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Abstract We present the design and analysis of a nearly-linear work parallel algo-
rithm for solving symmetric diagonally dominant (SDD) linear systems. On input an
SDD n-by-n matrix A with m nonzero entries and a vector b, our algorithm com-
putes a vector x̃ such that ‖x̃ − A+b‖A ≤ ε · ‖A+b‖A in O(m logO(1) n log 1

ε
) work

and O(m1/3+θ log 1
ε
) depth for any θ > 0, where A+ denotes the Moore-Penrose

pseudoinverse of A.
The algorithm relies on a parallel algorithm for generating low-stretch spanning

trees or spanning subgraphs. To this end, we first develop a parallel decomposition
algorithm that in O(m logO(1) n) work and polylogarithmic depth, partitions a graph
with n nodes and m edges into components with polylogarithmic diameter such
that only a small fraction of the original edges are between the components. This
can be used to generate low-stretch spanning trees with average stretch O(nα) in
O(m logO(1) n) work and O(nα) depth for any α > 0. Alternatively, it can be used to
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generate spanning subgraphs with polylogarithmic average stretch in O(m logO(1) n)

work and polylogarithmic depth. We apply this subgraph construction to derive a
parallel linear solver.

By using this solver in known applications, our results imply improved parallel
randomized algorithms for several problems, including single-source shortest paths,
maximum flow, minimum-cost flow, and approximate maximum flow.

Keywords Parallel algorithms · Linear systems · Low-stretch spanning trees ·
Low-stretch subgraphs · Low-diameter decomposition

1 Introduction

Solving a system of linear equations Ax = b is a fundamental computing primitive
that lies at the core of many numerical and scientific computing algorithms, includ-
ing the popular interior-point algorithms. The special case of symmetric diagonally
dominant (SDD) systems has seen substantial progress in recent years; in particular,
the ground-breaking work of Spielman and Teng showed how to solve SDD systems
to accuracy ε in time O(m logO(1) n log(1/ε)), where m is the number of nonzeros in
the n-by-n-matrix A.1 This is algorithmically significant since solving SDD systems
has implications to computing eigenvectors, solving flow problems, finding graph
sparsifiers, and problems in computer vision and graphics (see [27, 30] for these and
other applications).

In the sequential setting, the current best SDD solvers run in

O
(
m logn(log logn)2 log(1/ε)

)

time [20]. However, with the exception of the special case of planar SDD sys-
tems [18], we know of no previous parallel SDD solvers that perform nearly-linear2

work and achieve non-trivial parallelism. This raises a natural question: Is it possi-
ble to solve an SDD linear system in o(n) depth and nearly-linear work? This work
answers this question affirmatively:

Theorem 1 For any fixed θ > 0 and any ε > 0, there is an algorithm SDDSolve
that on input an n × n SDD matrix A with m nonzero elements and a vector b,
computes with high probability a vector x̃ such that ‖x̃ − A+b‖A ≤ ε · ‖A+b‖A in
O(m logO(1) n log 1

ε
) work and O(m1/3+θ log 1

ε
) depth where the exponent on logn

is an absolute constant.

In the process of developing this algorithm, we devise parallel algorithms for con-
structing graph decompositions with strong-diameter guarantees, and parallel algo-
rithms to construct low-stretch spanning trees and low-stretch ultrasparse subgraphs.

1The Spielman-Teng solver and all subsequent improvements are randomized algorithms. Consequently,
all algorithms relying on the solvers are also randomized. For simplicity, we omit standard complexity
factors related to the probability of error.
2I.e. linear up to polylogarithmic factors.
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These results may be of independent interest. An overview of these algorithms and
their underlying techniques is given in Sect. 3.

The solver construction in Sect. 6 is based on an earlier sequential algorithm that
runs in time O(m log2 n(log logn)4 log(1/ε)) [19]. Following their analysis, we only
consider two adjacent levels of the preconditioning chain at a time. We believe that
the more global analysis of Koutis et al. [20] can reduce the exponent of logn in the
total work. But we currently do not attempt to optimize for polylogarithmic factors in
the solver bounds. Instead, we focus on making the analysis simple while obtaining
O(m logO(1)) work bound. At the present stage, the major bottleneck in our parallel
algorithm is the polylogarithmic dependencies in the graph decomposition routines;
this must be addressed before we have hopes to obtain a work bound comparable to
that of the state-of-the-art sequential algorithms.

Some Applications Let us mention some of the implications of Theorem 1, obtained
by plugging it into known reductions.

– Construction of Spectral Sparsifiers. Spielman and Srivastava [28] showed that
spectral sparsifiers can be constructed using O(logn) Laplacian solves, and us-
ing our theorem we get spectral and cut sparsifiers in O(m1/3+θ ) depth and
O(m logO(1) n) work.

– Cut, Flow, and Shortest Path. Daitsch and Spielman [9] showed that various graph
optimization problems, such as max-flow, min-cost flow, and lossy flow problems,
can be reduced to O(m1/2 logO(1)(nU)) applications of SDD solves via interior
point methods described in [4, 24, 32], where U is the ratio of the largest edge
weight to the smallest nonzero edge weight in the graph. Combining this with our
main theorem implies that these algorithms can be parallelized to run in O(m5/6+θ )

depth and O(m3/2 logO(1)(nU)) work. This gives the first parallel algorithm with
o(n) depth which is work-efficient to within polylog(n) factors of the sequential
algorithm for all problems analyzed in [9]. In some sense, the parallel bounds are
more interesting than the sequential times because in many cases the results in
[9] are not the best known sequentially (e.g. max-flow)—but do lead to the best
know parallel bounds for problems that have traditionally been hard to parallelize.
Finally, we note that although [9] does not explicitly analyze shortest path, their
analysis naturally generalizes the LP for it.

Our algorithm can also be applied in the inner loop of Christiano et al. [5], yielding
a O(m5/6+θ poly(logn, ε−1)) depth and O(m4/3poly(logn, ε−1)) work algorithm for
finding (1− ε)-approximate maximum flows and (1+ ε)-approximate minimum cuts
in undirected graphs.

2 Preliminaries and Notation

We use A � B to denote disjoint unions, and [k] to denote the set {1,2, . . . , k}. Given
a graph G = (V ,E), let dist(u, v) denote the edge-count distance (or hop distance)
between u and v, ignoring the edge lengths. When the graph has edge lengths w(e)

(also denoted by we), let dG(u, v) denote the edge-length distance, the shortest path
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(according to these edge lengths) between u and v. If the graph has unit edge lengths,
the two definitions coincide. We drop subscripts when the context is clear. We denote
by V (G) and E(G), respectively, the set of nodes and the set of edges, and use n =
|V (G)| and m = |E(G)|. For an edge e = {u,v}, the stretch of e on H is

strH (e) = dH (u, v)/w(e).

The total stretch of G = (V ,E,w) with respect to H is

strH
(
E(G)

) =
∑

e∈E(G)

strH (e),

and the average stretch is simply 1
|E(G)|strH (E(G)).

Given G = (V ,E), a distance function δ (which is either dist or d), and a parti-
tion of V into C1 � C2 � · · · � Cp , let G[Ci] denote the induced subgraph on set Ci .
The weak diameter of Ci is maxu,v∈Ci

δG(u, v), whereas the strong diameter of Ci is
maxu,v∈Ci

δG[Ci ](u, v); the former measures distances in the original graph whereas
the latter measures distances within the induced subgraph. The strong (or weak) di-
ameter of the partition is the maximum strong (or weak) diameter over all the com-
ponents Ci ’s.

Matrix Norms and SDD Matrices Let A be a symmetric matrix. As is standard in
the literature, we say that A is positive semidefinite if for all vector x, x�Ax ≥ 0. For
symmetric matrices A and B , we write

A � B if B − A is positive semidefinite,

or x�Ax ≥ x�Bx for all vector x. This defines a partial order on the symmetric
positive semidefinite matrices.

Often, we would like to be able to talk about the inverse of a matrix even when it
is not full rank. For a matrix A, we denote by A+ the Moore-Penrose pseudoinverse
of A. That is, A+ has the same null space as A and acts as the inverse of A on its
image. Given a symmetric positive semidefinite matrix A, the A-norm of a vector x

is defined as

‖x‖A =
√

x�Ax.

A matrix A is symmetric diagonally dominant (SDD) if it is symmetric and for all i,
Ai,i ≥ ∑

j 	=i |Ai,j |. We now discuss a class of SDD matrices closely related to undi-
rected graphs.

Graph Laplacians For a fixed, but arbitrary, numbering of the nodes and edges in a
graph G = (V ,E), the Laplacian LG of G is the |V |-by-|V | matrix specified by

LG(i, j) =
{−wij if i 	= j,

∑
{i,k}∈E(G) wik if i = j.
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When the context is clear, we use G and LG interchangeably. Given two graphs G

and H and a scalar μ ∈ R, we say G � μH if μLH − LG is positive semidefinite, or
equivalently x�LGx ≤ μx�LH x for all vector x ∈ R

|V |.
While the class of symmetric diagonally dominant matrices encompasses more

than just the Laplacians, a solver for Laplacian systems implies a general SDD solver,
as the following lemma indicates:

Lemma 2 [12, Lemma 7.3], [29, Appendix A] Let A be an n-by-n symmetric di-
agonally dominant matrix with m nonzero entries. Let ε ≥ 0. There is a 2n-by-2n

Laplacian Â with at most 2m nonzeros such that
∥∥∥
∥

(
u

w

)
− Â+b̂

∥∥∥
∥ ≤ ε

∥∥Â+b̂
∥∥ implies

∥∥∥
∥

1

2
(u − w) − A+b

∥∥∥
∥ ≤ ε

∥∥A+b
∥∥,

where u,w ∈ R
n. Furthermore, the Laplacian Â can be constructed in O(n + m)

work and O(log2(n + m)) depth.

With this lemma, solving an SDD linear system reduces to solving a graph Lapla-
cian system, a subclass of SDD matrices corresponding to undirected weighted
graphs.

Parallel Models We analyze algorithms in the standard PRAM model, focusing on
the work and depth parameters of the algorithms. By work, we mean the total op-
eration count—and by depth, we mean the longest chain of dependencies (i.e., the
parallel time in PRAM). Since we are not concerned with polylogarithmic factors in
work or depth, the particular variant of the PRAM (CRCW, CREW or EREW) does
not matter.

Parallel Ball Growing Let BG(s, r) denote the ball of edge-count distance r from
a source s, i.e., BG(s, r) = {v ∈ V (G) : distG(s, v) ≤ r}. We rely on an elementary
form of parallel breadth-first search to compute BG(s, r). The algorithm visits the
nodes level by level as they are encountered in the BFS order. More precisely, level
0 contains only the source node s, level 1 contains the neighbors of s, and each sub-
sequent level i + 1 contains the neighbors of level i’s nodes that have not shown up
in a previous level. On standard parallel models (e.g., CRCW), this can be computed
in O(r logn) depth and O(m′ +n′) work, where m′ and n’ are, respectively, the total
numbers of edges and nodes encountered in the search [16, 31]. Notice that we could
achieve this runtime bound with a variety of graph (matrix) representations, e.g.,
using the compressed sparse-row (CSR) format. Our applications apply ball grow-
ing on r = O(logc n), resulting in a small depth bound. We remark that the idea of
small-radius parallel ball growing has previously been employed in the context of
approximate shortest paths (see, e.g., [8, 16, 31]). There is an alternative approach
of repeatedly squaring a matrix, which yields a better depth bound for large r at the
expense of a much larger work bound (about n3).

Finally, we state a tail bound which will be useful in our analysis. This bound
is easily derived from well-known facts about the tail of a hypergeometric random
variable [6, 13, 26].
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Lemma 3 (Hypergeometric Tail Bound) Let H be a hypergeometric random variable
denoting the number of red balls found in a sample of n balls drawn from a total of
N balls of which M are red. Then, if μ = E[H ] = nM/N , then

Pr [H ≥ 2μ] ≤ e−μ/4

Proof We apply the following theorem of Hoeffding [6, 13, 26]. For any t > 0,

Pr [H ≥ μ + tn] ≤
((

p

p + t

)p+t( 1 − p

1 − p − t

)1−p−t)n

,

where p = μ/n. Using t = p, we have

Pr [H ≥ 2μ] ≤
((

p

2p

)2p(
1 − p

1 − 2p

)1−2p)n

≤
(

e−p ln 4
(

1 + p

1 − 2p

)1−2p)n

≤ (
e−p ln 4 · ep

)n

≤ e− 1
4 pn,

where we have used the fact that 1 + x ≤ exp(x). �

3 Overview of Our Techniques

We design a parallel linear SDD solver algorithm in the general framework of Spiel-
man and Teng [19, 29]. Our solver is modeled after the algorithm of Koutis et al. [19].
The sequential solver builds a preconditioning chain of progressively smaller graphs
via a combination of partial Cholesky factorization and a sparsification step, which
relies on an algorithm for generating low-stretch spanning trees (LSSTs). Unfor-
tunately, existing LSST algorithms do not readily parallelize and depend on low-
diameter decomposition algorithms, which do not readily parallelize either.

Our first challenge is to devise a parallel LSST algorithm that has nearly-linear
work and low depth. Building on the algorithm of Alon et al. [2], we give an algorithm
for generating low-stretch spanning trees with average stretch 2O(

√
logn log logn) in

O(m logO(1) n) work and O(2O(
√

logn log logn) logΔ) depth, where Δ is the ratio of
the largest to smallest distance in the graph. The original algorithm relies on a parallel
graph decomposition scheme of Awerbuch [3], which takes an unweighted graph and
breaks it into components with a specified diameter and a few crossing edges. While
such schemes are known in the sequential setting, they do not parallelize well because
removing edges belonging to one component might increase the diameter or even
disconnect subsequent components.

We devise a parallel algorithm for partitioning a graph into components with low
strong diameter while cutting only a small number of the input edges. The key chal-
lenge here lies in meeting the strong diameter requirement (i.e., one cannot take
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“shortcuts” through other components). Sequentially, the strong-diameter property
is trivially met by removing components one after another. But this process is in-
herently sequential. In the parallel case, we grow balls from multiple sites but (con-
ceptually) delay the starting appropriately. We assign vertices to the first region that
reaches them. By carefully controlling the delay amount and other parameters, we
have the first nearly-linear work, polylogarithmic depth algorithm for low-diameter
decomposition (Sect. 4).

Ideally, we would have liked for our spanning trees to have a polylogarithmic
stretch, computable by a polylogarithmic depth, nearly-linear work algorithm. How-
ever, for our solvers, we make the additional observation that we do not really need
a spanning tree with small stretch; it suffices to give an “ultrasparse” graph with
small stretch, one that has only O(m/polylog(n)) edges more than a tree. Hence,
we present a parallel algorithm in Sect. 5.2 which outputs an ultrasparse graph with
O(polylog(n)) average stretch, performing O(m logO(1) n) work with O(polylog(n))

depth. Note that this removes the dependence of logΔ in the depth, and reduces both
the stretch and the depth from 2O(

√
logn log logn) to O(polylog(n)).3

With the low-stretch subgraph result, the algorithm as given in Koutis et al. [19]
parallelizes under the following modifications: (i) perform the partial Cholesky fac-
torization in parallel and (ii) terminate the preconditioning chain when the graph has
about m1/3 nodes. In Sect. 6, we describe how these components fit together.

4 Parallel Low-Diameter Decomposition

In this section, we describe a parallel algorithm for partitioning a graph into com-
ponents with low (strong) diameter while cutting only a small number of the input
edges. This routine is a fundamental building block for our algorithms for construct-
ing low-stretch spanning trees and subgraphs in Sect. 5. We begin by developing a
partitioning algorithm for a special case of the problem. Then, we will show how to
bootstrap it to obtain an algorithm for the general case. The main result of this section
is as follows:

Theorem 4 (Parallel Low-Diameter Decomposition) Given an input graph G =
(V ,E1 � · · · � Ek) with k edge classes and a “radius” parameter ρ, the algorithm
Partition(G,ρ), upon termination, outputs a partition of V into components
C = (C1,C2, . . . ,Cp), each with center si such that

1. the center si ∈ Ci for all i ∈ [p],
2. for each i, every u ∈ Ci satisfies distG[Ci ](si , u) ≤ ρ, and
3. for all j = 1, . . . , k, the number of edges in Ej that go between components is at

most |Ej | · c1·k log3 n
ρ

, where c1 is an absolute constant.

3As an aside, this construction of low-stretch ultrasparse graphs shows how to obtain the nearly-linear
time sequential linear system solver from [29] without the more intricate, polylog average stretch con-
structions [1, 10].
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Furthermore, Partition runs in O(m log2 n) expected work and O(ρ log2 n) ex-
pected depth.

This theorem provides a nearly-linear work algorithm that takes a graph with mul-
tiple edge classes and produces a partition of vertices into components such that each
component has a small strong diameter and the number of edges that go across the
components is small in every edge class. These properties are necessary in our low-
stretch embedding algorithms in the next section, as we briefly discuss next.

Our algorithms are based on the low-stretch spanning tree algorithm of Alon,
Karp, Peleg, and West (AKPW) [2]. In broad strokes, such an algorithm (more details
in Sect. 5) buckets the input edges by weight into edge classes and in a series of iter-
ations, partitions the graph into components and contracts them. For each contracted
component, it adds to the resulting tree a spanning tree connecting the component’s
nodes. While this process always outputs a spanning tree, the quality of the output tree
and the efficiency of the algorithm depend on two important parameters: the diameter
bound of the components and the number of edges that go across components. Intu-
itively, in every iteration, each cross edge is further stretched by an amount roughly
proportional to the diameter bound, until it becomes part of a component. To ensure
that the output tree has low stretch, the algorithm therefore looks for small-diameter
components with a small number of cross edges.

Parallelizing such an algorithm requires designing an algorithm that finds the com-
ponents in parallel. The key challenge here lies in meeting the requirement that
in the APKW construction, the spanning tree for a component cannot take “short-
cuts” through other components; this is known as the strong-diameter property (see
Sect. 2). In the sequential case, the strong-diameter property is trivially met by re-
moving components one after another. This process, however, does not parallelize
readily. For the parallel case, we guarantee this by growing balls from multiple sites,
with appropriate “jitters” that conceptually delay when these ball-growing processes
start, and assigning vertices to the first region that reaches them. These “jitters” terms
are crucial in controlling the probability that an edge goes across regions. But this
probability also depends on the number of regions that could reach such an edge. To
keep this number small, we use a repeated sampling procedure motivated by Cohen’s
(β,W)-cover construction [7].

4.1 Low-Diameter Decomposition for Simple Unweighted Graphs

As a first step, we consider a special case where the input is a simple graph with only
one edge class. We design an algorithm splitGraph for this special case and in
the section that follows, we describe how to build on top of it an algorithm that can
handle multiple edge classes.

The algorithm splitGraph works as follows. It takes as input a simple, un-
weighted graph G = (V ,E) and a radius (in hop count) parameter ρ, and outputs a
partition V into components C1, . . . ,Cp , each with center si , such that

(P1) Each center belongs to its own component. That is, the center si ∈ Ci for all
i ∈ [p];
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(P2) Every component has radius at most ρ. That is, for each i ∈ [p], every u ∈ Ci

satisfies distG[Ci ](si , u) ≤ ρ;
(P3) Given a technical condition (to be specified) that holds with probability at least

3/4, the probability that an edge of the graph G goes between components is at
most 600

ρ
log3 n.

In addition, this algorithm runs in O(m log2 n) expected work and O(ρ log2 n) ex-
pected depth. (These properties should be compared with the guarantees in Theo-
rem 4.)

Algorithm 4.1 shows the pseudocode of the algorithm. It takes as input an un-
weighted n-node graph G and proceeds in T = O(logn) iterations, with the eventual
goal of outputting a partition of the graph G into a collection of sets of nodes (each
set of nodes is known as a component). Let G(t) = (V (t),E(t)) denote the graph at
the beginning of iteration t . Since this graph is unweighted, the distance in this al-
gorithm is always the hop-count distance dist(·, ·). For each iteration t = 1, . . . , T ,
the algorithm picks a set of starting centers S(t) to grow balls from. As with Cohen’s
(β,W)-cover, the number of centers is progressively larger with iterations, reminis-
cent of the doubling trick (though with more careful handling of the growth rate),
to compensate for the balls’ shrinking radius and to ensure that the graph is fully
covered.

Algorithm 4.1 splitGraph (G = (V ,E),ρ)—Split an input graph G = (V ,E)

into components of hop-radius at most ρ

// initialization
Let G(1) = (V (1),E(1)) = G. Define R = ρ/(2 logn).
Create empty collection of components C = {}.
Use dist(t) as shorthand for distG(t) , and define B(t)(u, r)

def= BG(t) (u, r) = {v ∈ V (t) |
dist(t)(u, v) ≤ r}.

For t = 1,2, . . . , T = 2 log2 n,

1. Randomly sample S(t) ⊆ V (t), where |S(t)|| = σt = 12nt/T −1|V (t)| logn, or use S(t) =
V (t) if |V (t)| < σt .

2. For each “center” s ∈ S(t), draw δ
(t)
s uniformly at random from Z ∩ [0,R].

3. Let r(t) ← (T − t + 1)R.
4. For each center s ∈ S(t), compute the ball B

(t)
s = B(t)(s, r(t) − δ

(t)
s ).

5. Let X(t) = ⋃
s∈S(t) B

(t)
s .

6. Create components {C(t)
s | s ∈ S(t)} by assigning each u ∈ X(t) to the component C

(t)
s such

that s minimizes distG(t) (u, s) + δ
(t)
s (breaking ties lexicographically).

7. Add non-empty C
(t)
s components to C .

8. Set V (t+1) ← V (t) \ X(t), and let G(t+1) ← G(t)[V (t+1)]. Quit early if V (t+1) is empty.

Return C .

After choosing the starting centers, the algorithm grows a ball from each center
s ∈ S(t) to radius r(t) − δ

(t)
s , where δ

(t)
s ∈R {0,1, . . . ,R} is a random “jitter” value and
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r(t) = ρ
2 logn

(T − t + 1). The union of these balls forms X(t), the set of nodes “seen”
from these starting point. In this process, the “jitter” value is conceptually a random
amount by which we delay the ball-growing process on each center, so that we can
assign nodes to the first region that reaches them while being in control of the num-
ber of cross-component edges. Equivalently, our algorithm forms the components by
assigning each vertex u reachable from a starting center to the center that minimizes
distG(t) (u, s)+δ

(t)
s (ties broken in a consistent manner, e.g., lexicographically). Some

centers may not have any vertices assigned to them; we discard them, retaining only
non-empty components. Finally, we construct G(t+1) by removing nodes that were
“seen” in this iteration (i.e., the nodes in X(t))—because they are already part of
one of the output components—and adjusting the edge set accordingly, forming an
induced graph on the remaining vertices.

Analysis We begin by proving properties (P1)–(P2); throughout the analysis, we
make reference to various quantities in the algorithm. First, we state an easy-to-verify
fact, which follows immediately by our choice of radius and components’ centers.

Fact 5 If vertex u lies in component C
(t)
s , then dist(t)(s, u) ≤ r(t). Moreover, u ∈ B

(t)
s .

We also need the following lemma to argue about strong diameter.

Lemma 6 If vertex u ∈ C
(t)
s , and vertex v ∈ V (t) lies on any u-s shortest path in G(t),

then v ∈ C
(t)
s .

Proof Since u ∈ C
(t)
s , Fact 5 implies u belongs to B

(t)
s . But dist(t)(v, i) < dist(t)(u, i),

and hence v belongs to B
(t)
s and X(t) as well. This implies that v is assigned to some

component C
(t)
j ; we claim j = s.

For a contradiction, assume that j 	= s, and hence dist(t)(v, j) +
δ
(t)
j ≤ dist(t)(v, s) + δ

(t)
s . In this case, we have dist(t)(u, j) + δ

(t)
j ≤ dist(t)(u, v) +

dist(t)(v, j) + δ
(t)
j , by the triangle inequality. Now using the assumption, this expres-

sion is at most dist(t)(u, v) + dist(t)(v, s) + δ
(t)
s = dist(t)(u, s) + δ

(t)
s (since v lies on

the shortest u-s path). If all inequalities hold with equality, we have j < s for v to be
assigned to B

(t)
j . This means u would be assigned to C

(t)
j , giving a contradiction. �

Hence, for each non-empty component C
(t)
s , its center s lies within the component

(since it lies on the shortest path from s to any u ∈ C
(t)
s ), which proves (P1). More-

over, by Fact 5 and Lemma 6, the (strong) radius is at most T R, proving (P2). It now
remains to prove (P3), and the work and depth bound.

In a series of claims below, we will show that the number of starting centers that
can reach a particular node is small. This number tells us how likely an edge is going
to be cut, allowing us to prove (P3).

Claim 7 For t ∈ [T ] and v ∈ V (t), if |B(t)(v, r(t+1))| ≥ n1−t/T , then v ∈ X(t) w.p. at
least 1 − n−12.
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Proof First, note that for any s ∈ S(t), r(t) − δs ≥ r(t) − R = r(t+1), and so if s ∈
B(t)(v, r(t+1)), then v ∈ B

(t)
s and hence in X(t). Therefore,

Pr
[
v ∈ X(t)

] ≥ Pr
[
S(t) ∩ B(t)

(
v, r(t+1)

) 	= ∅]
,

which is the probability that a random subset of V (t) of size σt hits the ball
B(t)(v, r(t+1)). But,

Pr
[
S(t) ∩ B(t)

(
v, r(t+1)

) 	= ∅] ≥ 1 −
(

1 − |B(t)(v, r(t+1))|
|V (t)|

)σt

,

which is at least 1 − n−12. �

Claim 8 For t ∈ [T ] and v ∈ V , the number of s ∈ S(t) such that v ∈ B(t)(s, r(t)) is
at most 34 logn w.p. at least 1 − n−8.

Proof For t = 1, the size σ1 = O(logn) and hence the claim follows trivially. For
t ≥ 2, we condition on all the choices made in rounds 1,2, . . . , t − 2. Note that if v

does not survive in V (t−1), then it does not belong to V (t) either, and the claim is
immediate. So, consider two cases, depending on the size of the ball B(t−1)(v, r(t))

in iteration t − 1:

– Case 1. If |B(t−1)(v, r(t))| ≥ n1−(t−1)/T , then by Claim 3.5, with probability at
least 1 − n−12, we have v ∈ X(t−1), so v would not belong to V (t) and this means
no s ∈ S(t) will satisfy v ∈ B(t)(s, r(t)), proving the claim for this case.

– Case 2. Otherwise, |B(t−1)(v, r(t))| < n1−(t−1)/T . We have

∣∣B(t)
(
v, r(t)

)∣∣ ≤ ∣∣B(t−1)
(
v, r(t)

)∣∣ < n1−(t−1)/T

as B(t)(v, r(t)) ⊆ B(t−1)(v, r(t)). Now let X be the number of s such that v ∈
B(t)(s, r(t)), so X = ∑

s∈S(t) 1{s∈B(t)(v,r(t))}. Over the random choice of S(t),

Pr
[
s ∈ B(t)

(
v, r(t)

)] = |B(t)(v, r(t))|
|V (t)| ≤ 1

|V (t)|n
1−(t−1)/T ,

which gives

E[X] = σt · Pr
[
s ∈ B(t)

(
v, r(t)

)] ≤ 17 logn.

To obtain a high probability bound for X, we will apply the tail bound in Lemma 3.
Note that X is simply a hypergeometric random variable with the following parame-
ters setting: total balls N = |V (t)|, red balls M = |B(t)(v, r(t))|, and the number balls
drawn is σt . Therefore, Pr [X ≥ 34 logn] ≤ exp{− 1

4 · 34 logn}, so X ≤ 34 logn with
probability at least 1 − n−8.

Hence, regardless of what choices we made in rounds 1,2, . . . , t − 2, the condi-
tional probability of seeing more than 34 logn different s’s is at most n−8. Hence, we
can remove the conditioning, and the claim follows. �
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Lemma 9 Suppose that for every vertex u ∈ V and for every t ∈ [T ], there are at
most λ pairs (s, t) such that s ∈ S(t) and u ∈ B(t)(s, r(t)); that is, u is reached from at
most λ starting centers in each iteration. Then, for any edge uv ∈ E, the probability
that u belongs to a different component than v (i.e., uv is cut) is at most 4λT/R.

Proof Fix an edge uv ∈ E. We will upper bound the probability that it is cut. There
are two possibilities u and v are separated by the algorithm:

(1) There is an iteration where either u or v is reached (i.e., it belongs to X(t)) but
not the other; or

(2) There is an iteration where both of them are reached but they are put into different
components.

We begin by bounding the probability of the former case. Assume without loss of
generality that u is reached but v is not. Consider a center s in iteration t . For u to
be reached from s in this iteration, it must be the case that δ

(t)
s = r(t) − dist(t)(s, u)

because dist(t)(s, v) ≤ dist(t)(s, u) + 1. Now there are R possible choices of δ
(t)
s , so

this happens with probability at most 1/R for a particular pair (t, s). But across T

iterations, there are at most λT different centers that can possibly cut the edge in this
way. Taking a union bound over them gives us an upper bound of λT/R.

We now turn to bounding the probability for the latter case. Consider an iteration t .
For notational convenience, let the centers in this iteration (i.e., the elements of S(t))
be s1, s2, . . . , sk ; the indices are ordered arbitrarily. Let Euv be the event that u belongs
to a center si and v belongs to a center si′ 	= si in this iteration. In the rest of this
proof, the distance function is the distance function in iteration t . Since dist(si , v) ≤
dist(si , u)+1, we have dist(si′ , v)−δsi′ ≤ dist(si , u)+1−δsi , which, in turn, implies
dist(t)(si′ , u) − δsi′ ≤ dist(si , u) + 2. Thus, the event Euv happens only if there exist
i 	= i′ such that

max(disti − δsi ,disti′ − δsi′ ) ≤ 2 + min
j

(distj − δsj ),

where disti is a shorthand for dist(t)(si , u).
To proceed, we call a center si critical if disti − δsi ≤ 2 + minj≤i (distj − δsj ). We

will show that the event Euv is unlikely by bounding the number of critical centers
over settings of δs1, δs2, . . . , δsk . For this, define χi to be the number of nodes sj ,
j ≤ i that are critical. We will show by induction that E[χi] ≤ 1 + 5(i−1)

R
.

The base case follows trivially. Suppose the hypothesis is true for i − 1. If the
minimum so far is x—that is, x = minj≤i (distj − δsj )—and there are t critical nodes
so far—that is, χi−1 = t , then there are three cases to consider depending on the value
of disti − δsi :

1. |disti − δsi − x| ≤ 2;
2. disti − δsi < x − 2; or
3. disti − δsi > x + 2

Since δi is chosen independently of δ1, . . . , δi−1, the first case happens with proba-
bility at most 5/R. In this case, the number of critical nodes becomes at most t + 1.
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In the remaining cases, the number of critical nodes does not increase and remains
bounded by t . Therefore,

E[χi] ≤ E[χi−1] + 5

R
≤ 1 + 5(i − 2)

R
+ 5

R
= 1 + 5(i − 1)

R
,

where the second inequality follows from the inductive hypothesis.
This calculation shows that in expectation, the number of critical nodes in this

iteration is at most 1 + 5(k − 1)/R. The minimizer of minj distj − δsj is critical by
definition, so χk ≥ 1 and we can apply Markov’s inequality to bound the probability
that χk ≥ 2. Since k ≤ λ, this probability, and in turn the probability of event Euv

happens is at most 1
2 (1+ 5(λ−1)

R
) ≤ 3λ/R as long as R ≥ 5. Therefore, taking a union

bound over T iterations, the probability that uv is separated in this way is at most
3λT/R.

Combining these two cases, we conclude that the probability that uv is separated
by the algorithm is at most 4λT/R. �

We now reason about (P3). Notice that by Claim 8, the premise to Lemma 9, with
λ = 34 logn, holds with probability at least 1 − o(1) ≥ 3/4. Therefore, property (P3)
follows directly from Lemma 9, where the technical condition is the premise to the
lemma.

Finally, we consider the work and depth of the algorithm. These are randomized
bounds. Each computation of B(t)(v, r(t)) can be done using a BFS. Since r(t) ≤ ρ,
the depth is bounded by O(ρ logn) per iteration, resulting in O(ρ log2 n) after T =
O(logn) iterations. As for work, each vertex can be reached from at most O(logn)

starting centers per iteration (Claim 8); therefore, across T = O(logn) iterations, we
have a total work of O(m log2 n).

4.2 Low-Diameter Decomposition for Multiple Edge Classes

Extending the basic algorithm to support multiple edge classes is straightforward. The
main idea is as follows. Suppose we are given a unweighted graph G = (V ,E), and
the edge set E is composed of k edge classes E1 � · · · � Ek . Now if we run split-
Graph on G = (V ,E) and ρ treating the different classes as one, then property (P3)
indicates that each edge—regardless of which class it came from—is separated (i.e., it
goes across components) with probability p = 600

ρ
log3 n. This allows us to prove the

following corollary, which follows directly from Markov’s inequality and the union
bounds.

Corollary 10 With probability at least 1/4, for all i ∈ [k], the number of edges in Ei

that are between components is at most |Ei | 800k log3 n
ρ

.

The corollary suggests a simple way to use splitGraph to provide guarantees
required by Theorem 4: as summarized in Algorithm 4.2, we run splitGraph on
the input graph treating all edge classes as one and repeat it if any of the edge classes

had too many edges cut (i.e., more than |Ei | 800k log3 n
ρ

). Hence, the number of trials
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Algorithm 4.2 Partition (G = (V ,E = E1 � · · · � Ek),ρ)—partition an input
graph G into components of radius at most ρ

1. Let C = splitGraph((V ,�Ei),ρ).

2. If there is some i such that Ei has more than |Ei | 800·k log3 n
ρ edges between components,

start over. (Recall that k was the number of edge classes.)

Return C .

is a geometric random variable with p = 1/4, so in expectation, it will finish after
4 trials.

Finally, we note that properties (P1) and (P2) directly give Theorem 4(1)–(2)—
and the validation step in Partition ensures Theorem 4(3), setting c1 = 800.
The work and depth bounds for Partition follow from the bounds derived for
splitGraph and Corollary 10. This concludes the proof of Theorem 4.

5 Parallel Low-Stretch Spanning Trees and Subgraphs

This section presents parallel algorithms for low-stretch spanning trees (LSSTs)
and for low-stretch spanning subgraphs (LSSGs). These algorithms take as input a
weighted graph G = (V ,E,w) and produce either a tree T ⊆ G in the case of the
LSST algorithm or a subgraph H ⊆ G in the case of the LSSG algorithm. The sub-
graph produced has a special form: it comprises a tree T and a subset of “extra” edges
Ē such that the edges in E \ Ē have small stretch on average.

In addition, the algorithms will return an upper bound of the stretch value of each
edge in E \ Ē (in the case of LSST, Ē = ∅). That is, the algorithms will return a
vector ŝtr : E \ Ē → R+, where ŝtre is an upper bound of the stretch of the edge e.
In general, the exact values of stretches with respect to a tree T can be computed
in parallel using tree contraction [22], but having these upper bounds allows us to
simplify our solver presentation.

To this end, we first derive a parallel LSST algorithm by applying the construction
of Alon et al. [2] (henceforth, the AKPW construction), together with the parallel
graph partition algorithm from the previous section. This results in an algorithm with
O(m logO(1) n) work and O(polylog(n) · 2O(

√
logn·log logn) · logΔ) depth, producing

a spanning subtree with an average stretch O(2O(
√

logn·log logn)). The algorithm also
outputs a vector ŝtr upper-bounding the stretch values although in this particular case,
since the output is a spanning tree, the exact stretch for every edge can be computed
using a parallel lowest common ancestor algorithm [25] in O(m logO(1) n) work and
O(polylog(n)) depth.

This LSST algorithm, however, is less than ideal for two reasons: the depth of the
algorithm depends on the “spread” Δ term—the ratio between the heaviest edge and
the lightest edge—and even for polynomial spread, both the depth and the average
stretch are more than poly-logarithmic (both of them have a 2O(

√
logn·log logn) term).

For our solver application, we observe that we do not need spanning trees but merely
low-stretch sparse graphs which have O(m/polylog(n)) more edges than a tree. With
this extra flexibility, we show in Sect. 5.2 that the average stretch can be reduced to
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O(polylog(n)) and the sparse graph can be constructed in O(m logO(1) n) work and
O(polylog(n)) depth. We give an LSSG algorithm that achieves this by conceptually
setting aside a small number of edges and constructing a low-stretch spanning tree
on the remaining graph; then, the output simply combines the spanning tree and the
edges that we set aside. Notice that every edge that was set aside has stretch 1 and the
stretch of the remaining edges is upper bounded by the stretch of these edges going
through the spanning tree T . To accomplish this, we modify our LSST algorithm
to identify and set aside roughly O(m/polylog(n)) edges in such a way that on the
remaining edges a tree with average stretch O(polylog(n)) can be built. We believe
this construction may be of independent interest.

5.1 Low-Stretch Spanning Trees

Using the AKPW construction, along with the Partition procedure from Sect. 4,
we will prove the following theorem:

Theorem 11 (Low-Stretch Spanning Tree) There is an algorithm AKPW(G) which
given as input a graph G = (V ,E,w), produces a spanning tree T and a vector ŝtr
such that strT (e) ≤ ŝtr(e) for all e ∈ E and

∑

e∈E

ŝtre ≤ O
(
m · 2O(

√
logn·log logn)

)
.

Furthermore, the algorithm has O(logO(1) n ·2O(
√

logn·log logn) logΔ) expected depth
and O(m logO(1) n) expected work.

Algorithm 5.1 is a restatement of the AKPW algorithm, except that here we will
use our parallel low-diameter decomposition for the partition step. In words, iteration
j of Algorithm 5.1 looks at a graph (V (j),E(j)) which is a minor of the original graph
(because components were contracted in previous iterations, and because it only con-
siders the edges in the first j weight classes). It uses Partition((V ,�j≤kEj ), z/4)

Algorithm 5.1 AKPW (G = (V ,E,w))—a low-stretch spanning tree algorithm
i. Normalize the edges so that min{w(e) : e ∈ E} = 1.

ii. Let y = 2
√

6 logn·log logn, τ = �3 log(n)/ logy�, z = 4c1yτ log3 n. Initialize T = ∅.
iii. Divide E into E1,E2, . . . , where Ei = {e ∈ E | w(e) ∈ [zi−1, zi )}.

Let E(1) = E and E
(1)
i

= Ei for all i.
iv. For j = 1,2, . . . , until the graph is exhausted,

1. (C1,C2, . . . ,Cp) = Partition((V (j),�i≤jE
(j)
i

), z/4)

2. Add a BFS tree of each component to T .

3. For all e ∈ E
(j)
i

contained in a component, set ŝtre to 2zj−i+2.

4. Define graph (V (j+1),E(j+1)) by contracting all edges within the components and re-

moving all self-loops (but maintaining parallel edges). Create E
(j+1)
i

from E
(j)
i

taking
into account the contractions.

v. Output the tree T and a vector upperbounding the stretch values ŝtr.
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to decompose this graph into components such that the hop radius is at most z/4 and
each weight class has only 1/y fraction of its edges crossing between components.
(Parameters y, z are defined in the algorithm and are slightly different from the orig-
inal settings in the AKPW algorithm.) It then shrinks each of the components into a
single node (while adding a BFS tree on that component to T ), and iterates on this
graph. Adding these BFS trees maintains the invariant that the set of original nodes
which have been contracted into a (super-)node in the current graph are connected
in T ; hence, when the algorithm stops, we have a spanning tree of the original graph.
For some intuition on the stretch bound, notice that in this construction, every time
an edge participates in Partition but is not cut, it is further stretched by about
a factor of z, so the stretch of an edge e ∈ Ei is a function of how many times the
edge participates in Partition before it is cut. The algorithm uses 2zj−i+2 as an
upperbound, where j is the iteration when e is cut.

We begin the analysis of the total stretch and running time by proving two useful
facts:

Fact 12 The number of edges |E(j)
i | is at most |Ei |/yj−i .

Proof If we could ensure that the number of weight classes in play at any time is
at most τ , then the number of edges in each class would fall by at least a factor of
c1τ log3 n

z/4 = 1/y by Theorem 4(3) and the definition of z, and this would prove the
fact. Now, for the first τ iterations, the number of weight classes is at most τ just
because we consider only the first j weight classes in iteration j . Now in iteration
τ +1, the number of surviving edges of E1 would fall to |E1|/yτ ≤ |E1|/n3 < 1, and
hence there would only be τ weight classes left. By induction, the same holds true
for subsequent iterations. �

Fact 13 In iteration j , the radius of a component according to edge weights (in the
expanded-out graph) is at most zj+1.

Proof The proof is by induction on j . First, note that by Theorem 4(2), each of the
clusters computed in any iteration j has edge-count radius at most z/4. Now the base
case j = 1 follows by noting that each edge in E1 has weight less than z, giving a
radius of at most z2/4 < zj+1. Now assume inductively that the radius in iteration
j − 1 is at most zj . Now any path with z/4 edges from the center to some node in
the contracted graph will pass through at most z/4 edges of weight at most zj , and
at most z/4 + 1 supernodes, each of which adds a distance of 2zj ; hence, the new
radius is at most zj+1/4 + (z/4 + 1)2zj ≤ zj+1 as long as z ≥ 8. �

Combining these facts, we will show that the vector ŝtr gives an upperbound on
the edge stretch:

Lemma 14 For any edge e, strT (e) ≤ ŝtr(e).

Proof Let e be an edge in Ei contracted during iteration j . Since e ∈ Ei , we know
w(e) > zi−1. By Fact 13, the path connecting the two endpoints of e in F has distance
at most 2zj+1. Thus, strT (e) ≤ 2zj+1/zi−1 = 2zj−i+2. �
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We can then bound the total stretch of an edge class.

Lemma 15 For any i ≥ 1,
∑

e∈Ei

ŝtr(e) ≤ 4y2|Ei |
(
4c1τ log3 n

)τ+1
.

Proof Fact 12 indicates that the number of edges is from Ei contracted during itera-
tion j at most |E(j)

i | ≤ |Ei |/yj−i .

∑

e∈Ei

ŝtr(e) ≤
i+τ−1∑

j=i

2zj−i+2|Ei |/yj−i

≤ 4y2|Ei |
(
4c1τ log3 n

)τ+1
,

completing the proof. �

Proof of Theorem 11 Summing the bound in Lemma 15 across the edge classes gives
the promised bound on the total of all upper bounds. As for work/depth bounds, there
are �logz Δ� weight classes Ei ’s in all, and since each time the number of edges in
a (non-empty) class drops by a factor of y, the algorithm has at most O(logΔ + τ)

iterations. By Theorem 4 and standard techniques, each iteration does O(m log2 n)

work and has O(z log2 n) = O(logO(1) n · 2O(
√

logn·log logn)) depth in expectation. �

5.2 Low-Stretch Spanning Subgraphs

We now show how to modify the parallel low-stretch spanning tree construction from
the preceding section to give a low-stretch spanning subgraph whose depth does not
depend on the “spread,” and moreover has only polylogarithmic stretch. This comes
at the cost of obtaining a sparse subgraph with n− 1 +O(m/polylogn) edges instead
of a tree, but suffices for our solver application. The two main ideas behind these
improvements are the following:

– First, the number of surviving edges in each weight class decreases by a logarith-
mic factor in each iteration; hence, we could throw in all surviving edges after
they have been whittled down in a constant number of iterations—this removes the
factor of 2O(

√
logn·log logn) from both the average stretch and the depth.

– Second, if Δ is large, we will identify certain weight-classes with O( m
polylogn)

edges, which by setting them aside, will allow us to break up the chain of depen-
dencies and obtain O(polylogn) depth; these edges will be thrown back into the
final solution, adding O(m/polylogn) extra edges (which we can tolerate) without
increasing the average stretch.

5.2.1 The First Improvement

Let us first show how to achieve polylogarithmic stretch by setting aside a small
fraction of the edges. Given parameters λ ∈ Z>0 and β ≥ c2 log3 n (where c2 =
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2 ·(4c1(λ+1))
1
2 (λ−1)), we obtain the new algorithm SparseAKPW(G,λ,β) by mod-

ifying Algorithm 5.1 as follows:

(1) use the altered parameters y = 1
c2

β/ log3 n and z = 4c1y(λ + 1) log3 n;
(2) in each iteration j , call Partition with at most λ + 1 edge classes—keep the

λ classes E
(j)
j ,E

(j)

j−1, . . . ,E
(j)

j−λ+1, but then define a “generic bucket” E
(j)

0 :=
⋃

j ′≤j−λ E
(j)

j ′ as the last part of the partition; and
(3) finally, output T along with all the edges that were put into the generic bucket,

Ē = ⋃
i≥1 E

(i+λ)
i \ T .

Conceptually, we can think of Ē as the edges that we set aside, so then T is the
spanning subtree that we build for G \ Ē. Therefore, with respect to the subgraph
T ∪Ē that we generate, the edges Ē that we set aside have stretch 1 and the remaining
edges have stretch at most the stretch routing through T .

We now state and prove the guarantees of our modified algorithm:

Lemma 16 Given a graph G, parameters λ ∈ Z>0 and β ≥ c2 log3 n (where c2 =
2 · (4c1(λ + 1))

1
2 (λ−1)) the algorithm SparseAKPW(G,λ,β) outputs a subset of

edges Ē ⊆ E, a tree T and for all edges in E \ Ē, upper bounds for stretches with
respect to T . Ē has size at most m(c2 log3 n/β)λ, and the sum of upper bounds is at
most O(mβ2 log3λ+3 n). Moreover, the expected work is O(m logO(1) n) and expected
depth is O((c1β/c2)λ log2 n(logΔ + logn)).

Proof The proof parallels that of Theorem 11. Fact 13 remains unchanged. The claim
from Fact 12 now remains true only for j ∈ {i, . . . , i + λ − 1}; after that the edges in
E

(j)
i become part of E

(j)

0 , and we only give a cumulative guarantee on the generic
bucket.

Summing across the edge classes gives
∑

e∈E\Ē ŝtr(e) ≤ 4y2( z
y
)λ−1m, which sim-

plifies to O(mβ2 log3λ+3 n). Next, the number of edges in the output follows from
the fact that the number of extra edges from each class is only a 1/yλ fraction (i.e.,
|E(i+λ)

i | ≤ |Ei |/yλ from Fact 12). Finally, the work remains the same; for each of
the (logΔ + τ) distance scales the depth is still O(z log2 n), but the new value of z

causes this to become O((c1β/c2)λ log2 n). �

5.2.2 The Second Improvement

The depth of the SparseAKPW algorithm still depends on logΔ, and the reason is
straightforward: the graph G(j) used in iteration j is built by taking G(1) and con-
tracting edges in each iteration—hence, it depends on all previous iterations. How-
ever, the crucial observation is that if we had τ consecutive weight classes Ei ’s which
are empty, we could break this chain of dependencies at this point. However, there
may be no empty weight classes; but having weight classes with relatively few edges
is enough, as we show next.

Consider a graph G = (V ,E,w) with edge weights w(e) ≥ 1, and let Ei(G) :=
{e ∈ E(G) | w(e) ∈ [zi−1, zi)} be the weight classes. Then, G is called (γ, τ )-
well-spaced if there is a set of special weight classes {Ei(G)}i∈I such that
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for each i ∈ I , (a) there are at most γ weight classes before the following
special weight class min{i′ ∈ I ∪ {∞} | i′ > i}, and (b) the τ weight classes
Ei−1(G),Ei−2(G), . . . ,Ei−τ (G) preceding i are all empty.

Lemma 17 Given any graph G = (V ,E), τ ∈ Z+, and θ ≤ 1, there exists a graph
G′ = (V ,E′) which is (4τ/θ, τ )-well-spaced, and |E \ E′| ≤ θ · |E|. Moreover, G′
can be constructed in O(m) work and O(logn) depth.

Proof Let δ = logΔ
log z

; note that the edge classes for G are E1, . . . ,Eδ , some of which
may be empty. Denote by EJ the union

⋃
i∈J Ei . We construct G′ as follows: Divide

these edge classes into disjoint groups J1, J2, . . . ⊆ [δ], where each group consists
of �τ/θ� consecutive classes. Within a group Ji , by an averaging argument, there
must be a range Li ⊆ Ji of τ consecutive edge classes that contains at most a θ

fraction of all the edges in this group, i.e., |ELi
| ≤ θ · |EJi

| and |Li | ≥ τ . We form
G′ by removing these the edges in all these groups Li ’s from G, i.e., G′ = (V ,E \
(
⋃

i ELi
)). This removes only a θ fraction of all the edges of the graph.

We claim G′ is (4τ/θ, τ )-well-spaced. Indeed, if we remove the group Li , then
we designate the smallest j ∈ [δ] such that j > max{j ′ ∈ Li} as a special bucket (if
such a j exists). Since we removed the edges in ELi

, the second condition for being
well-spaced follows. Moreover, the number of buckets between a special bucket and
the following one is at most

2�τ/θ� − (τ − 1) ≤ 4τ/θ.

Finally, these computations can be done in O(m) work and O(logn) depth using
standard techniques [14, 21]. � �

Lemma 18 Let τ = 3logn/logy. Given a graph G which is (γ, τ )-well-spaced,
SparseAKPW can be computed on G with O(m logO(1) n) work and
O(c1

c2
γ λβ log2 n) depth.

Proof Since G is (γ, τ )-well-spaced, each special bucket i ∈ I must be preceded by
τ empty buckets. Hence, in iteration i of SparseAKPW, any surviving edges belong
to buckets Ei−τ or smaller. However, these edges have been reduced by a factor of y

in each iteration and since τ > logy n2, all the edges have been contracted in previous

iterations—i.e., E
(i)
� for � < i is empty.

Consider any special bucket i: we claim that we can construct the vertex set V (i)

that SparseAKPW sees at the beginning of iteration i, without having to run the
previous iterations. Indeed, we can just take the MST on the entire graph G = G(1),
retain only the edges from buckets Ei−τ and lower, and contract the connected com-
ponents of this forest to get V (i). And once we know this vertex set V (i), we can drop
out the edges from Ei and higher buckets which have been contracted (these are now
self-loops), and execute iterations i, i + 1, . . . of SparseAKPW without waiting for
the preceding iterations to finish. Moreover, given the MST, all this can be done in
O(m) work and O(logn) depth.
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Finally, for each special bucket i in parallel, we start running SparseAKPW at
iteration i. Since there are at most γ iterations until the next special bucket, the total
depth is only O(γ z log2 n) = O(c1

c2
γ λβ log2 n). �

We conclude this section with a theorem that summarizes our result for low-stretch
subgraphs:

Theorem 19 (Low-Stretch Subgraphs) Given a weighted graph G, λ ∈ Z>0,

and β ≥ c2 log3 n (where c2 = 2 · (4c1(λ + 1))
1
2 (λ−1)), there is an algorithm

LSSubgraph(G,β,λ) that finds a spanning tree T , a subset of edges Ē ⊆ E(G)

along with upper bounds on stretch ŝtr for all edges e ∈ E(G) \ Ē such that

1. |Ē| ≤ O(m(cLS
log3 n

β
)λ);

2. For each edge e ∈ E(G) \ Ē, strT (e) ≤ ŝtre; and
3.

∑
e∈E(G)\Ē ŝtr(e) ≤ O(mβ2 log3λ+3 n),

where cLS (= c2 + 1) is a constant. Moreover, the procedure runs in O(m logO(1) n)

work and O(λβλ+1 log3−3λ n) depth. If λ = O(1) and β = polylog(n), the depth term
simplifies to O(logO(1) n).

Proof Given a graph G, we set τ = 3logn/logy and θ = (log3 n/β)λ, and apply
Lemma 17 to delete at most θm edges to form G′. This leaves us with a (4τ/θ, τ )-
well-spaced graph G′, and let m′ = |E(G′)|. On this graph, we run SparseAKPW to
obtain a spanning tree T and a subset of edges Ē′ ⊆ E(G′) with O(m′(c2 log3 n/β)λ)

edges, along with upper bounds for stretches for all these edges that sum to at most
m′β2 log3λ+3 n (by Lemma 16). Moreover, Lemma 18 shows this can be computed
with O(m logO(1) n) work and the depth is

O

(
c1

c2
(4τ/θ)λβ log2 n

)
= O

(
λβλ+1 log3−3λ n

)
.

Finally, the number of edges in Ē = Ē′ ∪ (E(G) \ E(G′)) is at most m ·
(log3 n/β)λ + O(m′(c2 log3 n/β)λ), giving the desired bound. �

6 Parallel SDD Linear System Solver

In this section, we show how the ingredients developed in the previous sections can
be used to derive a parallel algorithm for solving SDD linear systems. In particular,
we show that any graph Laplacian system can be solved to an arbitrary accuracy in
nearly-linear work and roughly O(m1/3) depth:

Theorem 20 For any fixed θ > 0 and any ε > 0, there is an algorithm that on in-
put an n × n Laplacian matrix A with m nonzero elements and a vector b, com-
putes with high probability a vector x̃ such that ‖x̃ − A+b‖A ≤ ε · ‖A+b‖A in
O(m logO(1) n log 1

ε
) work and O(m1/3+θ log 1

ε
) depth where the exponent of the

logn term is an absolute constant.
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By Lemma 2, which describes a reduction from any SDD linear system to a Lapla-
cian system, this theorem directly implies a solver with the same guarantees for the
general SDD case, proving Theorem 1.

At the current stage, however, this result is mainly of theoretical interest: the ex-
ponent of logn in the work term is somewhat large as a direct consequence of Theo-
rem 19, which accumulates these factors from the techniques used in Sects. 4 and 5.
For this reason, we do not focus on optimizing for polylogarithmic factors in the
solver as we believe more efficient parallel routines for these are needed before one
should attempt to do so. For this reason also, we follow a conceptually simpler solver
algorithm [19] instead of the faster algorithm given in [20].

Next, we motivate the technical discussion in this section by providing a high-level
description of SDD linear system solvers.

6.1 Background and Overview

All known nearly-linear time solvers for SDD linear systems to date follow a “tem-
plate” developed in the seminal work of Spielman and Teng [29]. The algorithm
we will derive is a parallelization of this template and essentially mirrors pre-
vious work on parallel solvers for SDD linear systems related to planar graphs
[17, 18].

The algorithms in this framework are recursive in nature. Each recursive step at-
tempts to solve a given linear system in A. First, it constructs a graph B , known as
an ultrasparsifier, which has fewer edges than A but approximates A spectrally up
to a certain bound. Then, it solves the linear system in A using a preconditioned it-
erative method, where each iteration of the method involves solving a linear system
in B . To solve a system in B , the algorithm applies a partial Cholesky factorization
to reduce the number of variables and proceeds to call the solver routine recursively
on the rest of B . Eventually, when the system becomes sufficiently small, it is solved
directly.

In the above template, the number of linear systems in B that need to be recursively
solved depends on the quality of B with respect to A. Previous works showed how
to construct an ultrasparsifier such that for a parameter C = C(n,m), the algorithm
solves an n-by-n Laplacian with m nonzeros by making C recursive calls to solves on
systems of size at most m

2C
. In these algorithms, C is about logc n for some constant c.

This leads to the following recurrence: the sequential running time to solve a system
of with m nonzeros, T (m), is

T (m) ≤ C · T
(

m

2C

)
+ O(C · m)

The C ·T ( m
2C

) term is the cost of the preconditioned iterative method, correspond-
ing to recursively solving C systems, each of size at most m

2C
. The O(C · m) term is

the cost of incorporating the solutions from each of those solves. This pattern of re-
cursive calls is shown in Fig. 1. In terms of the total work, since the size of each sub-
sequent layer is geometrically decreasing, the recurrence solves to T (m) = O(C ·m).

From this high-level description, developing a parallel solver in this framework
requires, at minimal, answering the following questions:
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Fig. 1 Example of 3 layers of the call structure with C = 3. Total sizes at the 3 layers are m, m
2 and m

4
respectively

1. How can we construct ultrasparsifiers in parallel?
2. How can we compute a partial Cholesky factorization in parallel?

We will first focus on ultrasparsifiers and how they interact with other solver com-
ponents. These objects play a critical role in controlling the size of the recursive
subproblems.

Ultrasparsifiers An ultrasparsifier of a graph G is a graph with a fraction of the
edges of G that approximates G spectrally. The following definition is borrowed
from Spielman and Teng [29, Sect. 1.2] but is specialized to graph Laplacians with
modified constants:

Definition 21 (Ultrasparsifier) A (κ,h)-ultra-sparsifier of a graph G is a graph H

such that

1. H � G � κH ; and
2. H has at most n − 1 + h · m/κ edges.

In the sequential setting, we can generate an ultrasparsifier using the
IncrementalSparsify routine from Koutis et al. [19]. Combined with sub-
sequent improvements due to Kelner and Levin [15], its guarantees can be stated as
follows:

Lemma 22 [19, Theorem 6.2], [15] Let G be a graph with n vertices and m edges.
Let a spanning tree T of G and an upperbound vector on the stretch values ŝtr :
E(G) → R+ be also given. Then, for a parameter κ , IncrementalSparsify
computes with high probability a graph H such that

1. H � G � κH

2. H has at most n − 1 + O(S logn/κ) edges where S = ∑
e ŝtr(e).

We parallelize this construction in Sect. 6.2, using the low-stretch subgraphs algo-
rithm (Theorem 19) as a subroutine.

The Solver Chain The recursive solver algorithm can be viewed as working with
a chain of progressively smaller matrices. This chain must be carefully constructed
to ensure the right tradeoffs between how fast the number of nonzeros drops and the
number of iterations needed to solve each system to a desired accuracy. The following
definition quantifies this tradeoff in terms of condition numbers:
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Definition 23 (Solver Chain) A solver chain for A is a sequence of matrices 〈A1 =
A,B1,A2,B2, . . . ,Ad〉, along with condition numbers κ1 . . . κd−1, satisfying

1. Bi � Ai � 1
10κiBi ;

2. mi ≤ mi+1/2
√

κi , where mi is the number of nonzeros in Ai ; and
3. Ai+1 is generated from Bi by applying a partial Cholesky factorization.

This definition deserves further discussion. First, the definition does not specify
how the partial Cholesky factorization must be done; it only requires that Bi can be
written as

Bi = PiU
�
i

(
D 0�
0 Ai+1

)
UiP

�
i ,

where Ui is an upper-triangular matrix with ones in the diagonal and Pi is a per-
mutation matrix. This affords us flexibility in performing the factorization. In the
sequential setting, the factorization is typically performed using a GreedyElim-
ination procedure, which amounts to removing all degree-1 and 2 nodes using
Gaussian elimination. Our parallel algorithm will be less aggressive and may leave a
small number of degree-2 nodes.

Second, in the view of our template, Bi is essentially an ultrasparsifier of Ai .
Therefore, the algorithm solves a system in Ai using the preconditioned Chebyshev
iteration with Bi as a preconditioner. Each iteration involves a matrix-vector multi-
plication with the matrix Ai , other simple vector-vector operations, and solving one
linear system in Bi . The iterative method maintains an approximate solution which
becomes progressively more accurate. Under a suitable norm, the error decreases by
a constant factor every O(

√
κi) iterations.

The Bi ’s, however, are still not easy to solve directly. Therefore, we solve a system
in Bi by first partially solving it (via a partial Cholesky factorization) and calling the
solver routine recursively on the remaining system (in Ai+1). Spielman and Teng
show that one needs at most

√
κi recursive calls to solves involving Ai+1 to obtain

a fixed accuracy. The following lemma is a restatement of Lemma 5.3 from [29]
modified so that the

√
κi term does not involve a constant.

Lemma 24 [29, Lemma 5.3] Given a solver chain of length d , it is possible to con-
struct linear operators solveAi

for all i < d such that

(
1 − e−2)A+

i � solveAi
� (

1 + e2)

and solveAi
is a polynomial of degree

√
κi − 1 involving solveAi+1 and 4 matrices-

vector multiplies involving matrices with O(mi) nonzero entries obtained from the
partial Cholesky factorization.

Deriving a Parallel Solver Several minor modifications to the solver chain will be
needed to obtain a parallel solver. It is already clear that the total work/depth will
heavily depend on the choice of κi ’s. To shed more light on the multilevel solver and
understand its parallel complexity, let us assume for a moment that all κi are equal
to a fixed κ . This choice of parameters will be addressed in detail in Lemma 30, and
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improvements of it will lead to Theorem 20. Below, we provide an informal version
of its analysis.

With this parameter, level i of the solver is visited ti = (
√

κ)i times. These visits
need to be performed sequentially; this is the main bottleneck in the parallelization
of the solver. Other than that, each visit at level i performs O(1) matrix-vector mul-
tiplications with Ai and other vector-vector operations; all these require O(mi) work
and O(logn) depth. In addition, vectors are mapped between levels i and i + 1 using
matrices obtained via the partial Cholesky procedure; as we will show in Sect. 6.3,
this can be done in O(mi) work and O(logn) depth.

For a desired precision ε > 0, the accuracy at A1 = A (our input system) can be
boosted to the desired accuracy by iterating the whole multilevel procedure log(1/ε)

times. Therefore, the overall work is in the order of
∑d

i=1 miti log(1/ε), which is
bounded by O(m log(1/ε)) because the size reduction in mi ’s is faster than the
growth in ti ’s. Specifically, we have miti ≤ m/2i , which means that about half of
the total work is performed at the first level of the chain.

As for depth, the overall depth of this multilevel procedure is

O

(
d∑

i=1

(
√

κ)i logn log(1/ε)

)

.

We control the depth of the solver by “shortening” the chain in the following ways:
First, it is always possible to terminate the chain when the matrix Ad has size

roughly O(m1/3). Then, we can in O(m logO(1) n) work and O(m1/3) depth factorize
the inverse of Ad as LL�, and use the factorization to solve each system in Ad in
O(logn) depth and O(m2/3) work. A side-effect of this is that it increases the depth
of constructing the chain to O(m1/3).

Second, we can aim for a size reduction rate which is as high as possible for a
fixed κ and not a mere

√
c · κ required to keep the total work bounded. This allows the

reduction rate of problem sizes, mi/mi+1 to approach
√

κi . On the other hand, it leads
to an increase in total work since the work at first level depends on

√
κim1 = √

κm.
Third, we vary the settings κi ’s to accelerate the size reduction towards the bottom

of the chain, allowing us to upper bound the exponent of logn in the work bound by
an absolute constant while keeping the same depth.

These calculations are formalized in Sect. 6.4. Before that, we discuss the paral-
lelization of incremental sparsification and the parallel Cholesky factorization.

6.2 Parallel Incremental Sparsification

The first step to parallelize is the construction of ultrasparsifiers. To begin, we
briefly outline the sequential solution to IncrementalSparsify described in
Lemma 22; a detailed description can be found in Section 6 of Koutis et al. [19]. Let
G = (V ,E,w) be a weighted graph, and T be a (low-stretch) spanning subtree of G.
Each edge of the graph is assigned a probability pe proportional to its stretch with
respect to the tree T . We then take t = O(Sm logn)/κ independent samples with re-
placement according to the probabilities pe’s. Each sample of e is added to the output
with weight we/(tpe). The output also consists κ copies of the tree T .
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The parallelization of IncrementalSparsify has been mostly achieved in
Theorem 19; we only need to modify the sequential routine slightly. First, note that
procedure LSSubgraph of Theorem 19 returns a low-stretch spanning tree T for a
subgraph Gs = (V ,E − Ē) of G, and upper bounds on the stretches of the edges of
Gs over T . Because the samples are taken independently, it is then easy to implement
the sampling procedure in O(logn) depth. This leads to an ultrasparsifier Hs of Gs

such that

1. Hs � Gs � κHs ; and
2. Hs has n − 1 + O(S logn)/κ edges,

where S is the sum of the upper bounds on stretches (i.e., S = ∑
e ŝtr(e)). To obtain

an incremental sparsifier for G, we will simply add the edges in Ē back to Hs . If
we let Ḡ denote the graph formed by these edges, the incremental sparsifier becomes
H = Hs ∪ Ḡ and has n + O(mS logn)/κ + |Ē| edges.

Formally, we are able to derive the following parallelization of the incremental
sparsification algorithm.

Lemma 25 Given a weighted graph G, parameters λ and η such that η ≥ λ ≥ 16,
there is a procedure parIncrementalSparsify(G,λ,η) that in O(log2ηλ n)

depth and O(m logO(1) n) work returns with high probability another graph H such
that

1. G � H � 1
10 · logηλ n · G

2. |E(H)| ≤ n − 1 + m · cPC/logηλ−2η−4λ (n),

where cPC is an absolute constant.

Proof Consider running LSSubgraph(G, logη n,λ) and let the output be T ,
Ē, and ŝtr. We will pick κ = 1

10 · logηλ n. Let Gs = (V ,E \ Ē) and let Hs

be the graph returned by running the independent sampling process given in
INCREMENTALSPARSIFY(Gs,T , ŝtr, κ) in parallel. Then, Lemma 22 gives that with
high probability Hs satisfies Hs � Gs � κHs

Thus, setting H = Hs + Ḡ gives Hs + Ḡ � Gs + Ḡ = G and

G = Gs + Ḡ

� 1

10
κHs + Ḡ

� 1

10
κHs + 1

10
κḠ

= 1

10
κH.

This gives the first required condition.
We now bound the numbers of edges in H . Theorem 19 shows that the stretch

upper bounds sum to at most O(mβ2 log3η+3 n) = O(m log2λ+3η+3 n). Then, after



546 Theory Comput Syst (2014) 55:521–554

sampling, the number of edges in Hs is bounded by

n − 1 + m

(
10CIS log2η+3λ+4 n

logηλ n

)
,

where cIS is the hidden constant in the sampling procedure. Also, Theorem 19 guar-
antees that the number off “extra” edges in the set Ē is at most

m

(
cLS

logη−3 n

)λ

= m
cλ

LS

logηλ−3λ n

Hence, the total number of edges in the final sparsifier H which consists of the edges
in Hs as well as Ē is bounded by

n − 1 + m ·
(

cλ
LS

logλ(η−3) n
+ 10 · cIS log2η+3λ+4 n

logηλ n

)

≤ n − 1 + m · cPC

logηλ−2η−3λ−5 n

≤ n − 1 + m · cPC

logηλ−2η−4λ n
. �

6.3 Parallel Greedy Elimination

When solving a linear system via exact operations, a key step is the sequential elimi-
nation of variables/nodes from the system. Algebraically, we can exploit the symme-
try and obtain a partial Cholesky factorization of the form

LB = PU�
(

D 0�
0 LA′

)
UP �,

where U is an upper-triangular matrix with ones in the diagonal and P is a permuta-
tion matrix. Observe that for Laplacians, the lower block of the central factor is still
a Laplacian.

Direct solvers typically reorder the matrix B , at least conceptually, for efficiency
in the elimination. In particular, these algorithms almost always begin by eliminating
nodes of degrees 1 and 2; this can be accomplished in O(mB) time, where mB is
the number of nonzeros in B . In our case, since we are only interested in partial
elimination, this is the only type of variable elimination that we use.

To apply the elimination algebraically, the corresponding vertices must be moved
to the top coordinates of the matrix. This amounts to computing a permutation matrix
P so that we actually compute the partial factorization

P �LBP = U�
(

D 0�
0 LA′

)
U,

where P is the permutation matrix corresponding to a permutation π . In practice,
we only need to store π since an application of P on a vector x is equivalent to a
permutation of its coordinates according to π .
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The computation of π and the factorization of P �LBP can be done in O(mB)

time as noted above, via the standard procedure GreedyElimination which can
be found, for example, in the solver constructions by Spielman and Teng [29] or
Koutis et al. [19, 20]. From a graph-theoretic point of view, this procedure greedily
removes degree-1 nodes and splices out degree-2 nodes (i.e., it replaces them with an
edge joining the two neighbors).

The first step towards parallelizing the solver is the parallelization of greedy elim-
ination. The sequential version of GreedyElimination returns a graph with no
degree-1 or degree-2 nodes. The parallel version that we present below leaves some
degree-2 nodes in the graph, but their number will be small enough to not affect the
running time of the solver.

Lemma 26 If G has n vertices and n − 1 + m edges, then there is a procedure
parGreedyElimination(G) that runs in O(n + m) work and O(logn) depth,
and with high probability returns permutation matrices P,P � along with a factor-
ization

P �LGP = U�
(

I 0�
0 LG′

)
U,

where G′ has at most 2m − 2 nodes and matrix-product vectors with U and U� can
be computed in O(m) work and O(logn) depth.

Proof We first take a graph-theoretic look at the elimination. The sequential
GreedyElimination(G) is equivalent to repeatedly removing degree-1 vertices
and splicing out 2 vertices until no more exist while maintaining self-loops and mul-
tiple edges (see, e.g., [29] and [17, Sect. 2.3.4]). Thus, the problem is a slight gener-
alization of parallel tree contraction [22]. In the parallel version, we show that while
the graph has more than 2m−2 nodes, we can efficiently find and eliminate a “large”
independent set of degree-2 nodes, in addition to all degree-1 vertices.

We loop over two steps until the vertex count is at most 2m − 2:

1. Mark an independent set of degree-2 vertices.
2. Contract all degree-1 vertices.
3. Compress and/or contract out the marked vertices.

The contract and compress operations in steps 2 and 3 are equivalent to Rake and
Compress in [22], and so they can be performed with the desired work and depth.

To find the independent set in step 1, we use a randomized marking algorithm
on the degree-2 vertices (this is used in place of maximal independent set for work
efficiency): Each degree two node flips a coin with probability 1

3 of turning up heads;
we mark a node if it is a heads and its neighbors either did not flip a coin or flipped a
tail.

We show that the two steps above will remove a constant fraction of “extra”
vertices, i.e. vertices in excess of 2m − 2. Let G be a multigraph with n vertices
and m + n − 1 edges. First, observe that if all vertices have degree at least 3 then
n ≤ 2(m − 1) and we would be finished. So, let T be any fixed spanning tree of G.
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Let a1, a2 and a3 the number of vertices in T of degree 1,2 and at least 3 respec-
tively. Similarly, let b1, b2, and b3 be the number of vertices in G of degree 1, 2, and
at least 3, respectively; here the degree is the vertex’s degree in G.

It is easy to check that in expectation, these two steps remove b1 + 4
27b2 ≥ b1 + 1

7b2

vertices. In the following, we will show that b1 + 1
7b2 ≥ 1

7Δn, where Δn = n −
(2m− 2) = n− 2m+ 2 denotes the number of “extra” vertices in the graph. Consider
non-tree edges and how they are attached to the tree T . Let m1, m2, and m3 be the
number of attachment of the following types, respectively:

(1) an attachment to x, a degree-1 vertex in T , where x has at least one other attach-
ment.

(2) an attachment to x, a degree-1 vertex in T , where x has no other attachment.
(3) an attachment to a degree-2 vertex in T .

As each edge is incident on two endpoints, we have m1 +m2 +m3 ≤ 2m. Also, we
can lower bound b1 and b2 in terms of the mi ’s and ai ’s: we have b1 ≥ a1 −m1/2−m2

and b2 ≥ m2 + a2 − m3. This gives

b1 + 1

7
b2 ≥ 2

7
(a1 − m1/2 − m2) + 1

7
(m2 + a2 − m3)

= 2

7
a1 + 1

7
a2 − 1

7
(m1 + m2 + m3)

≥ 2

7
a1 + 1

7
a2 − 2

7
m.

Consequently, b1 + 1
7b2 ≥ 1

7 (2a1 + a2 − 2m) ≥ 1
7 · Δn, where to show the last step,

it suffices to show that n + 2 ≤ 2a1 + a2 for a tree T of n nodes. Without loss of
generally, we may assume that all nodes of T have degree either one or three, in
which case 2a1 = n + 2. Finally, by Chernoff bounds, the algorithm will finish with
high probability in O(logn) rounds.

The identities of vertices that get eliminated in every round of the above iteration
are now known: they are the degree-1 vertices or the marked degree-2 vertices. Given
these, it is fairly easy to compute P,P �, and the factorization in O(m) work and
O(logn) depth. Details on this can be found in [23]. �

6.4 Parallel Performance of Solver Chain

It can be observed that as long as κi are set to polylogn, parGreedyElimination
and parIncrementalSparsify allows the parallel construction of a precondi-
tioning chain in polylogn depth and O(m logO(1) n) work with high probability. As a
result, with high probability we obtain a solver chain as specified in Definition 23.

As noted above, the recursive Preconditioned Chebyshev algorithm relies on find-
ing the solution of linear systems on Ad , the bottom-level systems. To parallelize
these solves, we make use of the following fact which can be found in Sects. 3.4. and
4.2 of [11].
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Fact 27 A factorization LL� of the inverse of an n-by-n positive definite matrix A,
where L is a lower triangular matrix, can be computed in O(n) depth and O(n3)

work, and any solves thereafter can be done in O(logn) time and O(n2) work.

Although Ad is not positive definite when Ad is a Laplacian, its null space is
precisely known: it is the space spanned by the constant vector when the underlying
graph is connected. Based on this, we can drop the first row and column of Ad to
obtain a definite matrix A′

d on which the above factorization is possible. Then, to find
a solution of Adx = b we instead solve the system A′

dy = b′ where b′ is obtained
by b by dropping its last coordinate. We recover a solution x′ by padding y with a
0 in the last coordinate. To obtain a solution vector x orthogonal to the null space, it
suffices to subtract from x′ a copy of the constant vector.

Spielman and Teng [29, Sect. 5] gave a (sequential) time bound for solving a linear
SDD system given a preconditioner chain. The following lemma extends Theorem 5.5
from their paper to give parallel runtime bounds (work and depth), as a function of
κi ’s and mi ’s. Note that in this bound, the m2

d term arises from the dense inverse used
to solve the linear system in the bottom level.

Lemma 28 For � ≥ 1, given any vector b, the vector solveA�
· b can be computed in

depth

O

(
logn

∑

�≤i≤d

∏

�≤j<i

√
κj

)

and work

O

( ∑

�≤i≤d−1

mi ·
∏

�≤j≤i

√
κj + m2

d

∏

�≤j<d

√
κj

)

Proof The proof is by induction in decreasing order on �. When d = �, all we are
doing is a matrix multiplication with a dense inverse. This takes O(logn) depth and
O(m2

d) work.
Suppose the result is true for � + 1. Then Lemma 24 gives that solveA�

can be
expressed as a polynomial of degree

√
κ� involving an operator that is solveA�+1

multiplied by at most 4 matrices with O(m�) nonzero entries. This polynomial leads
to a sequence of

√
κ� calls, giving a total depth of:

O(logn)
√

κ� + √
κ� · O

(
logn

∑

�+1≤i≤d

∏

�+1≤j<i

√
κj

)

= O

(
logn

∑

�≤i≤d

∏

�≤j<i

√
κj

)

and the total work can be bounded by:

√
κ�O(m�) + √

κ� · O
( ∑

�+1≤i≤d−1

mi ·
∏

�+1≤j≤i

√
κj + m2

d

∏

�+1≤j<d

√
κj

)
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= O

( ∑

�≤i≤d−1

mi ·
∏

�≤j≤i

√
κj + m2

d

∏

�≤j<d

√
κj

)
.

�

Corollary 29 Given a preconditioner chain C for a matrix A, a vector b, and an
error tolerance ε, we can compute a vector x̃ such that

∥∥x̃ − A+b
∥∥

A
≤ ε · ∥∥A+b

∥∥
A
,

with depth bounded by

O

(
logn

∑

1≤i≤d

∏

1≤j<i

√
κj

)
log

(
1

ε

)
≤ O

(
logn log

(
1

ε

) ∏

1≤j<d

√
κj

)

and work bounded by

O

( ∑

1≤i≤d−1

mi ·
∏

j≤i

√
κj + m2

d

∏

1≤j<d

√
κj

)
log

(
1

ε

)
.

Proof The ε-accuracy bound follows from applying preconditioned Chebyshev to
solveA1 similarly to Theorem 5.5 of [29], and the work/depth bounds follow from
Lemma 28 when � = 1. �

Corollary 29 shows that the algorithm’s performance is determined by the settings
of κi ’s and mi ’s; however, as we will use Lemma 25, the number of edges mi is
essentially dictated by our choice of κi . We now show that if we terminate chain
earlier, i.e. adjusting the dimension Ad to roughly O(m1/3 log ε−1), we can obtain
good parallel performance. As a first attempt, we will set κi ’s uniformly:

Lemma 30 For any fixed θ > 0, if we construct a preconditioner chain using
Lemma 25 setting λ to some proper constant greater than 21, η = λ and extend-
ing the sequence until md ≤ m1/3−δ for some δ depending on λ, we get a solver
algorithm that runs in O(m1/3+θ log(1/ε)) depth and O(m logO(λ2) log 1/ε) work as
λ → ∞, where ε is the accuracy precision of the solution, as defined in the statement
of Theorem 1.

Proof By Lemma 22, we have that mi+1—the number of edges in level i + 1—is
bounded by

O

(
mi · cPC

logηλ−2η−4λ

)
= O

(
mi · cPC

logλ(λ−6)

)

which can be repeatedly apply to give

mi ≤ m ·
(

cPC

logλ(λ−6) n

)i−1
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Therefore, when λ > 12, we have that for each i < d ,

mi ·
∏

j≤i

√
κj ≤ m ·

(
cPC

logλ(λ−6) n

)i−1

· (
√

logλ2
n
)i

= O
(
m logO(λ2) n

) ·
(

cPC

logλ(λ−12)/2 n

)i

≤ O
(
m logO(λ2) n

)

Now consider the term involving md . We have that d is bounded by
(

2

3
+ δ

)
logm

/
log

(
1

cPC
lognλ(λ−6)

)
.

Combining with the κi = logλ2
n, we get

∏

1≤j≤d

√
κj

= (
lognλ2/2)( 2

3 +δ) logm/ log (c lognλ(λ−6))

= exp

(
log logn

λ2

2

(
2

3
+ δ

)
logm

λ(λ − 6) log logn − log cPC

)

≤ exp

(
log logn

λ2

2

(
2

3
+ δ

)
logm

λ(λ − 7) log logn

)

(since log cPC ≥ − logn)

= exp

(
logn

λ

λ − 7

(
1

3
+ δ

2

))

= O
(
m( 1

3 + δ
2 ) λ

λ−7
)

Since md = O(m
1
3 −δ), the total work is bounded by

O
(
m( 1

3 + δ
2 ) λ

λ−7 + 2
3 −2δ

) = O
(
m1+ 7

λ−7 −δ λ−14
λ−7

)

So, setting δ ≥ 7
λ−14 suffices to bound the total work by O(m logO(1) n). And, when

δ is set to 7
λ−14 , the total parallel running time is bounded by the number of times the

last layer is called
∏

j

√
κj ≤ O

(
m

( 1
3 + 1

2(λ−14)
) λ

λ−7
)

≤ O
(
m

1
3 + 7

λ−14 + λ
2(λ−14)(λ−7)

)

≤ O
(
m

1
3 + 14

λ−14
)

when λ ≥ 21

Setting λ arbitrarily large suffices to give O(m1/3+θ ) depth. �
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This gives us an algorithm that runs in O(m1/3+θ ) depth. However, the exponent
on in logn also increases along with θ . In order to obtain bounds in Theorem 1, we
improve the performance by reducing the exponent on the logn term in the total work
from λ2 to some large fixed constant keeping the total depth at O(m1/3+θ ).

Proof of Theorem 20 Consider setting λ = 13 and η ≥ λ. Then,

ηλ − 2η − 4λ ≥ η(λ − 6) ≥ 7

13
ηλ

We use c4 to denote this constant of 7
13 , namely c4 satisfies

cPC/ logηk−2η−4λ n ≤ cPC/ logc4ηλ n

We can then pick a constant threshold L and set κi for all i ≤ L as follows:

κ1 = logλ2
n, κ2 = log(2c4)λ

2
n, . . . , κi = log(2c4)

i−1λ2
n

To solve AL, we apply Lemma 30, which is analogous to setting AL, . . . ,Ad

uniformly. The depth required in constructing these preconditioners is O(md +∑d
j=1 O(κi)) where O(md) is the depth of computing the inverse of inverse at the

last level. This gives a total of O(md) = O(m1/3) for constructing the solver chain.
As L → ∞, κL becomes arbitrarily large. A consequence of Lemma 30 is then∏

L≤j≤d

√
κj ≤ O(m1/3+θ ). On the other hand, as L is a constant,

∏
1≤j≤L

√
κj ∈

O(polylogn). So as L is set to arbitrarily large constants, the total depth can be
bounded by O(m1/3+θ ).

The total work is bounded by
∑

i≤d

mi

∏

1≤j≤i

√
κj +

∏

1≤j≤d

√
κjm

2
d

=
∑

i<L

mi

∏

1≤j≤i

√
κj

+
( ∏

1≤j<L

√
κj

)
·
(√

κj

∑

i≥L

mi

∏

L≤j≤i

√
κj + m2

d

∏

L≤j≤d

√
κj

)

≤
∑

i<L

mi

∏

1≤j≤i

√
κj +

( ∏

1≤j<L

√
κj

)
mL

√
κL

=
∑

i≤L

mi

∏

1≤j≤i

√
κj

≤
∑

i≤L

m
∏

j<i κ
c4
i

∏

1≤j≤i

√
κj

= m
∑

i≤L

√
κ1

∏
2≤j≤i

√
κ

2c4
j−1

∏
j<i κ

c4
i

= mL
√

κ1
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The first inequality follows from the fact that the exponent of logn in κL can be
arbitrarily large, and then applying Lemma 30 to the solves after level L. The fact
that mi+1 ≤ mi · O(1/κ

c4
i ) follows from Lemma 25. �

7 Conclusion

We presented a nearly-linear work parallel algorithm for constructing graph de-
compositions with strong-diameter guarantees and parallel algorithms for construct-
ing 2O(

√
logn log logn)-stretch spanning trees and O(logO(1) n)-stretch ultrasparse sub-

graphs. The ultrasparse subgraphs were shown to be useful in the design of a nearly-
linear work parallel SDD solver. By plugging our result into previous frameworks,
we obtained improved parallel algorithms for several problems on graphs.

We leave open the design of a (nearly) linear work parallel algorithm for the con-
struction of a low-stretch tree with polylogarithmic stretch. We also feel that the de-
sign of (near) work-efficient O(logO(1) n)-depth SDD solver is a very interesting
problem that will require the development of new techniques.
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