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ABSTRACT
This paper formalizes and studies combinable memory-block
transactions (MBTs). The idea is to encode short programs
that operate on a single cache/memory block and then to
specify such a program with a memory request. The code is
then executed at the cache or memory controller, atomically
with respect to other accesses to that block by this or other
processors. The combinable form allows combining within
the memory system or network. In addition to allowing for
the standard set of read-modify-write operations (e.g., test-
and-set, compare-and-swap, fetch-and-add), MBTs can be
used to define other useful operations—such as a fetch-and-
add that does not decrement below zero.

We show how MBTs can be used to design simple and
efficient implementations of a variety of protocols and algo-
rithms, including a priority write, a semaphore with a non-
blocking P operation, a bounded queue, and a timestamp-
based transactional memory system. In all cases the proto-
cols gain some advantage by using MBTs that are different
from the standard set of operations. To gain an understand-
ing of the efficiency that can be gained by using combining,
we define a notion of bounded contention and show that
all our protocols have bounded contention under arbitrary
loads.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; B.3.2 [Memory Structures]: Design Styles—Shared
memory

General Terms
Algorithms, Design, Performance, Theory

Keywords
memory-block transactions, combining, shared memory, lin-
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1. INTRODUCTION
There has been a long history of research on and imple-

mentation of instructions that operate atomically on a single
word or block of memory, including the well-studied swap,
compare-and-swap (CAS), test-and-set (TS), and fetch-and-
add (FA) operations. It is well understood that these op-
erations can greatly simplify implementing efficient versions
of certain protocols and problems [8, 16, 21, 9]. Hardware
support for some of these operations dates back at least to
the 1970s with the IBM 370 [11], which supported compare-
and-swap. Work on the Ultracomputer further showed how
combining can be used to efficiently support some of these
operations even when many processors concurrently access
the same location [8, 7].

Unfortunately, there does not appear to be any small uni-
versal set of operations that efficiently simulate all atomic
block operations. Known universality results [9] are nei-
ther efficient in practice nor in theory [13, 5]. Often a user
needs some variant or extension of an operation and there
is no satisfactory way to simulate it given the existing set.
For example, one might want an atomic non-negative fetch-
and-decrement (NN-FD), which differs from the standard
fetch-and-decrement by never decrementing the counter be-
low zero (we give an example of such a use in Section 4.2).
It is not known how to simulate an NN-FD with a standard
FA in an efficient, fair, linearizable and lock-free manner,
even given other operations such as a CAS. Various meta-
operations can be used to implement atomic operations, such
as the load-linked store-conditional (LL-SC) instructions or
transactional memory. These, however, have their own prob-
lems especially under high contention. Most implementa-
tions do not support fair access, many implementations do
not guarantee any progress, and none permit combining.

Recently Fang et al. [4] have proposed what they refer to
as active memory operations (AMOs). The idea is to en-
code small programs that operate on memory and to spec-
ify a program with a memory request. The code is then
executed at the memory controller. Based on detailed sim-
ulation they show that compared to using LL-SC, AMOs
can greatly speed up certain tasks. The authors consider
both atomic transactions on a single block and streaming
operations across a strided vector within a single memory
controller. Here we are just interested in the memory-block
transactions (MBTs). In addition to allowing for the stan-
dard set of operations (e.g., CAS, TS, FA), MBTs can be
used to define others—such as an NN-FD. MBTs certainly
do not solve all concurrency problems—in particular those
involving multiple dispersed blocks of memory—but they do,
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in principal, allow for an arbitrary atomic update on a single
memory block. MBTs, however, do not combine and there-
fore still sequentialize access to highly-contended memory
locations.

In this paper we formalize MBTs and extend them to sup-
port combining using the notion of combinable memory-block
transactions. As with the combining suggested for the Ul-
tracomputer [8, 16], the idea is that requests for the same
location can be combined in the network before reaching the
memory itself. In fact they could be combined at various
levels in the memory hierarchy. For example in a two-level
hierarchical cache coherence scheme [20], combining might
be applied between the two levels to combine requests from
the same lower level node to the next level. A combinable
MBT specifies two functions that are executed in the mem-
ory system, one that is used for combining and a second that
is used for applying the combined request at the memory.
Being able to specify the combining code enables a much
broader set of operations than the standard set.

We show how MBTs can be used to design simple and
efficient implementations of a variety of protocols and algo-
rithms, including a priority write, a semaphore with a non-
blocking P operation, a bounded queue, and a timestamp-
based transactional memory system (details in Section 4).
In all cases the protocols use MBTs that are different from
the standard set to gain some advantage. All the MBTs used
are combinable. We define a notion of bounded contention
within our framework, and show that all our protocols have
bounded contention under arbitrary loads. We note that
many of these protocols are interesting and possibly of util-
ity even in their non-combinable form.

In the remainder of the paper, we begin in Section 2 by
formalizing MBTs. Section 3 presents combinable MBTs.
Section 4 presents our example protocols and algorithms.
Section 5 highlights related work. Finally, Section 6 dis-
cusses implementation issues.

2. MEMORY-BLOCK TRANSACTIONS
We assume memory consists of a sequence of words in-

dexed by integer locations. A memory block is a constant
number of consecutive words in memory. In practice a block
should be contained in a single cache line (in this paper the
largest block we use has four words). A memory-block trans-
action (MBT) specifies a memory block b, an input i ∈ I,
and a transition function φ : S × I → S × O, where S is
the set of states that the memory block can have, and O is
a set of possible outputs. The effect of the transaction is
to apply φ to i and the state of the memory block, update
the block with the new state and return the output to the
processor requesting the MBT. We assume each transaction
x is invoked at some time tx and responds with the output
at some later time t′x. We allow for a processor to have mul-
tiple outstanding transactions. An invoked transaction (or
operation) x is completed at time t if t′x ≤ t; otherwise, it is
pending.

We assume that memory-block transactions are lineariz-
able [10] and will also show linearizability for the protocols
and algorithms we define. Linearizability effectively means
that each operation must act like it happens atomically some
time between its invocation and the response. More for-
mally, a history H is a set of operations (or transactions)
each with an invoke time t and, unless it is pending, a re-
sponse time t′. The operations can come from the same or

stype = itype = otype = int

atomic int FA(int *l, int a) {
int v = *l;
*l = *l + a;
return v; }

stype = itype = otype = ptype = int

atomic int CASv(int v, int *l, int vn) {
if (*l == v) {

*l = vn;
return 1; }

else return 0; }

Figure 1: MBTs for fetch-and-add (FA) and param-
eterized compare-and-swap (CASv).

different processors. Consider the partial order on H defined
as o1 <H o2 iff t′o1 < to2 (o1 responds before o2 is invoked).
The history H is linearizable if there is some subset H′ of
H and some total order on H′ such that (1) H′ contains all
completed operations in H and possibly some pending ones,
and (2) the total order is consistent with both the partial
order <H and the sequential semantics of the operations.1

When there are no pending operations, H′ = H. We say
that an implementation, algorithm, or protocol is lineariz-
able if all the histories it can generate are linearizable. We
say that two operations or transactions are concurrent if
they are not ordered by <H.

In this paper we define the transition functions φ in C
code using an interface of the form:

atomic otype phi(stype *, itype)

where stype is the type for the state (S), itype is the type
for the input (I), and otype is the type of the output (O).
(An additional argument type, ptype, is defined below.)

For reasons that will become clear when we define combin-
able memory-block transactions, we will sometimes param-
eterize (curry) the transition function. We define a class
of transition functions as {φv : v ∈ V } where V is the
set of possible values for one of the inputs of the opera-
tion. For example, consider a compare-and-swap operation
CAS(l, v, v′), which takes a pointer to a memory location
l and if v = ∗l, swaps v′ into l returning 1, and other-
wise returns 0. We parameterize this based on v, giving a
set of functions CASv(l, v′), each of which we refer to as a
single-valued CASv. When parameterizing in sample code
we include the parameter as an argument (of type ptype)
and underline it. Figure 1 gives examples of the definitions
of integer FA and CAS using this notation. In both these
cases all the types are the same.

3. COMBINABLE MBTS
We now consider conditions under which an MBT is com-

binable. We partition the transition function φ into four
functions e, f, g and h, where f and g are sent to the mem-
ory system and e and h can be executed at the processor
requesting the MBT. We first partition the transition func-
tion φ into functions φ′ : S×I → S, and h : S×I → O—i.e.,

1This is slightly different from the Herlihy and Wing defini-
tion [10] in that we allow interleaving of transactions within
a processor and therefore drop the assumption of a total
order within each processor.
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Figure 2: Combining on a tree using e, f , g, and
h. This example tree has three internal nodes, rep-
resented as rectangles, and four leaves. In general,
any subset of the processors might be involved in
the combining and the tree need not be balanced.

one that computes the next state and one that computes the
output. We say the transition function φ is combinable if for
some set I ′ there are functions e : I → I ′, f : S × I ′ → S
and g : I ′ × I ′ → I ′ such that:

projection. ∀s ∈ S, i ∈ I : f(s, e(i)) = φ′(s, i),

combining. ∀s ∈ S, i1, i2 ∈ I ′ :
f(f(s, i1), i2) = f(s, g(i1, i2)),

associativity. ∀i1, i2, i3 ∈ I ′ :
g(g(i1, i2), i3) = g(i1, g(i2, i3)), and

bounded size. |I ′| = |S|k, for some constant k.

With these definitions a set of transactions using a com-
mon φ can be combined in a tree as in Figure 2. The reason
for adding an additional type I ′ is that in some cases it is
necessary to do some transform on the input to make the
transition function combinable. In many cases, as we will
see, I = I ′. The bounded size condition ensures that the
values from I ′ that are passed up the combining tree are at
most a constant factor larger than the state. We note that
without this condition, or some other condition on space or
time, any state transition function is combinable—the func-
tion g could simply compose a list of inputs by concatenating
its inputs, and the function f could then apply φ′ across the
inputs.

A combinable memory-block transaction is a memory-block
transaction that uses a combinable transition function. A
processor’s request of an MBT with a memory block b, an
input i ∈ I, and a combinable transition function φ is pro-
cessed using the four functions e, f, g and h associated with
φ. Namely, the memory system is sent b, e(i), f and g.
It processes the request in conjunction with possibly other
concurrent requests, using some form of a combining tree,
as exemplified in Figure 2. Upon return of a state s from
the combining tree, the output of the request is computed
as h(s, i).

In many of the examples we will consider, S = I ′ and
f = g, so that only one function (f) needs to be sent to

the memory system. For example, for the well-known fetch-
and-ψ operations for an associative binary operation ψ [8]
we have S = I ′ and f = g = ψ. Furthermore, for the
fetch-and-ψ, e is the identity function and h is the identity
projection on the state (i.e., ∀s ∈ S, i ∈ I : h(s, i) = s).

Whether transactions combine or not, we refer to the point
in time at which the function f is applied to the memory
block as the commit time, and assume that all commits
happen atomically. We say that two block transactions are
compatible if their memory blocks and combinable transition
function φ are the same.

Theorem 1. Any history H of memory-block transactions
in which concurrent compatible transactions can combine us-
ing an arbitrary binary tree with e, f , g and h as defined is
linearizable.

Proof. Because commits for the function f at the mem-
ory happen atomically, we can group the transactions by
whether they combine and order the groups by the atomic
commit. We therefore consider each group of combining
transactions.

Consider a combining tree with combining function φ, and
the associated combining functions e, f , g and h. For every
internal node in the combining tree, define the left child to
be the child to which it outputs the state it received from
its parent (or the memory in case of the root of the tree)
without applying function f , and define the right child to
be the child to which it sends the state after applying the
function f . This definition imposes a natural left to right
ordering on the k ≥ 1 leaves of a tree, where each leaf is
an individual transaction. Label the leaves (transactions) in
that order from t1 to tk.

We will prove that the transactions are linearizable in this
ordering, i.e., that the following properties are true:

1. oj = h(sj−1, ij), where sj is defined inductively as
φ′(sj−1, ij), s0 being the initial memory state and ij
and oj the input and the output of transaction tj , and

2. the state of the memory after all the transactions are
committed is sk.

Claim 1: If the subtree rooted at node n contains leaves la
through lc, c ≥ a, the combined input ia:c forwarded by the
node n to its parent is such that f(sa−1, ia:c) = sc.
Proof by induction on the height of the node: The hy-
pothesis is clearly true of all leaves because by projection
f(sa−1, e(ia)) = φ′(sa−1, ia) = sa. Suppose the hypothesis
is true of both of the combined inputs ia:b and ib+1:c for-
warded by the left and right children of a node respectively,
where the left tree contains leaves up to lb. We then have,
inductively, f(sa−1, ia:b) = sb and f(sb, ib+1:c) = sc, which
gives f(f(sa−1, ia:b), ib+1:c) = sc. By the combining rule
we have f(sa−1, g(ia:b, ib+1:c)) = sc, and by associativity we
have have f(sa−1, ia:c) = sc. This claim proves property (2).
Claim 2: If tb is the leaf with the least index in the subtree
of a node n, then the state returned to the node n by its
parent (or by the memory in case of the root) is sb−1.
Proof by induction on the depth of the node: The hypothesis
is clearly true of the root. If a node n is the left child of
its parent, then it receives the same state that its parent
received and the transaction with the least index is the same
for both, which makes the claim valid. If n is the right
child of its parent, consider its left sibling n′. Let ta be
the transaction of the lowest index in the subtree rooted at

25



int FA_f(int s, int a) {return s + a;}

int CASv_f(int v, int s, int vn) {
return (v == s) ? vn : s; }

int CASv_h(int v, int s, int vn) {
return (v == s) ? 1 : 0; }

Figure 3: Combining functions for FA and CASv.

n′. Then the parent of n received state sa−1. Therefore n
receives state f(sa−1, ia:b−1) = sb−1 by claim 1.

We can now prove property (1) by induction on the index
of the transaction using the second claim: property (1) is
clearly true of t1, as it receives h(s0, i1) by claim 2. Suppose
the property is true of tj for some j, 1 ≤ j < k. Let n be
the lowest common ancestor of tj and tj+1, and let nL, nR

be the left and right children of node n. tj is the transac-
tion with the highest index in the subtree rooted at node
nL. Therefore, by claim 2, nR receives state sj . Because
all ancestors of tj+1 below nR are the left children of their
parents, it receives the same state as nR and therefore has
output h(sj , ij+1).

In this paper we define the functions e, f, g and h associ-
ated with φ in C code using an interface of the form:

iitype phi_e(itype)

stype phi_f(stype, iitype)

iitype phi_g(iitype, iitype)

otype phi_h(stype, itype)

where iitype is the extended input type (I ′). When we omit
either the phi_e function or the phi_h function it means it is
the identity function (for h it is the identity projection on the
state). When we omit the phi_g function it is the same as
the phi_f function (and S = I ′). In cases in which the com-
bining function is parameterized based on some value, we
add the type ptype as the first argument to these functions,
if it is needed. Figure 3 defines the required functions for the
FA and CASv as defined in Figure 1. For both FA and CASv

iitype matches the other types (int). As an example, here
we show that these are indeed the correct combining func-
tions for CASv. We note that when the CASv operations
combine in a tree the leftmost request with a value (vn) not
equal to v is the one that swaps with memory (if memory
contains v).

Theorem 2. The CASv operations are combinable with
the functions specified in Figure 3.

Proof. We need to show the four properties: projection,
combining, associativity and bounded size. We have

f(a, b) = g(a, b) =


b a = v
a otherwise .

We then have:

combining. f(f(s0, v1), v2) = f(s0, g(v1, v2))

associativity. g(g(v1, v2), v3) = g(v1, g(v2, v3))

which both follow from the associativity of f (and g). Pro-
jection is trivial since e is the identity and bounded size is
true since all values are of type int.

We note that although the CASv is combinable, the stan-
dard multi-valued CAS is not. The problem is that all values
that need to be compared must be passed on, because the
combining function g cannot know which one might match
the memory value. This violates the bounded size condition.
Many algorithms from the literature use a multi-value CAS
and therefore cannot take advantage of combining. Thus
for combining, one seeks opportunities to replace CAS with
a CASv or other combinable MBT (e.g., see Section 4.1).
Note that the combinable CASv is sufficient for the wait-
free consensus protocol and hence is universal for wait-free
simulation [9].

Cost Model. For correctness we will assume that any in-
struction can take an arbitrary finite amount of time, and
we require that all code is correct under this assumption.
For an MBT x the time taken is t′x − tx. We refer to the
maximum time taken by any instruction as τ and analyze
algorithms and protocols in terms of τ . We assume at any
time there could be a mixture of types of transactions be-
ing applied to any memory location, some that combine and
some that do not. Given high contention and no combining,
τ could be large because the current accesses to a location
would be serialized. One way to address this is to account
for contention in the cost model apart from τ [3, 6]. Here,
instead, we will define a notion of bounded contention, and
will only consider protocols that have bounded contention.

We say that two transactions contend if their blocks over-
lap but they are not compatible. Consider a transaction
history H and let Hl,t ⊂ H be all transactions x that in-
volve location l and are active at time t (i.e., tx ≤ t ≤ t′x).
The contention for a location l and a time t is the number
of equivalence classes in Hl,t based on compatibility. A pro-
tocol or algorithm has bounded contention if, for all possible
histories with any number of processors, the maximum con-
tention at any location and time is bounded by some fixed
constant.

4. EXAMPLES
We now consider several examples of protocols and algo-

rithms that can be implemented using MBTs. All the MBTs
we use are combinable. For each we prove various bounds
that in some way improve over the known bounds for the
problem considered.

4.1 Priority Write
Our first example is a priority write that succeeds in writ-

ing a value dependent on a priority. A prioritized value of
type t is a pair consisting of a priority and a value of type t.
A priority write with prioritized value (p, v) will overwrite
a prioritized value (p′, v′) in memory if p > p′. It returns 1
if the write succeeds and 0 otherwise. Figure 4 defines the
priority write using a MBT on a structure pval consisting
of an integer priority pr and pointer value v. It also defines
the f and h functions for the combinable form. It is easy
to see that these functions satisfy the required projection,
combining, associativity, and bounded size properties. Note
that in these and other code segments throughout this pa-
per, struct types are assigned and returned as a unit, e.g.,
*p = a indicates that both fields of a are copied into the
struct referenced by p.

A priority write can be particularly useful when many pro-
cessors are writing to the same location in parallel and the
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struct pval {int pr; void* v};

atomic int pWrite(pval *p, pval a) {
if (a.pr > p->pr) {

*p = a;
return 1; }

else return 0; }

(a)

pval pWrite_f(pval a, pval b) {
return (b.pr > a.pr) ? b : a; }

int pWrite_h(pval a, pval b) {
return (b.pr > a.pr) ? 1 : 0; }

(b)

Figure 4: Priority write (pWrite) for pointer types
(void *): (a) the MBT, and (b) the f and h functions
for the combinable version.

user wants the value with the highest priority to win. There
are many applications in shared-memory algorithms [12].
For example in a minimum-spanning-tree algorithm each
vertex might want to determine its minimum adjoining edge
(the so-called Boru̇vka step). This can be implemented by
having each edge write to both endpoints using priority pr

= 0 − edge weight. Because the degree of a vertex could
be high, this can involve many writes to the same location.
In Section 4.4 we use a priority write to support concurrent
writes in our transactional memory (TM) system. The idea
is that each TM transaction has a timestamp and serializ-
ability is guaranteed by using priority writes to have the TM
transaction with the latest timestamp succeed in writing.

Here we consider how a priority write can be used to re-
place a “versioned” CAS [11]—a two word CAS that over-
writes the current value and increments the version if neither
has changed since the last read. Such a versioned CAS is
often used to avoid the so-called ABA problem [11] in which
a value changes and changes back. Because the version con-
tinuously increases, the CAS will recognize that the value
has been written even when it returns to an old value. A
versioned CAS can be implemented with a double-word CAS
with the version in one word and the value in the other. The
problem with the CAS used in this context is that we can-
not use the combinable CASv. Moreover, there can be many
processors each with a different version writing to the same
location so the contention is not bounded. By replacing the
CAS with a priority write, we can bound the contention.

We present an example of replacing a versioned CAS with
a priority write in the context of Treiber’s well-known lock-
free memory-allocation scheme [29]. Treiber’s algorithm al-
locates and frees nodes by keeping them in a free list—an
allocation removes an element from the front of the list and
a free returns the element to the front. Allocating and free-
ing both involve reading from the head of the list and writ-
ing back a modified version. To ensure the operations are
atomic, Treiber’s implementation uses a versioned CAS so
that the new value is written into the head only if it has not
changed since it was read.

In our variant we replace the CAS with a priority write.
The code for alloc and free is shown in Figure 5. The head
of the list is stored in the variable head, which stores a pri-
ority (version) and a pointer to the head. The priority keeps
a version number that is incremented by one every time the
head is written. As with a CAS the priority write will suc-

struct node {void *val; node *next;};

pval head;

node *alloc() { /* pop */
do {

pval x = head;
node *n = x.v;
x.pr = x.pr + 1;
x.v = n->next;

} while (!pWrite(&head,x));
return n; }

void free(node *n) { /* push */
do {

pval x = head;
n->next = x.v;
x.pr = x.pr + 1;
x.v = n;

} while (!pWrite(&head,x)); }

Figure 5: Variant of Treiber’s linearizable stacks for
lock-free memory allocation, using priority write in-
stead of CAS.

ceed only if no other user has written the head since the
head was read. Unlike the CAS, however, the priority write
can be combined since all we care about is the maximum
version being written. Using the CAS forces the system to
send all the versions to the memory even though only the
latest version could possibly succeed.

In addition to using a priority write, the implementation
in Figure 5 uses a concurrent read of the head. Concurrent
read is a trivial combinable MBT.

We note that, as with Treiber’s algorithm, the solution
suffers the problem that if the version numbers overflow then
the algorithm fails. For 64-bit integers, over 1019 updates
would be required to overflow the counter. This can be
relatively easily fixed at the cost of giving up the lock-free
property in the rare cases that the version overflows—access
can be blocked until all current operations complete and
then the version can be reset to 0.

Theorem 3. The implementation of alloc and free of
Figure 5 has the following properties assuming unbounded
priorities:

1. it is linearizable,

2. it is lock-free,

3. it has bounded contention, and

4. if some user is executing an alloc or free then some
user will finish within O(τ) time.

Proof. Note that the alloc and free operations will
complete only after their pWrite succeeds. As noted above,
a pWrite succeeds only if no other operation has updated the
head in the time interval between the read and the pWrite.
Moreover, the head is updated only by a successful pWrite.
Consider a history H at some time t. The order of the suc-
cessful pWrite transactions specifies a proper linearization
order among the associated alloc and free operations in
H. The linearization order includes all completed operations
in H and is consistent with both <H and the sequential se-
mantics of the operations. Because the combining functions
for pWrite (and for concurrent read) satisfy the projection,
combining, associativity, and bounded size properties, prop-
erty (1) follows from Theorem 1.
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Properties (2) and (4) follow from the observation that
the pWrite fails on two consecutive loop iterations only if
another alloc or free operation succeeds in the meantime.
Finally, property (3) follows from the observation that the
implementation has only a constant number of distinct com-
binable operations on the shared variables.

4.2 Semaphores
The second example we consider is an implementation

of Dijkstra’s (counting) semaphores. The example demon-
strates how a modified version of fetch-and-decrement that
does not decrement below zero (NN-FD) can be used to
implement a simple non-blocking version of the P opera-
tion. This seems hard without this variant of fetch-and-add.
With semaphores the P (S) and V (S) operations are used
to share a limited resource: the P (S) operation is used to
enter the critical section for semaphore S and V (S) to exit
it. We assume that a user exits the critical section before
trying to enter it again. If a semaphore S is initialized to
k then up to k users can be in the critical region simulta-
neously, but no more. The P (S) operation blocks when the
semaphore is full. Gottlieb et al. [8] describe the following
elegant implementation of the P (S) and V (S) operations
using fetch-and-add operations:

void P(int S) {
while (1) {

if (S > 0)
if (FA(S,-1) > 0) return;
else FA(S,1); } }

void V(int S) { FA(S,1); }

The implementation allows concurrent access to S and
has bounded contention. It is sometimes, however, useful to
also support a non-blocking tryP (S) operation that enters
and returns 1 if the semaphore is not full, but otherwise re-
turns 0 immediately. Gottlieb et al. did not consider such an
operation, but one might try the following implementation.

int tryP(int S) {
if (S > 0)

if (FA(S,-1) > 0) return 1;
else FA(S,1);

return 0; }

Unfortunately this implementation is not linearizable. In
particular the following sequences by two users with S =
1 initially can lead to the last tryP () by each user failing
(returning 0).

U1 U2
tryP(S) tryP(S)

V(S)
tryP(S)

Such behavior does not correspond to any sequential in-
terleaving of the operations. The problem arises when the
FA(S,-1) of the first tryP on U2 occurs between the S > 0

test and the FA(S,-1) of the tryP on U1. This can cause
U1 to temporarily decrease S to −1 even though it will later
readjust it back up (via its FA(S,1)) and return failure. This
temporary decrease will cause the second tryP on U2 to fail
under the following scenario: If both the V and the tryP
on U2 complete prior to the readjustment by U1, then the
V sets S to 0 and the S > 0 test fails for the tryP on U2.
We see no easy way to fix this with a fetch-and-add, or even
also using a CAS if we want to maintain concurrent access.

atomic int NNFD(int *p) {
int v = *p;
*p = (v > 0) ? v-1 : 0;
return v; }

(a)

int NNFD_e() {return 1;}

int NNFD_f(int S, int a) {
return max(S-a,0);}

int NNFD_g(int a, int b) {
return a + b;}

(b)

Figure 6: NNFD decrements its argument, but not
past zero: (a) the memory-block transaction, and
(b) the definition of e, f and g for the combinable
version (h is the identity projection on state).

This problem can easily be fixed using an NN-FD. An
MBT for such an operation is defined in Figure 6, along with
the associated functions for the combinable version. Note
that the e function makes explicit the implicit decrement
amount (i.e., 1). One can readily show that e, f , g, and h
satisfy the projection, combining, associativity, and bounded
size properties.

Based on this NN-FD the code for tryP can be written as:

int tryP(int S) {
if (NNFD(S) > 0) return 1;
else return 0; }

The P (S) operation can also be simplified to

int P(int S) {while (!NNFD(S));}

whereas the V (S) operation remains the same. As an aside,
note that the full generality of NN-FD is not required be-
cause we only test whether the value returned is zero or
greater than zero.

In the following theorem we say a user is in the criti-
cal region if the user has executed a P (S) (or a successful
tryP (S)) that has responded but the user has not since in-
voked a V (S).

Theorem 4. The NNFD implementation of P (S), V (S)
and tryP (S) with S initialized to k has the following prop-
erties:

1. it is linearizable,

2. it has bounded contention, and

3. V (S) and tryP (S) both respond in O(τ) time, and if
some user is waiting on P (S) and fewer than k users
are in the critical region then some P (S) or tryP (S)
will respond within O(τ) time.

Proof. Property (1): Consider a history H of P (S),
tryP (S) and V (S) operations. Let H′ be the subset of H
comprised of all P (S) operations with a successful NNFD(S),
all tryP (S) operations with a completed NNFD(S) (success-
ful or otherwise), and all V (S) operations with a completed
FA(S,1). Note that H′ contains all completed operations
and all operations that have updated S. H′ is lineariz-
able in the following order: order the P (S), tryP (S) and
V (S) operations based on the order in which their success-
ful NNFD(S), their completed NNFD(S), and their completed
FA(S,1), respectively, were applied at the memory. Among
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those operations in H′ that were applied at the memory si-
multaneously due to compatible combining, order them as
dictated by Theorem 1.

Property (2): The implementation has bounded contention
because it consists of only two distinct non-combinable op-
erations (FA and NN-FD) on the semaphore.

Property (3): The implementation maintains the invariant
that the value v of the semaphore S indicates the difference
between k and the number of users currently in the critical
section. If the number of such users is less than k, then S
has a non-zero value, which implies that some NNFD (invoked
by the waiting user or otherwise) will succeed immediately.
Thus some P (S) or tryP (S) will respond in O(τ) time.

4.3 FIFO Queue
Our next example is a linearizable bounded FIFO queue.

The example demonstrates a somewhat more sophisticated
example of atomically incrementing and checking for over-
flow/underflow to achieve a queue implementation with good
properties.

There has been a long history of concurrent algorithms
for the FIFO queue, some have turned out to be incorrect,
and most have some limitation. Perhaps the best known is
Michael and Scott’s algorithm [22]. It is lock-free but as-
sumes an unbounded queue and hence that infinite memory
has been allocated ahead of time. It also sequentializes ac-
cess to the queue. Gottlieb et al. [8] (GLR) describe an
array-based algorithm that supports bounded queues and
concurrent access using a FA. However, it is not lock-free
and more importantly it is not linearizable [2]. Blelloch et
al. [2] (BCG) describe a linearizable version that supports
bounded queues with O(τ) access time. It is based on room
synchronizations that separate enqueues and dequeues in
time. Thus, a user may need to wait until the next round
for its enqueue or dequeue and BCG is not lock-free.

The algorithm we describe here has the same properties
as the BCG queue but in the common case does not require
any waiting. It is based on a modified version of the GLR
queue. The problem with the GLR algorithm with respect
to linearizability is similar to the problem with semaphores
described in Section 4.2. In particular it uses a FA to keep
a current upper and lower bounds on the size of the queue.
When the queue overflows on an enqueue or is empty on
a dequeue, the FA temporarily sets the bounds to an in-
consistent value, restoring consistency only in a subsequent
step. This temporary state breaks linearizability. We see no
way of avoiding this problem using a standard FA operation
while allowing enqueues and dequeues to happen concur-
rently. The solution we present here is to atomically update
the top and bottom queue pointers while also checking for
under or overflow.

We use MBTs on a state consisting of three fields: the
bottom pointer (where dequeues are taken from), the top
pointer (where enqueues are added), and the queue size.
On this state we use two MBTs, an enqLoc that returns
the enqueue position or −1 if the queue overflows, and a
deqLoc that returns the dequeue position or −1 if the queue
is empty. If the queue overflows on an enqueue or is empty
on a dequeue then the state is left untouched. Figure 7
defines the state (qloc) and the MBTs. The locations con-
tinuously increase but are mapped into a bounded queue
of the specified size using modular arithmetic. Note that
q->bot ≤ q->top ≤ q->bot+q->size.

struct qloc {int bot; int top; int size};

atomic int enqLoc(qloc *q) {
int overflow = q->bot + q->size;
int top = q->top;
if (top >= overflow) return -1;
else {

q->top = top + 1;
return top; }}

atomic int deqLoc(qloc *q) {
int bot = q->bot;
if (bot >= q->top) return -1;
else {

q->bot = bot + 1;
return bot; } }

(a)

int enqLoc_e() { return 1; }

qloc enqLoc_f(qloc s, int cnt) {
qloc q = s;
q.top = min(q.bot + q.size,

q.top + cnt);
return q; }

int enqLoc_g(int a, int b) {return a + b;}

int enqLoc_h(qloc s) {
if (s.bot + s.size > s.top) return s.top;
else return -1; }

(b)

int deqLoc_e() { return 1; }

qloc deqLoc_f(qloc s, int cnt) {
qloc q = s;
q.bot = min(q.top,

q.bot + cnt);
return q; }

int deqLoc_g(int a, int b) {return a + b;}

int deqLoc_h(qloc s) {
if (s.top > s.bot) return s.bot;
else return -1; }

(c)

Figure 7: Atomic operations enqLoc and deqLoc for
getting the location for an enqueue or dequeue for a
FIFO Queue, while checking for underflow or over-
flow: (a) defines the MBTs, (b) and (c) define e, f, g,
and h for the combinable versions.

Using enqLoc and deqLoc a linearizable FIFO queue can
be implemented as shown in Figure 8. The queue wraps
around when it reaches the top. Although the algorithm is
not lock-free it has the property that in the common case
the enqueue and dequeue do not block. A block can only be
caused either when the dequeue or enqueue wraps around
(infrequent for large enough queue) or when the operation
has to wait for the location to fill or empty (unlikely if the
processors are working at the same speed especially if the
queue is not near full or empty). The block for wraparound
is caused by the first while loop and the block for fill or
empty by the second.

Theorem 5. enqLoc and deqLoc are combinable.

Proof. We detail the proof for enqLoc. The proof for
deqLoc is similar.

projection: The e function for enqLoc is the constant func-
tion 1. Both enqLoc_f on input 1 and enqLoc do the same

29



struct queue {qloc loc;
void *A[];
int enqDone;
int deqDone; }

int enqueue(queue *q, void *v) {
int s = (q->loc).size;
int i = enqLoc(q->loc);
if (i < 0) return 0;
else {

while (i/s > q->enqDone/s);
while(q->A[i%s] != NULL);
q->A[i%s] = v;
FA(q->enqDone,1);
return 1; } }

void *dequeue(queue *q) {
int s = (q->loc).size;
int i = deqLoc(q->loc);
if (i < 0) return NULL;
else {

while (i/s > q->deqDone/s);
while(q->A[i%s] == NULL);
void *result = q->A[i%s];
q->A[i%s] = NULL;
FA(q->deqDone,1);
return result; } }

Figure 8: Implementation of a linearizable bounded-
size FIFO Queue with O(τ) time access.

operation on the state: add 1 to top if the queue is not over-
flowing, i.e., if bot+size is smaller than top.

combining: f(s, g(i1, i2)) increases the value of top by the
minimum of (i1 + i2) and size-(top-bot). If i1 is smaller
than size-(top-bot) in s, then f(s, i1) increases top in s
by i1 and f(f(s, i1), i2) increases top in f(s, i1) by the min-
imum of i2 and size-(top-bot)-i1. If i1 is larger than
size-(top-bot) in s, then f(s, i1) increases top in s by
size-(top-bot) and f(f(s, i1), i2) keeps top in f(s, i1) un-
changed. Therefore, in both cases, f(f(s, i1), i2) increases
top in state s by the minimum of (i1+i2) and size-(top-bot),
which is what f(s, g(i1, i2)) does.

associativity: both g(g(i1, i2), i3) and g(i1, g(i2, i3)) yield
i1 + i2 + i3.

bounded size: |I ′| is the length of an integer which is
smaller than |S|.

Theorem 6. The implementation of a FIFO queue as de-
fined in Figure 8 with size s has the following properties:

1. it is linearizable,

2. it has bounded contention, and

3. all enqueue and dequeue operations with r concurrent
requests finish in O(dr/seτ) time.

Proof. Let <l be the linearized order of the enqLoc and
deqLoc calls made by the enqueue and dequeue operation.
Let Es (Ds) be the set of successful enqueues (dequeues),
i.e., those that do not overflow (underflow). We claim that
<l is a valid linearization for the enqueues and dequeues and
show this by arguing that under this ordering the following
properties of a queue hold:

Q1. An enqueue operation x succeeds iff
|{e <l x|e ∈ Es}| − |{d <l x|d ∈ Ds}| < s.

Q2. A dequeue operation x succeeds iff
|{e <l x|e ∈ Es}| > |{d <l x|d ∈ Ds}|.

Q3. The ith successful dequeue receives the value from the
ith successful enqueue.

In the implementation, only a successful enqueue (de-
queue) operation can increase the variable qloc->top (qloc
->bot) by 1, and this variable is not changed anywhere
else. Therefore, the difference (qloc->top - qloc->bot)

is exactly the difference between the number of prior suc-
cessful enqueue and dequeue operations. Thus, the check
(top>=overflow) in enqLoc ensures that property Q1 holds
(similar for property Q2).

Let i be the index returned by enqLoc or deqLoc in a
successful enqueue or dequeue. For a successful enqueue x
we have i = |{e <l x : e ∈ Es}| and similarly for dequeues
(same reason as above). All enqueues write into location i%s

and all dequeues read from location i%s. We say an enqueue
or dequeue is in round p if bi/sc = p.

Property Q3 holds if a dequeue operation in round p al-
ways reads the value written to A[i%s] by an enqueue in
round p. To ensure this, the implementation prevents en-
queues (dequeues) in round i+1 from writing (reading) until
all enqueues (dequeues) in round i have written (read). It
does this by keeping track of the number of completed en-
queue (dequeue) operations in the variable enqDone (deqDone)
and only incrementing it after the write (read). The check
(i/s > q->enqDone/s) then prevents an enqueue from writ-
ing until the previous round is all written (similarly for de-
queues). The check (q->A[i%s] != NULL) in the enqueue
ensures that the dequeue from round p − 1 at A[i%s] has
removed its value before writing a new value. Similarly the
check (q->A[i%s] == NULL) in the dequeue ensures that the
enqueue from round p has written its value before reading
the value. Thus, property Q3 holds.

Therefore, <l is a valid linearization, and by Theorems 5
and 1, the implementation is linearizable.

Bounded Contention. Bounded contention follows from
the fact that the implementation has only a constant number
of distinct combinable operations on the shared variables.

Run time. An enqueue operation either receives a positive
value i or the value −1 from enqLoc in O(τ) time. If it re-
ceives −1, the enqueue function returns and thus completes
in O(τ) time. If not, the difference between i and the cur-
rent value of enqDone is at most r, and therefore, it has to
wait for at most dr/se rounds before it can enter the value
into the array and return.
Claim: After all the enqueue operations from round p are
done, all the waiting enqueue operations from round p + 1
complete in O(τ) time.

To show this, note that the atomic operations ensure that
an enqueue operation is assigned round p + 1 and array lo-
cation j only if some dequeue operation has already been
assigned round p and array location j (otherwise the en-
queue operation would have failed). This dequeue cannot
be blocked, because (1) all dequeues in round p − 1 (if
p > 0) must be done otherwise the enqueues in p could not
be done, and (2) the corresponding enqueue in round p is
done. Therefore the dequeue will complete in time O(τ) and
the waiting enqueue in round p+ 1 will complete in O(τ).

From the fact that any operation has to wait for at most
dr/se rounds and that each round takes O(τ) time, it fol-
lows that any enqueue finishes in O(dr/seτ) time. This can
correspondingly be shown for dequeues.
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typedef int tstamp;

struct pval {tstamp pr; void* v};

struct loc {
tstamp readT;
tstamp writeT;
int writeCnt;
void *v};

atomic void *readLoc(loc *s, tstamp t) {
if (s->writeT <= t && s->writeCnt == 0) {

s->readT = max(t,s->readT);
return s->v:

} else return NULL; }

atomic int writeReserve(loc *s, tstamp t) {
s->writeCnt++;
if (s->readT <= t) {

return 1;
} else return 0; }

atomic void writeCommit(loc *s, pval a) {
s->writeCnt--;
if (a.pr > s->writeT) {

s->writeT = a.pr;
s->v = a.v; } }

atomic void writeRelease(loc *s) {
s->writeCnt--; }

Figure 9: Read and Write operations for Transac-
tional Memory.

4.4 Transactional Memory
Our next example is a scheme and set of operations for

supporting software transactional memory (STM) [26]. The
scheme is based on concurrency control using single-version
timestamp ordering [25, 1]. Every transaction is given a
unique timestamp when it starts (easily implemented with
a FA), and each transactional memory location stores a pair
of timestamps, corresponding to the latest user transac-
tions that read and that wrote the location. Our imple-
mentation uses MBTs to avoid the need for locks to update
timestamps—they are updated atomically on a user read
and write. The scheme is meant as an example of the use of
MBTs and not as a complete design of a viable STM system.

In addition to allowing concurrent reads and concurrent
writes to the same location, the scheme we describe requires
only a single access to memory for each read and guarantees
all reads seen by a transaction form a valid snapshot of the
state. Many optimistic concurrency schemes do not guaran-
tee a valid snapshot unless they re-check all previous reads
on every read [18].

The MBTs we use are shown in Figure 9. Mutable shared
values used in transactions are stored in a loc structure.
Each write is partitioned into a reserve and a commit phase,
similar to a two-phase lock. The protocol for a transaction
works as follows:

1. Acquire a timestamp.

2. Execute user transaction code using readLoc for reads
and locally buffering all writes. If any readLoc fails,
abort the transaction.

3. Use writeReserve to reserve all buffered writes. If any
writeReserve fails, release all reserved locations using
writeRelease and abort the transaction.

4. Use writeCommit to commit all buffered writes.

loc readLoc_f(loc s, tstamp t) {
if (s.writeT <= t && s.writeCnt == 0)

s.readT = max(t,s.readT);
return s; }

tstamp readLoc_g(tstamp a, tstamp b) {
return max(a,b);}

void *readLoc_h(loc s, tstamp t) {
if (s.writeT <= t && s.writeCnt == 0)

return s.v;
else return NULL; }

Figure 10: Combining functions for readLoc.

int writeReserve_e (tstamp t) {
return 1; }

loc writeReserve_f (loc s, int n) {
s.writeCnt += n; return s; }

int writeReserve_g (int a, int b) {
return a+b; }

int writeReserve_h (loc s, tstamp t) {
if (s.readT <= t)

return 1;
else return 0; }

Figure 11: Combining functions for writeReserve.

Aborting a transaction will cause it to retry and acquire
a new timestamp. We say that a user read or write is at
time t if it is part of a user transaction with timestamp t.
Within each loc the readT (writeT) field indicates the lat-
est time the location was read (written, respectively). The
writeCnt indicates the number of transactions that have at-
tempted to reserve a location but have not yet released or
committed a write to it. A read at time t will fail iff ei-
ther the latest write to that location happened after t, or
the location has been attempted for write reservation and
has not yet been released (writeCnt > 0). A write at time
t will fail iff the latest read to the location happened after
t. The writeCommit uses a priority write to allow concur-
rent writes based on the Thomas write rule [28, 1]—a write
will be ignored if it happens before the current version. In
the readLoc code we assume a failed memory read is indi-
cated by returning a NULL pointer. Alternatively this can
be implemented using an exception mechanism.

One will note that four words is a lot to store just one
word of user data. We imagine, however, locs would be
used to store pointers to user objects. Also the two times-
tamps could be short words (e.g. 4 bytes) and the writeCnt

is needed solely to support concurrent writes. Therefore if
concurrent writes are not necessary, a loc could be stored
in 16 bytes (8 bytes for data, and 8 bytes for the two times-
tamps). As with using priority writes with versioning, the
timestamps can overflow. This can be handled by blocking
transactions that would overflow the timestamp, waiting for
all existing transactions to complete, and then traversing
memory to reset all timestamps to zero.

We say two transactions conflict if they overlap in time
and reference the same variable. As with standard usage,
these can be read-read, read-write, or write-write conflicts.

Theorem 7. The described implementation of user trans-
actions has the following properties:

1. only a read-write conflict can cause an abort,
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struct mpval {tstamp pr; void* v; int cnt;};

mpval writeCommit_e (pval a) {
mpval ret;
ret.pr = a.pr; ret.v = a.v; ret.cnt = 1;
return ret; }

loc writeCommit_f (loc s, mpval a) {
s.writeCnt -= a.cnt;
if (a.pr > s.writeT) {

s.writeT = a.pr; s.v = a.v; }
return s; }

mpval writeCommit_g (mpval a, mpval b) {
mpval c;
if (a.pr >= b.pr) {

c.pr = a.pr; c.v = a.v; c.cnt = a.cnt+b.cnt;
} else {

c.pr = b.pr; c.v = b.v; c.cnt = a.cnt+b.cnt; }
return c; }

Figure 12: Combining functions for writeCommit.

int writeRelease_e () { return 1; }

loc writeRelease_f (loc s, int a) {
s.writeCnt -= a; return s; }

int writeRelease_g (int a, int b) {
return a+b; }

Figure 13: Combining functions for writeRelease.

2. successful transactions are serializable based on the time-
stamps they are allocated,

3. all reads seen by a transaction are consistent with some
point in the serialized state, and

4. the protocol has bounded contention.

Proof. First note that the e, f, g and h functions de-
scribed above for readLoc, writeReserve, writeCommit and
writeRelease satisfy the projection, combining, associativ-
ity and bounded size properties making these functions com-
binable. We include the proof that readLoc satisfies the four
properties:
projection: This property follows from the fact that func-
tion e for readLoc is the identity function and that readLoc
and readLoc_f are identical except for the part of readLoc
that returns a value.
combining: The only part of the state that readLoc can al-
ter is readT. f(s, g(i1, i2)) replaces s.readT with the greater
of s.readT and the two inputs (timestamps) if the condition
c ≡ (s.writeT <= t && s.writeCnt==0) is true for state
s on either of the inputs. f when applied to s with input i1
attempts to replace s.readT only if condition c holds. Be-
cause the truth value of condition c for state s with input
i2 does not change upon the application of f to s, s.readT
is replaced in f(f(s, i1), i2) only if condition c is satisfied by
state s either on input i1 or i2. Thus, in both f(f(s, i1), i2))
and f(s, g(i1, i2)), readT is replaced under the same condi-
tions. In case s.readT is replaced in f(f(s, i1), i2), only the
maximum among the two inputs would finally appear for
the value of s.readT, which makes the replacement identi-
cal with that of f(s, g(i1, i2)).
associativity: Both g(g(i1, i2), i3) and g(i1, g(i2, i3)) return
the maximum integer among i1, i2 and i3 in this case.
bounded size: |I ′| is smaller than |S|.

We now prove properties (1)–(4) in turn.

Property (1): An abort is caused only when either (i) a
writeReserve operation encounters a read timestamp set
ahead of its timestamp, or (ii) a readLoc encounters an at-
tempt to write in the form of writeReserve whose corre-
sponding writeCommit or writeRelease has not yet been
called. These cases occur only when there is a read-write
conflict.

Property (2): First note that a block of memory is writ-
ten to only by a successful user transaction. Because only
successful user transactions can change the contents of user
memory, it is safe to ignore any attempts made by unsuc-
cessful transactions at writing to a memory block. The fact
that successful transactions are serializable in the order of
their timestamps follows from this claim:

Claim: A successful readLoc request invoked by a user
transaction T with timestamp t to a memory block B returns
either (i) the value written to B by the successful transac-
tion T ′ with the highest timestamp t′ ≤ t that writes to B, if
such a transaction exists, or (ii) the initial state of memory
block B, otherwise.

Case (i): When transaction T reads from B, it reads the
value written to B (using a s.v = a.v step) by the lat-
est combined group of writeCommit operations that wrote a
value into B before T attempted a read. We want to show
that the writeCommit request of transaction T ′ was grouped
into the last such group and that T ′ has the largest times-
tamp among all transactions in that group. Suppose that
this were not the case. Then either (a) a different group
of writeCommit operations with highest timestamp ta (cor-
responding to transaction TA) has written to B after T ′

and before T reads B, (b) T ′ performed writeCommit after
T ’s read request, or (c) the writeCommit request of T ′ was
combined along with the last group of writeCommits that
wrote to B before T ’s readLoc invocation reached memory,
but another transaction TC with timestamp tc > t had its
writeCommit request combined along with that of T ′. If
(a) had occurred, then in order for Ta to have written to
memory, ta > t′ (because of the check a.pr > s.writeT).
Also, since T has performed a successful read operation af-
ter Ta has committed a write, ta ≤ t (because of the check
s.writeT <= t). This violates the assumption that T ′ is
the transaction with the highest timestamp t′ ≤ t that has
written to B, thus ruling out possibility (a). Now consider
(b): if the writeReserve request of T ′ reached memory be-
fore readLoc request of T , then T would have aborted (be-
cause of the check s.writeCnt==0). On the other hand, if
writeReserve request of T ′ reached memory after readLoc

request of T , then the reserve writeRequest would have
failed (because of the check s.readT<=t). This rules out
possibility (b). In order for T ’s readLoc to succeed in possi-
bility (c), tc ≤ t (because of the check s.writeT<=t). This
violates the assumption that T ′ is the transaction with the
highest timestamp t′ ≤ t that has written to B.

Case (ii): If there is no transaction with timestamp ≤ t that
writes to B, the only situation in which readLoc of T does
not return the initial state of memory location B is when
a transaction with timestamp t2 > t has written to B be-
fore readLoc of B reached memory. But in such a situation,
transaction T would abort as its readLoc fails.

Property (3): All reads are consistent with the serializ-
able state determined by the order of the transaction times-
tamps. To see this, note that the earlier claim is true of
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both successful and unsuccessful transactions. All success-
ful read requests of a transaction with timestamp t read off
values that were supposed to be in the requested memory
blocks at time t in the serialized state based on the order of
timestamps.

Property (4): Bounded contention follows from the fact
that the implementation has only a constant number of dis-
tinct combinable operations on the shared variables.

5. RELATED WORK
Our formalism for combinable memory-block transactions

is derived from a long history of previous work. The idea
of partitioning the transition function into the two parts f
and g to enable combining goes back at least to Kogge and
Stone’s work on solving recurrence equations in parallel [15].
A similar and elegant framework was also used by Kruskal,
Rudolph and Snir for defining combinable read-modify-write
operations [16]. The idea of combining in hardware also has
a long history. In addition to the already cited work on
the Ultracomputer other machines with some support for
atomic updates in the memory system include the IBM RP3
design [23] and the Connection Machine II [27] (combining
in the network), and the SGI Origin 2000 [19] and Cedar [17]
(atomic operations at the memory controller).

6. DISCUSSION
Although the emphasis of this paper is not on how to im-

plement MBTs, here we briefly describe three implementa-
tion issues: specification of transition functions, combining,
and interaction with cache coherence.

Transition functions. We have not discussed how the
functions φ, f and g might be sent along with an MBT. One
possibility is to define a compact coding scheme that enables
the actual code to be sent along with the request. We expect
that all functions given in this paper could be coded in one
8-byte word. Another solution is to download the functions
into the memory system and then specify a pointer to the
function as part of the memory request. This could reduce
the number of bits needed to send with the request but in-
troduces various other issues—how are functions protected
among domains; how are they distributed to every memory
module; or what happens when the program space runs out?
For these reasons the first approach seems more attractive
especially given that 8-bytes compared to the cache-line size
does not seem onerous.

Another issue with transition functions is what if the func-
tion takes too long or does not terminate? This might be
dealt with either by not allowing code with loops or by hav-
ing a time-limit. With a time-limit the memory would need
to be able return an exception.

Combining. Combining as suggested in the Ultracom-
puter [8, 16] was based on the idea that memory requests
for the same location would combine when they happen to
run into each other in a router queue within a switch in the
network. Only a single combined request is then forwarded
and the switch maintains the required state until the reply
from memory returns. This requires a comparator within a
switch that can detect when messages within a queue are
destined for the same destination. The advantage of such a
system is that it is exactly when requests start to get con-
gested and the queues back up that requests to the same

location meet in the switches and combine. This approach
was justified theoretically [14, 24] requiring only that either
the queues in each switch are maintained using a priority
order on the requests [14], or that requests are sent in a
priority order [24].

Modern architectures, however, are almost all designed
around a cache hierarchy and it is not clear how combining
might work in such an organization. We note without sys-
tematic justification that shared caches at each level of the
cache hierarchy might be an ideal place to combine requests.
Imagine, for example, a cache on a chip that is shared among
p processors and that there is bottleneck for memory re-
quests to get off the chip. This would likely require requests
to back up within the cache, ultimately stalling the proces-
sors. We note, however, that the cache maps requests for
the same memory location to the same cache line giving a
natural way to detect requests destined for the same loca-
tion and combine them. Furthermore the cache provides a
natural place to store the state required for a combined re-
quest while waiting for the response. If all processors are
updating the same variable pointing to the head of a queue,
for example, these requests could be combined in the cache
and only one request forwarded. This could be repeated at
the next level of the cache hierarchy.

Cache coherence. A concern with MBTs is how they
might interact with memory coherence schemes. One possi-
bility is to not cache lines that are involved in MBTs. This
can be done either (1) by separating the memory address
space and not caching some regions, as was done by the
SGI Origin 2000 [19] to support certain atomic operations
at the memory controller, or (2) by acquiring a coherent
copy of the cache line at the home memory controller before
applying the transaction there, as suggested in the AMO pa-
per [4]. Either approach integrates well with combining—in
the latter case the combined request would acquire the co-
herent copy. Both approaches work well when the location
has poor locality or heavy write sharing but not very well
under light-load where locality is important.

In the transactional memory scheme we describe, for ex-
ample, most reads and writes might never interact and hav-
ing all requests go to their home node could require excessive
latency. To avoid this one could allow processors (caches) to
take exclusive writable copies and then execute the MBT at
the cache, but it is not clear how this would be integrated
with combining. It seems, therefore, that the best solution is
to allow the MBT to be applied either at the home or at the
local cache depending on the load. For example, whenever
a combined request arrives, the home could acquire owner-
ship and execute the MBT. A timer might also be used to
detect the last request from a different location and only
allow taking an exclusive copy if sufficient time has passed.
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