our goal in this section is to develop work-efficient parallel
algorithms where the number writes is asymptotically lower than
the number of reads.

Several algorithms first sort the points by increasing x-coordinate,
and then apply a O(n) work step on the sorted points to compute
the hull (see, e.g., [30, 6]). We note that we can trivially obtain an

Algorithm 3 OUTPUT-SENSITIVE (UPPER) CONVEX HULL

Input: A set of n two-dimensional points in general position.
1: Place the points into h buckets each of size O(n/h), where the
x-coordinates of all points in bucket i ∈ [0,min(h − 1)] are
less than the x-coordinates of all points in buckets j > i.

(a) Pick Θ(h logn) random samples, sort them,
and use every (logn)’th sample as a splitter.

(b) Have the remaining points each do a binary search
on the splitters to determine which bucket they
belong to.

(c) Use prefix sums to determine and appropriate
offsets into buckets for each point.

(d) Have all points write to the appropriate offset
into their bucket.

2: If there is only one bucket B, search up the tree of bridges and
perform one of the following:

(a) If all points in the buckets are on or below a
bridge, then do nothing.

(b) If there are points in B not covered by a bridge,
then apply a standard output-sensitive convex
hull algorithm on an input containing points in
the bucket and the points forming the bridges
BrB,L and BrB,R.

3: Split points into two sets, L and R, where L contains points in
the first dh/2e buckets, and R contains the remaining points.

4: Find the bridge between L and R.
5: Recursively apply Steps 2–5 on each of L and R, storing the

bridge computed in each sub-problem as the left and right child,
respectively, of the bridge in Step 4.

6: Obtain final solution by traversing down the tree of bridges.

algorithm with O(n logn) reads and O(n) writes, by first using a
write-efficient sort [12], followed by the same post-processing step
that takes O(n) reads/writes. The sort can be done in O(ω logn)
span w.h.p. [12], and the post-processing step can be done in parallel
in O(n) work and O(ω logn) span [29].

6.1 An output-sensitive algorithm
Obtaining a write-efficient output-sensitive convex hull algorithm

withO(n log h) work requires more effort because we can no longer
directly apply a comparison sort. We now describe how to obtain an
algorithm with O(n log h) reads and O(n log log h) writes.

Our algorithm uses divide-and-conquer and borrows ideas from [38,
16]. We first assume that we know the value of h and that h =
O(n/ logn) (to make oversampling work); we will remove these
assumptions later. We also assume without loss of generality that
no points have the same x-coordinate. We describe how to compute
the upper hull (the hull above the line from the leftmost point to the
rightmost point) and the lower hull can be computed analogously.
The main steps of the algorithm are shown in Algorithm 3.

The algorithm is a divide-and-conquer algorithm but to avoid
data movement we approximately pre-sort the points. In particular,
we split the points into h buckets each of size O(n/h), where the
x-coordinates of all points in bucket i ∈ [0, h− 1] are less than the
x-coordinates of all points in buckets j > i. By picking Θ(h logn)
samples, sorting them, and using every (logn)’th element as a
splitter, the buckets can be shown to have size O(n/h) w.h.p. using
Chernoff bounds. This step is described as Step 1 of Algorithm 3.

If the input contains a single bucket, then we have reached the
base case (Step 2), which we will describe how to handle shortly.
Otherwise, the algorithm splits the points into approximately two
halves,L andR (Step 3). This step requires no data movement, since
the points have already been placed into their respective buckets.

We then find the bridge of the upper hull between L and R, which
is a line passing through a point in each set such that all points lie
below the line (Step 4). The bridge can be found by solving the
following two-dimensional linear program, where the bridge is the
line y = αx + β and xmid is the x-coordinate of a vertical line
between L and R (which can be computed as a value arbitrarily
close to the x-coordinate of the splitter element [41]):

minimize αxmid + β

subject to: αxpi + β ≥ ypi ∀i ∈ L ∪R

We describe how to solve 2D linear programs write-efficiently in
Section 6.3.

The bridge found in Step 4 is stored as the root of a tree of bridges,
and we recursively compute the tree of bridges on each of L and R
in Step 5.

We now describe the base case, when there is only a single bucket
B. The bucket searches up the tree of bridges, and considers any
bridge whose x-range intersects with the bucket’s x-range. A bridge
can either lie on or above all points in B, have only a left endpoint
in B, or have only a right endpoint in B. If we find any bridge that
covers all of B, then no new convex hull edges will be generated
from B and we are done. Otherwise, we find the one or two bridges
that cover the most points in the bucket, and solve a subproblem with
points in B and the up-to-two bridges using a standard O(n log h)-
work output-sensitive convex hull algorithm.

Call the set of the bridges with a left endpoint in the bucket BrB,L,
and the set of bridges with a right endpoint in the bucket BrB,R. We
wish to include the bridge in each set that covers the most points
in the bucket. For a bridge b ∈ BrB,L, let pb be the endpoint of
b in bucket B. The bridge in BrB,L that satisfies this criteria is a
bridge b with the minimum value of xpb , since all points in B are
below the bridge, and bridges b ∈ BrB,L cover all points in B with
x-coordinate greater than xpb . If there are ties, then any bridge with
xpb equal to the minimum value suffices. Similarly, the bridge in
BrB,R that satisfies this criteria is a bridge b with the maximum
value of xpb . Both of these bridges can be found during the search
up the tree of bridges.

To obtain the final solution (Step 6), we start at the root of the
tree of bridges, include the bridge in the solution, and recursively
include into the solution the bridges in the descendants of the root
that have not been already covered by a previously included bridge.
To determine whether to include a bridge, we can search up the tree
to see whether it has been covered. If the base case is reached, then
all bridges formed from the set of points in the bucket are included.

Cost analysis.
We now analyze the cost of Algorithm 3. Step 1a can be done

using write-efficient sorting [12] in O(ω logn) span w.h.p. using
O(n log h) reads and O(n) writes. Step 1b takes O(n log h) reads,
O(n) writes, and O(ω + log h) span. Steps 1c takes O(n) reads
and writes, andO(ω logn) span. Finally, Step 1d, takesO(n) reads
and writes, and O(1) span. So the cost for this pre-processing is
O(n log h) reads, O(n) writes and O(ω logn) span w.h.p.

The number of levels of recursion of Steps 2–5 is O(log h) w.h.p.
since there are h buckets at the beginning and each sub-problem
contains half as many buckets.

Step 2 takesO(log h) reads,O(1) writes, andO(ω+log h) span
to find BrB,L and BrB,R per bucket. Summed over all buckets, this
takes O(h log h) reads, O(h) writes and O(ω + log h) span. Each
sub-problem solved using a standard output-sensitive algorithm
contains O(n/h) points, and only generates segments on the upper
convex hull of the original point set, since we included the bridges
coming in from both sides of the bucket. The total number of

operations is
∑h
i=1O((n/h) log(1 + hi)), where hi is the number

of points on the hull in bucket i and h =
∑h
i=1 hi. The sum is

maximized when all hi’s are equal, giving a total of O(n) reads
and writes. The algorithm of Kirkpatrick and Seidel [38] can be
parallelized to take O(n log h) work and O(ω log2 n) span [27].
Note that the algorithm that we apply on the buckets on must take
O(n log h) work overall for the value of h that we guessed, not the
number of points on the actual convex hull. Once the amount of
work done on the buckets exceeds cn for some constant c, we can
assume that our guess of h is wrong, and terminate. To keep track
of the work, we can modify the Kirkpatrick and Seidel algorithm
that we use on the buckets to increment a shared counter in global
memory whenever an operation is performed, and also check the
counter before performing an operation and if it is above cn then
terminate. The total number of reads/writes for maintaining the
counter is cn, which is within our bounds.

Step 3 requires constant work/span since the points are pre-sorted,
and Step 4 requires O(n) reads, O(logn) writes, and O((ω +
logn) logn) span w.h.p. as shown in Section 6.3. There areO(log h)
levels of recursion so the overall number of reads in this step is
O(n log h) in expectation. The number of writes from this step sat-
isfies the recurrence W (n) = 2W (n/2) +O(logn) which solves
to O(n). The total span is O((ω + logn) logn log h) as each of
the two recursive calls in Step 5 can be executed in parallel.

In Step 6, the searches up the tree take O(log h) reads and O(1)
writes for a total of O(h log h) reads and O(h) writes. The span is
O((ω + log h) log h).

Overall, the algorithm requires O(n log h) reads, O(n) writes,
and O((ω + log h) log2 n) span w.h.p.

As done in [16], to remove the assumption that we know h,
we will repeatedly guess h and apply the above algorithm until
our guess is above the true value of h. On the i’th application of
the algorithm, our guess will be h∗ = 32i , so in total we require
O(log log h) iterations until h∗ ≥ h. The number of reads per
iteration is

∑O(log log h)
i=0 O(n log 32i) = O(n log h). The num-

ber of writes is O(n) per iteration, for a total of O(n log log h).
Finally, the span is O((ω + log h) log2 n log log h) w.h.p. To re-
move the assumption that h = O(n/ logn), once our guess of h
exceeds cn/ logn for some constant c we call the output-insensitive
algorithm described earlier, which takes O(n logn) = O(n log h)
reads, O(n) writes, and O(ω logn) span w.h.p. We obtain the
following theorem.

THEOREM 6.1. A planar convex hull can be computed with
O(n(log h+ω log log h)) expected work,O((ω+log h) log2 n log log h)
span w.h.p., and O(n log log h) writes w.h.p. under the Asymmetric
NP model.

6.2 Another output-sensitive algorithm
Here we describe an algorithm with O(nh) reads, O(n) writes,

and O((ω + logn) logn) span w.h.p., obtained by modifying the
algorithm of Kirkpatrick and Seidel [38]. Their original algorithm
finds a bridge on the two halves of the points, uses the bridge to
filter out a constant fraction of the points, and recursively finds the
hull of the remaining points on each half. The number of levels of
recursion is O(log h) and the number of sub-problems solved is h.
Their algorithm as described takes O(n log h) reads and writes, and
O(logn log h) span.

Our goal is to reduce the number of writes. Instead of moving the
points such that points for a sub-problem are contiguous, we just
inspect all of the points each time we need to find a bridge in a sub-
problem. Furthermore, we do not filter out any points. Therefore,
each time we need to find the bridge, we use the 2D linear program-

ming algorithm in Section 6.3, taking O(n) reads and O(logn)
writes. The number of times we solve the 2D linear program is
h, giving a total of O(nh) reads and O(h logn) writes. We can
find the splitters that divide the points approximately evenly, which
is needed for the linear program, by taking a random sample of
min(n, h logn) elements at the beginning, sorting them, and using
every (logn)’th element as a splitter, as done in our first algorithm.
This takes O(n log h) reads, O(n) writes, and O(ω logn) span
w.h.p. in total. Since the 2D linear programming algorithm requires
a randomized order, we generate a random permutation of the con-
straints at the beginning, and use it throughout the algorithm, taking
O(n) reads and writes andO(ω logn) span. The two recursive calls
can happen in parallel, so the span is O((ω + logn) logn log h)
w.h.p. To reduce the overall number of writes to O(n), if the algo-
rithm has not terminated afterO(log logn) levels of recursion (after
O(n logn) reads and O(log2 n) writes have been done in solving
the LPs), we can switch to the output-insensitive algorithm that
takes O(n logn) reads and O(n) writes. This gives the following
theorem.

THEOREM 6.2. A planar convex hull can be computed with
O(n(min(h, logn)+ω)) expected work,O((ω+logn) logn log h)
span w.h.p., and O(n) writes under the Asymmetric NP model.

6.3 2D linear programming for convex hull
We use Seidel’s randomized incremental algorithm [47] for 2D

linear programming, which we first review. We assume there are
bounding planes such that the solution is not unbounded. The al-
gorithm inserts the constraints incrementally, in a random order,
maintaining the optimum point so far. For each added constraint
it checks if it makes the current optimum infeasible; if so, it finds
the best feasible solution satisfying all constraints added so far, and
otherwise the old optimum point is kept. The new optimum must
lie on the halfplane defining the newly added constraint, and can be
found by finding the best point among all intersections between pre-
vious constraints and the newly added constraint (a one-dimensional
linear program). If the points are given in random order, then the
probability that the i’th constraint makes the optimum point in-
feasible is at most 2/i. Checking against all previous constraints
to find a new optimum takes O(i) work, so the overall work is∑n
i=1O(i) · (2/i) = O(n) in expectation.
We assume that the constraints are given in a random order. For

our algorithms, this requirement can be satisfied by generating a
random permutation of the points at the beginning in O(ω logn)
span w.h.p. and O(n) reads and writes [42], and using it to order the
constraints throughout the algorithm.

The only time writing is required is when a new optimum needs
to be found. In expectation, this will happen at most

∑n
i=1 2/i =

O(logn) times. A high probability bound can be obtained using
Chernoff bounds. The 1D linear program, which involves maxi-
mum/minimum operations, can be solved using the reduce prim-
itive from Section 3 using O(1) writes, so the number of writes
is O(logn) overall. To parallelize this, we add the constraints in
rounds, where the k’th round processes the next 2k unprocessed
constraints. Processing a set of constraints in a round involves
repeatedly finding the lowest-indexed constraint that makes the
current optimum infeasible (a tight constraint), finding a new opti-
mum by adding the tight constraint, and removing it and all lower-
indexed constraints from the set. Finding the lowest-indexed con-
straint can be done with a reduce, and as discussed before finding
the new optimum can also be done with a reduce, taking O(2k)
reads and O(1) writes. The expected number of times this pro-
cess is repeated is equal to the number of constraints in the set that
cause a new optimum to be computed, which on round k is at most

∑2k+1−1

j=2k
(2/j) ≤ 2k · (2/2k) = O(1), so each round takes O(2k)

reads and O(1) writes. The span per round is O(ω + logn) for
reduce. There are a total of O(logn) rounds until all constraints
are processed. This gives a parallel algorithm for solving 2D lin-
ear programming, given constraints in a randomized order, that
requires O(n) reads in expectation, O(logn) writes w.h.p., and
O((ω + logn) logn) span w.h.p. Note that for convex hull, we are
reusing the permutation throughout the algorithm, so the probabili-
ties are not independent among sub-problems. However, the span
and number of writes are w.h.p., so we can take a union bound on
the failure probability over the h sub-problems and still get a high
probability bound. The number of reads is an expectation and so is
unaffected. This gives the following lemma.

LEMMA 6.3. When constraints are given in a random order, 2D
linear programming can be done with O(n + ω logn) expected
work, O((ω+ logn) logn) span w.h.p., and O(logn) writes w.h.p.
under the Asymmetric NP model.

7. BREADTH-FIRST SEARCH
The breadth-first search (BFS) problem takes as input an un-

weighted graph G = (V,E) and a source vertex r, and returns
breadth-first search tree rooted at r containing all vertices reach-
able from r. This section describes a parallel write-efficient BFS
algorithm. We will use the notation n = |V | and m = |E|. The
standard sequential BFS algorithm is write-efficient, but not par-
allel. It requires O(m + ωn) work, including O(n) writes (the
minimum number of writes required for BFS). On the other hand,
the standard parallel level-synchronous BFS algorithm of [10] is
not write-efficient, requiring O(m) writes. The algorithm explores
the graph in parallel, where round i visits all vertices at a distance
i away from r (we call the vertices newly explored in round i− 1
the frontier for round i). Each frontier vertex visits and writes to
all of its unexplored neighbors in parallel, which causes additional
writes when multiple frontier vertices attempt to visit the same
vertex simultaneously. This algorithm uses O(ω(m + n)) work,
O(ωD log∗ n) span w.h.p. (using approximate compaction [28]),
and O(m+ n) writes, where D is the diameter of the input graph.

We now present an algorithm for BFS that runs in O(m + ωn)
work and O(ωD logn) span using only O(n) writes in expectation.
The algorithm works like level-synchronous BFS, but makes use
of exponential delaying algorithm when visiting the vertices in a
round to reduce collisions (and writes) on a shared neighbor. In
exponential delaying exploration takes place in iterations, where on
each iteration we process a fraction of the vertices on the frontier.
We first randomize the order of the frontier vertices, and then on the
first iteration we process the first vertex and on iteration i > 1, we
process the next 2i−2 vertices on the frontier. During the exploration
process, a vertex checks to see if its neighbor has been visited and
only updates that neighbor if it was not visited in a prior round or a
prior iteration in the same round.

We now show that the number of writes for this algorithm isO(n)
in expectation. Consider a vertex v that is adjacent to the current
frontier and has not yet been visited. Let F be the number of vertices
on the frontier (without loss of generality, assume it is a power of
2), let NF (v) be the number of in-neighbors v has on the frontier.
We will use α = 1− (NF (v)/F) for notational convenience. The
probability that v is first visited in iteration 1 is α and in iteration
i > 1 is:

(1− α2i−2

)α

i−1∏
j=2

α2j−2

= (1− α2i−2

)α2i−2

The expected number of vertices that attempt to visit v in iteration
1 is NF (v)/F = 1 − α and in iteration i > 1 is 2i−2(1 − α).
Summing the expectations over all iterations gives:

(1− α)α+

logF∑
i=2

2i−2(1− α)(1− α2i−2

)α2i−2

< O(1) +

logF∑
i=2

2i−2α2i−2

= O(1)

where we use
∑∞
x=1 xa

x = O(1) for 0 ≤ a < 1. This shows that
the expected number of writes to a vertex is O(1), and the expected
number of writes overall is O(n).

Randomly permuting the vertices sums to linear work overall and
O(ω logn) span w.h.p. per round [42]. The logn iterations used in
the exponential delaying also contributes O(ωD logn) to the span
per round. Thus the overall span is O(ωD logn). The number of
reads remains O(m+ n), which gives the following theorem.

THEOREM 7.1. For a graph with n vertices, m edges, and di-
ameterD, our write-efficient breadth-first search algorithm requires
O(m + ωn) work in expectation, O(ωD logn) span w.h.p., and
O(n) writes in expectation on the Asymmetric NP model.

8. CONCLUSION
In this paper we have studied parallel algorithms that are efficient

in terms of how many writes they do to main memory. The research
is motivated in large part by new memory technologies in which
writing is more expensive than reading. We believe, however, that
reducing writes is of interest even without this motivation, both out
of theoretical interest, and because there are other practical reasons
to reduce writes (e.g., reducing cache-coherence traffic). We defined
the Asymmetric Nested-Parallel model that enables algorithm anal-
ysis in the popular work-span framework while accounting for the
extra cost of writes. Our bounds for a slight variant of work stealing
schedulers showed that the Asymmetric NP bounds map directly
and efficiently to the (M,ω)-Asymmetric PRAM machine model.

Our paper presented several novel techniques for designing write-
efficient parallel algorithms. One is to process a geometrically
increasing number of elements in a sequence of rounds with the
property that each round enables filtering of writes from future
rounds (as was done for MST and BFS). Another is to pre-bucket
elements for divide-and-conquer (as was done for convex hull). A
third is a technique for partitioning a tree into balanced connected
components (as was done for tree contraction). The advantage
of these approaches is that they are work-efficient, low-span, and
significantly reduce writes. We expect that the techniques will be
useful in designing other write-efficient parallel algorithms.

Acknowledgments
This research was supported in part by NSF grants CCF-1314590,
CCF-1314633 and CCF-1533858, the Intel Science and Technology
Center for Cloud Computing, and the Miller Institute for Basic
Research in Science at UC Berkeley.

9. REFERENCES
[1] HP, SanDisk partner on memristor, ReRAM technology. http://www.

bit-tech.net/news/hardware/2015/10/09/hp-sandisk-reram-memristor,
Oct. 2015.

[2] Intel and Micron produce breakthrough memory technology.
http://newsroom.intel.com/community/intel_newsroom/blog/2015/
07/28/intel-and-micron-produce-breakthrough-memory-technology,
July 2015.

[3] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson.
Onyx: A prototype phase change memory storage array. In
HotStorage, 2011.

[4] N. Alon and B. Schieber. Optimal preprocessing for answering on-line
product queries. Technical Report, Tel Aviv University, 1987.

[5] R. J. Anderson and G. L. Miller. A simple randomized parallel
algorithm for list-ranking. Inf. Proc. Letters, 1990.

[6] A. M. Andrew. Another efficient algorithm for convex hulls in two
dimensions. Inf. Proc. Letters, 1979.

[7] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for
multiprogrammed multiprocessors. In SPAA, 1998.

[8] M. Athanassoulis, B. Bhattacharjee, M. Canim, and K. A. Ross. Path
processing using solid state storage. In ADMS, 2012.

[9] A. Ben-Aroya and S. Toledo. Competitive analysis of flash-memory
algorithms. In ESA, 2006.

[10] G. E. Blelloch. Programming parallel algorithms. Commun. ACM, 39,
1996.

[11] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun.
Efficient algorithms under asymmetric read and write costs. arXiv
preprint arXiv:1511.01038, 2015.

[12] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun.
Sorting with asymmetric read and write costs. In SPAA, 2015.

[13] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. JACM, 46(5), 1999.

[14] R. P. Brent. The parallel evaluation of general arithmetic expressions.
JACM, 21(2), 1974.

[15] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool,
O. Schwartz, and H. V. Simahdri. Write-avoiding algorithms. In
IPDPS, 2016.

[16] T. M. Chan. Optimal output-sensitive convex hull algorithms in two
and three dimensions. Discrete & Computational Geometry, 16(4),
1996.

[17] T. M. Chan. Backwards analysis of the Karger-Klein-Tarjan algorithm
for minimum spanning trees. Inf. Proc. Letters, 67(6), 1998.

[18] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database algorithms
for phase change memory. In CIDR, 2011.

[19] S. Cho and H. Lee. Flip-N-Write: A simple deterministic technique to
improve PRAM write performance, energy and endurance. In MICRO,
2009.

[20] R. Cole, P. N. Klein, and R. E. Tarjan. Finding minimum spanning
forests in logarithmic time and linear work using random sampling. In
SPAA, 1996.

[21] B. Dixon, M. Rauch, and R. E. Tarjan. Verification and sensitivity
analysis of minimum spanning trees in linear time. SIAM J. on
Computing, 21(6), 1992.

[22] X. Dong, N. P. Jouupi, and Y. Xie. PCRAMsim: System-level
performance, energy, and area modeling for phase-change RAM. In
ICCAD, 2009.

[23] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen. Circuit and
microarchitecture evaluation of 3D stacking magnetic RAM (MRAM)
as a universal memory replacement. In DAC, 2008.

[24] D. Eppstein, M. T. Goodrich, M. Mitzenmacher, and P. Pszona. Wear
minimization for cuckoo hashing: How not to throw a lot of eggs into
one basket. In SEA, 2014.

[25] E. Gal and S. Toledo. Algorithms and data structures for flash
memories. ACM Computing Surveys, 37(2), 2005.

[26] H. Gazit, G. L. Miller, and S.-H. Teng. Optimal tree contraction in the
EREW model. Springer, 1988.

[27] M. R. Ghouse and M. T. Goodrich. Fast randomized parallel methods
for planar convex hull construction. Computational Geometry, 7(4),
1997.

[28] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant
time parallel algorithms. In FOCS, 1991.

[29] M. T. Goodrich. Finding the convex hull of a sorted point set in
parallel. Inf. Proc. Letters, 26(4), 1987.

[30] R. L. Graham. An efficient algorithm for determining the convex hull
of a finite planar set. Inf. Proc. Letters, 1972.

[31] T. Hagerup. An even simpler linear-time algorithm for verifying
minimum spanning trees. In Graph-Theoretic Concepts in Computer
Science. Springer, 2010.

[32] J. Hu, Q. Zhuge, C. J. Xue, W.-C. Tseng, S. Gu, and E. Sha.
Scheduling to optimize cache utilization for non-volatile main
memories. IEEE Transactions on Computers, 63(8), 2014.

[33] www.slideshare.net/IBMZRL/theseus-pss-nvmw2014, 2014.
[34] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley

Professional, 1992.
[35] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time

algorithm to find minimum spanning trees. JACM, 42(2), 1995.
[36] H. Kim, S. Seshadri, C. L. Dickey, and L. Chu. Evaluating phase

change memory for enterprise storage systems: A study of caching
and tiering approaches. In FAST, 2014.

[37] V. King. A simpler minimum spanning tree verification algorithm.
Algorithmica, 18(2), 1997.

[38] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull
algorithm? SIAM J. on Computing, 15(1), 1986.

[39] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase
change memory as a scalable DRAM alternative. In ISCA, 2009.

[40] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng. Overview of
emerging nonvolatile memory technologies. Nanoscale Research
Letters, 2014.

[41] N. Megiddo. Linear programming in linear time when the dimension
is fixed. JACM, 31(1), 1984.

[42] G. Miller and J. Reif. Parallel tree contraction and its application. In
FOCS, 1985.

[43] G. Miller and J. Reif. Parallel tree contraction part 2: Further
applications. SIAM J. on Computing, 20(6), 1991.

[44] S. Nath and P. B. Gibbons. Online maintenance of very large random
samples on flash storage. VLDB J., 19(1), 2010.

[45] H. Park and K. Shim. FAST: flash-aware external sorting for mobile
database systems. J. of Systems and Software, 82(8), 2009.

[46] M. K. Qureshi, S. Gurumurthi, and B. Rajendran. Phase Change
Memory: From Devices to Systems. Morgan & Claypool, 2012.

[47] R. Seidel. Small-dimensional linear programming and convex hulls
made easy. Discrete & Computational Geometry, 6(3), 1991.

[48] J. Shun, Y. Gu, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons.
Sequential random permutation, list contraction and tree contraction
are highly parallel. In SODA, 2015.

[49] R. E. Tarjan and U. Vishkin. Finding biconnected componemts and
computing tree functions in logarithmic parallel time. In FOCS, 1984.

[50] S. D. Viglas. Adapting the B+-tree for asymmetric I/O. In ADBIS,
2012.

[51] S. D. Viglas. Write-limited sorts and joins for persistent memory.
Proc. VLDB Endowment, 7(5), 2014.

[52] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie. Design implications of
memristor-based RRAM cross-point structures. In DATE, 2011.

[53] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu. A
low power phase-change random access memory using a
data-comparison write scheme. In ISCAS, 2007.

[54] Yole Developpement. Emerging non-volatile memory technologies,
2013.

[55] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy
efficient main memory using phase change memory technology. In
ISCA, 2009.

[56] O. Zilberberg, S. Weiss, and S. Toledo. Phase-change memory: An
architectural perspective. ACM Computing Surveys, 45(3), 2013.

