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Speculative evaluation, including leniency and futures, is often used to produce high degrees of
parallelism. Understanding the performance characteristics of such evaluation, however, requires
having a detailed understanding of the implementation. For example, the particular implementa-
tion technique used to suspend and reactivate threads can have an asymptotic effect on perfor-
mance. With the goal of giving the users some understanding of performance without requiring
them to understand the implementation, we present a provable implementation bound for a lan-
guage based on speculative evaluation. The idea is (1) to supply the users with a semantics for a
language that defines abstract costs for measuring or analyzing the performance of computations,
(2) to supply the users with a mapping of these costs onto runtimes on various machine models,
and (3) to describe an implementation strategy of the language and prove that it meets these
mappings. For this purpose we consider a simple language based on speculative evaluation. For
every computation, the semantics of the language returns a directed acyclic graph (DAG) in which
each node represents a unit of computation, and each edge represents a dependence. We then
describe an implementation strategy of the language and show that any computation with w work
(the number of nodes in the DAG) and d depth (the length of the longest path in the DAG) will
run on a p-processor PRAM in O(w/p + dlogp) time. The bounds are work efficient (within a
constant factor of linear speedup) when there is sufficient parallelism, w/d > plogp. These are
the first time bounds we know of for languages with speculative evaluation. The main challenge
is in parallelizing the necessary queuing operations on suspended threads.
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1. INTRODUCTION

Futures, lenient languages, and several implementations of graph reduction for lazy
languages all use speculative evaluation (call-by-speculation [Hudak and Ander-
son 1987]) to expose parallelism. The basic idea of speculative evaluation, in this
context, is that the evaluation of a function body can start in parallel with the
evaluation of the corresponding function arguments. The evaluation of a variable
in the body is then blocked if it references an argument that is not yet available
and reactivated when the argument becomes available. With futures in languages
such as Multilisp [Halstead 1985; 1989; Osborne 1989] and MultiScheme [Miller
1987], the programmer explicitly states what should be evaluated in parallel using
the future annotation. In lenient languages, such as Id [Traub 1988; Nikhil 1991]
and pH [Nikhil et al. 1995], by default all subexpressions can evaluate specula-
tively. With parallel implementations of lazy graph reduction [Hudak and Mohr
1988; Peyton Jones 1989; Joy and Axford 1992] speculative evaluation is used to
overcome the inherent lack of parallelism of laziness [Kennaway 1994; Tremblay
and Gao 1995].

Although call-by-speculation is a powerful mechanism that can achieve high de-
grees of parallelism, it is often very difficult or impossible to predict its performance
characteristics without understanding details of the implementation. Requiring
such an understanding is not only a burden on the users, but is often hard to
specify, can be ill defined (nondeterministic timing changes can potentially cause
serious differences in performance), and is implementation dependent (a new release
might require changes in coding style or even algorithm design to generate efficient
code). Furthermore, the performance effects of an implementation can go beyond
constant factors, and potentially affect the running time asymptotically. For ex-
ample, code that appears parallel to the users and should improve asymptotically
with the number of processors could be fully serialized due to some obscure feature
of an implementation.

The question we would like to address is whether it is possible to supply a model
to users from which they can get at least some prediction of the performance of
their code without having to understand the particulars of the implementation being
used. For this purpose we use the idea of provably efficient implementations [Greiner
1997], which consist of

(1) defining an abstract cost model from which the users can analyze their code;

(2) specifying mappings from these costs to running times on various machine mod-
els; and

(3) describing an implementation that guarantees that these mappings can be
achieved.

The model and the mapping can be thought of as part of the language specification
(i.e., something that would be included in the manual). An implementation is
then considered correct if it is not only true to the semantics of the language
specification, but is also true to the performance guarantee. Needless to say, given
the many complicated features with hardware (e.g., caches and pipelines), trying to
derive exact predictions of performance from an abstract model would be futile even
for the simplest sequential languages. We therefore limit ourselves to guaranteeing
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Machine Model Time
Hypercube O(w/p + dlogp)
CRCW PRAM | O(w/p+ dlogp/loglogp)

Fig. 1. The mapping of work (w) and depth (d) in the Parallel Speculative A-calculus to running
time, with high probability, on various machine models with p processors. The results assume that
the number of independent variable names in a program is constant. We assume the hypercube can
communicate over all wires simultaneously (multiport version). A butterfly with plog, p switches
would have equivalent results as the hypercube.

asymptotic bounds. Although these asymptotic bounds cannot precisely predict
performance, they can, for example, tell the users how runtime will scale with
problem size or number of processors, and might be used by the users to guarantee
that there will not be anomalous effects that cause asymptotic slowdowns.

To define our cost model we use a profiling semantics, which is an operational
semantics augmented with information about costs [Rosendahl 1989; Sands 1990].
For every computation our semantics defines a directed acyclic graph (DAG), hence-
forth referred to as a computation graph, in which each node represents a single
operation, and each edge represents either a data or control dependence between
two operations. The computation graph can be thought of as an abstract trace of
the computation and is independent of the implementation. The number of nodes
in the DAG corresponding to a computation is referred to as the work of that com-
putation, and the longest path is referred to as the depth. In the model, users can
determine the work and depth of computations either analytically by calculating
asymptotic bounds, or experimentally by having an implementation track the work
and depth. The cost mappings we provide then relate the work and depth costs to
running time on various machine models. This relationship is specified in terms of
asymptotic bounds (see Figure[ll) and includes all costs of the computation, except
for garbage collection. With sufficient parallelism (i.e., when the first term domi-
nates) these bounds are work efficient—the machine does no more than a constant
factor more work (processor X time) than required.

We use queues to maintain the threads that are blocked on each variable, and
to achieve our bounds we present the first implementation strategy that fully par-
allelizes these queues allowing threads both to be enqueued when blocked and de-
queued when reactivated in parallel. Our solution is based on using a dynamically
growing array for each queue. The basic idea is to start with an array of fixed
size. When the array overflows, we move the elements to a new array of twice the
number of elements in the queue. Adding to the array, growing of the array, and
dequeuing from the array can all be implemented in parallel using a fetch-and-add
operation [Gottlieb et al. 1983; Ranade 1989]. To account for the cost of growing
the array, we amortize it against the cost of originally inserting into the queue.
Once the queues are parallelized, we use known scheduling results [Blumofe and
Leiserson 1993] to achieve our overall time bounds.

The idea of including a cost model in a language definition, along with a proof of
a mapping of that model to runtimes on parallel machines, was introduced in the
NESL language [Blelloch 1992], and used in the Cilk [Blumofe et al. 1995] language.
The original approach taken in NESL was somewhat informal, however, in that it
did not have a well-specified profiling semantics. This lead to some ambiguities in
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the definition having to do with the cost of passing in large arguments (nonconstant
size) to a parallel call. The risk of such ambiguities lead us to the conclusion that
it is important to formalize the cost model in the semantics. Although one might
find the level of detail we go through in this article unnecessary, we believe it is
quite important in getting both the model and mappings correct. We have found
several subtle ambiguities and problems in the process, one of which we describe
briefly in the second example below. In addition to this article, we have used the
approach of provably efficient implementations based on a profiling semantics to
model call-by-value parallelism [Blelloch and Greiner 1995], and to more formally
model NESL including space usage [Blelloch and Greiner 1996].

1.1 Motivating Examples

As an example of how an implementation can have asymptotic effects on perfor-
mance, consider the following pseudocode:

y = future(exp)
in parallel for i =1 to n
ali]l = b[i] + ¥y

which adds the result of expression exp to each element of b. The future allows
the n threads from the parallel for-loop to start up while ezp is still evaluating. If
exp requires more time to compute than the time to fork the n threads, then these
threads will need to block waiting for y. One possibility is to have the threads spin
and keep checking if y is ready yet. Such spin waiting can be very ineflicient, since
the processor will be tied up doing no useful work. In fact, without having a fair
schedule it can cause deadlock, since the thread that is computing y might never
be scheduled. To avoid these problems most implementations will suspend a thread
that reads a variable that is not ready by adding it to a queue associated with the
variable [Miller 1987; Ito and Matsui 1989; Osborne 1989; Chandra et al. 1990;
Kranz et al. 1989; Goldman and Gabriel 1988; Nikhil 1990; Feeley 1993] (some
implementations will spin for a fixed amount of time and then suspend [Callahan
and Smith 1990]). This modification will have an asymptotic effect on performance
on the example code, since the thread computing y can use a full processor (the
other threads will suspend) while in the spin-waiting implementation, assuming
fair scheduling, n + 1 threads will need to share the p processor, giving the thread
computing y an effective p/(n+ 1) fraction of a processor. Alternatively, one might
consider a spin-waiting implementation that places a higher priority on computing
y than on the n spinning threads. In full generality, however, this scheme is at least
as complicated as suspending threads.

Perhaps less obvious is that the suspending implementation can still give perfor-
mance that is asymptotically worse that one would expect. In the given code a large
number of threads will try to suspend on a single variable almost simultaneously.
All the implementations cited above serialize this process by using a linked list for
the queue. This can have the effect of fully serializing the code even though it looks
perfectly parallel. Although such serializing is likely to be much less common than
problems caused by spin-waiting, it might be more insidious for the users, since it
would only show up under certain conditions. Subtle timing differences in whether
y is computed before the threads try to read it, for example, might have very seri-
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Fig. 2. The structures created by func1 (a) and func2 (b) in a standard implementation of futures.
The shaded squares are future cells that start empty and are filled in when the future computation
completes.

ous effects on performance. It is these asymptotic and often unpredictable effects
in performance that motivate the use of a provably efficient implementation.

As an example of the subtleties of the model and why it can be important to
be formal about the costs, we consider the following code fragment, written in
Multilisp.

(defun funcl (n rest)
(if (=n 1)
(cons 1 rest)
(let ((nhalf (floor (/ mn 2))))
(funcl nhalf (future (funcl (- n nhalf) rest))))))

(funcl n nil)

This function creates a length-n list of all 1’s. The future creates a process to
evaluate one recursive call which can start in parallel with the other recursive call.
If analyzed in the model described in this article, it leads to ©(n) work and ©(logn)
depth, since it forks off a tree of parallel processes of logarithmic depth. In fact,
it is somewhat curious that the function can create a list of length n in ©(logn)
depth in a side-effect-free language. We now make a simple change to the code by
removing the cons in the base case.

(function func2 (n rest)
(if (=n 1
rest
(let ((nhalf (floor (/ n 2))))
(func2 nhalf (future (func2 (- n nhalf) rest))))))

(+ 2 (func2 n 3))

This new function just returns rest, so the final result is 5 independent of n.
The subtle point is that this use of func2 now has depth O(n) instead of ©(logn) if
analyzed in our model, even though the depth of recursive calls is still only ©(logn).
The ©(n) depth is consistent with all implementation strategies of futures we know
of, including our own, since the strategies either create a chain of n futures (see
Figure [2) or do not allow pointers to future cells to be written into other future
cells. In the first case the addition requires O(n) time, since it needs to traverse the
chain to find the 3 at the end, and in the second case func? is fully sequentialized,
requiring O(n) time. Having the semantics correctly model this as a ©(n)-depth
computation is subtle. Roe [1991], for example, modeled this as a ©(logn)-depth
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PSL
Language

Values

Costs
Y Y

PCEKog, .
CAbstract Machine Implementation

Values

Fig. 3. The implementation maps values and costs of the profiling semantics (Section[2) to those of
the machine (Section[d]). The implementation is staged via an abstract machine model (Section [3).
Its effects on costs are summarized by cost mappings.

computation, making it unlikely that one could prove any useful time bounds based
on that model. Subtleties like this are easily missed or ill defined without having a
formal semantics that account for costs.

1.2 Outline of the Model and Implementation

The article is organized by first describing the model and then describing the im-
plementation. We use the pure A-calculus with some arithmetic primitives as our
basic language model, since it allows us to abstract away from language specifics
and simplify the exposition. We use a profiling semantics to augment the language
so that it returns directed acyclic graphs (DAGs) which abstractly represent the
performance, and call this augmented language the parallel speculative \-calculus
(PSL). Section [ZTldescribes the structure of the graphs returned by the semantics;
Section defines the semantics; and the Appendix describes how several common
language features can be added to the language with only constant overheads.
Our implementation and bounds are based on simulating the PSL on the tar-
get machines. We stage this simulation into two parts to simplify the mapping,
as shown in Figure Bl In Section 3.1 we define an intermediate model using an
abstract machine called the P-CEK}g; ;. The intermediate machine is a parallel
version of the CESK machine [Felleisen and Friedman 1987], one of many variants
of the original SECD machine for implementing the A-calculus [Landin 1964]. Our
machine maintains a set of states that are ready to execute. On each step the
machine executes one step on g of these ready states in parallel, transforming each
to 0, 1, 2, or m new ready states (0 if terminating or suspending, 1 if continuing, 2
if forking, and m if reactivating a set of m suspended states). The parameter ¢ can
be thought of as the number of processors. We prove that a derivation in the PSL
model that returns a computation graph g can be simulated in the P-CEK}g; ,
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model in W(g)/q + D(g) or fewer steps, where W (g) is the work of the graph
(number of nodes), while D(g) is the depth (longest path).

The second half of the simulation is an implementation of the intermediate
machine onto the target machines. In Section F] we show that each step of a
P—CEK’;?&P machine can be implemented in O(logp) amortized time with high
probability on a p processor hypercube or CRCW PRAM. The amortization comes
from how we grow the set of ready states, and the high probability time bound
comes from cost of simulating a fetch-and-add or memory access on these ma-
chines [Ranade 1989; Matias and Vishkin 1991; 1995; Gil and Matias 1994]. Since
we have a bound on the number of steps required by the machine, we can simply
plug in these results and bound the total running time for these machines (see
Figure [)).

We distinguish between a fully speculative implementation, in which it is assumed
that the body and argument are always evaluated, and a partially speculative im-
plementation for which speculation is limited. The call-by-speculation semantics of
the PSL and the main results in this article assume a fully speculative implementa-
tion, but Section Bl considers partially speculative implementations that can either
kill inaccessible tasks or only selectively execute tasks, thus reducing the work over
call-by-value semantics.

1.3 lIssues of Practicality

It is important to realize that the “implementation” we specify in this article is

meant as a proof that the runtime bounds can be achieved within a constant factor
(asymptotically). As often done in proofs of asymptotic bounds, many simplifica-
tions are made to the implementation that make the proofs much simpler at the cost
of increasing constant factor overheads. We would expect that an actual implemen-
tation would maintain the asymptotic bounds while making many optimizations to
reduce the constant factors. Here we list some of the techniques and assumptions
we make, justify why we make them, and discuss how they can be modified to make
a more practical implementation.

(1) We define our model in terms of the pure A-calculus with only arithmetic primi-
tives added. We do not include even standard constructs such as local bindings
(e.g., let), data structures (e.g., cons-cells), or conditionals as primitives di-
rectly, but instead assume they are defined using the pure A-calculus. This may
seem like an overly simplified language, but in regards to our goal of showing
asymptotic bounds these other constructs can all be simulated in constant time,
making them unnecessary as primitives, as shown elsewhere [Greiner 1997].
Leaving them out of the language greatly simplifies our semantics and reduces
the number of proof cases. Needless to say, any real implementation of call-by-
speculation should directly implement many of these constructs. Assuming that
the direct implementation is at least as efficient as our implementation based on
the primitives, these will improve the constants without affecting asymptotic
bounds.

(2) We assume that all arguments are evaluated speculatively. This assumption is
made so that we do not need a separate set of rules to define the nonspeculative
evaluation, and corresponding cases in the proof. A nonspeculative evaluation
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c € Constants
z,y,z € Variables
e € Ezpressions = c| x|

Az.e | abstraction
e1 ez application

2.

Fig. 4. Basic A-calculus expressions.

construct should certainly be included in a practical implementation, since the
constant overhead for creating threads and synchronization on variables can be
high, especially since in many cases it might not be necessary.

We assume that every unit of computation is scheduled independently. This
simplifies the mapping from the graph to the abstract machine and simplifies
the abstract machine. In a real implementation there is no reason to break up
threads to this fine level of granularity, and, in fact, any greedy schedule [Blu-
mofe and Leiserson 1993] (one that makes sure that no processor sits idly when
there is a ready thread) will achieve the same bounds. In practice, scheduling
larger blocks of computation is likely both to reduce scheduling overhead and
to increase cache hit ratios within each thread.

Related to scheduling units of computation, we use a highly synchronous im-
plementation. Again, the tight synchronization is not necessary for the time
bounds as long as the schedule is close to greedy.

We assume that when the array maintaining a queue needs to be copied because
it overflows, all processors can become involved in the copy. This does not make
much sense in an asynchronous or coarse-grained thread scheduler since it would
involve interrupting the processors. Instead the implementation could add a
set of jobs to the front of the thread queue each of which copies some block of
entries to the new array (i.e., the copying of a queue can be scheduled by the
same scheduler as the execution of the threads themselves).

Our machine models assume that any memory location can be read or written
concurrently by all the processors. In the CRCW (concurrent read concurrent
write) PRAM this assumption is made directly in the model, and in the hyper-
cube we assume the network supports combining within the switches to support
these concurrent accesses [Ranade 1989]. Since our language assumes parallel
threads can access the same values, concurrent reads seem to be difficult to
avoid in a general way. The concurrent writes are only used to implement the
fetch-and-add operation, which is used to add threads to the suspension queues.
Again we see no general way of avoiding them within the same time bounds.
In more recent work we have shown that by restricting the language it is pos-
sible to implement call-by-speculation with purely exclusive access [Blelloch
and Reid-Miller 1997]. It is an interesting question of whether the concurrent
memory access capability is needed in the general case.

LANGUAGE AND PROFILING SEMANTICS

The core syntax of the A-calculus we use is given in Figure ] where the set of
constants is defined later, and the set of variables is countably infinite. To keep
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i € Integers
¢ € Constants ::= i|add|sub | mul|div |lt| numeric constants
addi | subi | muli | diVi ‘ lti

Fig. 5. Basic A-calculus constants.

the number of syntactic forms, and thus the number of semantic rules and the
number of proof cases, to a minimum, we only added constructs to the language
if they asymptotically affect the work and depth costs. In particular we did not
include local bindings (e.g., let), recursion, conditionals, or built-in data structures
(e.g., lists), since they can each be simulated in constant work and depth, as the
Appendix discusses. However, we do include the integers and arithmetic operations
as constants, since, although numerous schemes exist for encoding numerals in
the A-calculus, at best they require polylogarithmic time to simulate addition and
multiplication [Parigot 1988].

Also to reduce the number of syntactic forms, we do not syntactically distinguish
unary and binary functions. Instead, a binary function such as addition takes its
arguments one at a time, i.e., add 1 2 = (add 1) 2. Thus the core language uses
the constants defined in Figure[fl. For example, add represents binary addition, and
add; represents the unary addition of the number ¢. While the unary functions are
redundant with the corresponding binary functions, we include them in the syntax
of expressions to simplify the presentation of the semantics (the unary functions are
the result of applying the corresponding binary functions to their first argument).

The free variables of an expression, F'V (e), are defined as usual, where function
abstraction, Az.e’, is the only variable-binding construct.

2.1 PSL Computation Graphs

The PSL model is the A-calculus together with a profiling semantics, which de-
scribes the parallelism by specifying a computational graph for every computation.
This section describes the computation graphs generated by the PSL model. The
evaluation of every expression generates a subgraph, and these subgraphs are com-
posed by the semantics. In every subgraph we distinguish two nodes (potentially
the same node): its source ns and minimum sink nt. The source represents the
start of a computation, and the minimum sink represents when it returns a value.
Edges represent control or data dependences in the program execution.

Definition 1. A PSL computation graph is a triple (ns,nt, NE) of its source,
minimum sink, and a mapping from nodes to ordered sets of other nodes (repre-
senting the outgoing edges from each node).

We use ordered sets to represent the outgoing edges, since the graphs are ordered
DAGs. When illustrating computation graphs in this article we will draw the
outgoing edges for a node ordered from left to right and directed downward. We
will also often draw graphs as triangles with their source at the top and their
minimum sink at the bottom left, as shown in Figure[6. The bottom right corner
represents the node (or possibly nodes) with the longest path from the source and
will be referred to as the maximum sink(s). This rendering with the right bottom
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Graph g: 1 1— g1 g1 D g2
(ns,nt, NE) (n,m,-) (n,n, [nt1 — [n]]) (ns1,nta,
(NE1 O] NEQ)[TLtl — [nszﬂ)
unique n unique n
n
g, N1
ns gl ntl
A en Nty
nt n
/ VAN
n
I’]t2
W(g): 1 1 W(g1) + W(g2)
Graph g: g1\ g2
(ns,nt1, (NE1 W NE2)[ns — [ns1,nsz2]])
unique ns
ns
n n
g, % g, N2
ntl
Wig): W(g1) + W(g2) + 1

Fig. 6. The definition of combining operators for PSL computation graphs and work. Note that
the work of the 1+ g; graph does not count the work of g1, since this operator is only used when
g1 is present elsewhere in the overall graph.

corner lower than the left is meant to illustrate that the maximum sink is at least
as deep as the minimum sink.

The following operators, defined in Figure 6l will be used by the profiling seman-
tics for building PSL computation graphs.

—1 represents a singleton node.

—qg1 @ g2 places the two graphs in series by returning all edges from both graphs
along with an additional dependence edge from the minimum sink of g; to the
source of gs.

—1+ g creates a new singleton node and an edge to this node from the minimum
sink of g. It differs from g @ 1 in that it does not return the edges from g, and
the new node rather than the source of g is the source of the returned graph.

—qg1 A g2 places the two graphs in parallel by returning all edges from both graphs
along with an additional node with edges to the sources of both graphs. The
minimum sink of g; becomes the minimum sink of the new graph.

The operators use W to combine mappings that represent the neighbors:

[n+— NEq(n)] n € dom(NEy),n & dom(NE,)
[n — NFE3(n)) n & dom(NEy),n € dom(N Ez)
[n— NEi(nfH-NE3(n)] n € dom(NE1)N dom(N Ez)

NE; U NEy :UnGN

where N = dom(NE;) U dom(NEsy), and X+HY appends two arrays or mappings.
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g
X

“X

Fig. 7. Illustration of a case where combined computation graphs share edges from the same node.
This shows the graph (g1 A g2) ® 1@ g3 ® 1 @ ga, where each of g3 and g4 contains a subgraph
1— go.

Il € Locations
v € Values u=c|l
sv € StoreValues = cl(p,z,e) closure
p € FEnvironments = Variables i Values x Graphs
€ Stores = Locations i Store Values

Fig. 8. PSL values, stores, and environments.

The domains of the mappings may overlap if they each contain an edge from the
same node. This may occur if either graph joined by an operator includes a data
edge created by 1+ g, for some g, as in Figure [7l

We define the depth of a node in a graph as the longest path to that node. We
define the work of a graph, W(g), as the total number of nodes in the graph, and
the depth of a graph, D(g), as the longest path in the graph, i.e., the maximum
depth of any node in the graph.

2.2 Semantics

We now define the PSL model using a profiling semantics. The semantics is de-
fined recursively in terms of a judgment, or relation, describing the evaluation of
expression e to value v. We explicitly manage the memory via stores, since this
eases comparison with the implementation which also uses a store. In this model,
environments map each variable to both a value and the computation graph de-
scribing the evaluation to that value. These values, stores, and environments are
defined in FigureBl A variable’s graph is used to describe when that value has been
computed. The profiling semantics is then given by Definition 2

Definition 2. In the PSL model, starting with the environment p and store o,
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p,obc st c,o;1 (CONST)
PSL
p,o - Ar.e — 1,0l — cl(p,z,e)];1 wherel g o (LAM)
plz) =vig
PSL (VAR)
p,okFx—v,0;1—g
PSL PSL
pober—loi;q p,o1 ez — v2,02; 92
PSL
o2(l) = cl(p',me3)  p'lz > v2;92],02 Fes — vs,03;93 (APP)

PSL
pyob el ez — v3,03;(91 ANg2) ®1Dgs

PSL PSL
p,olel —c,01;01 p,01 b ea — v2,02; 92 d(o2,¢,v2) = v3,03; 93

2 (APPC)
p,0te1 ea — v3,02U03;(91 Ag2) D (1— g2) ® g3

Fig. 9. The profiling semantics of the PSL model using the definition of § in Figure [0} and the
graph combining operators of Figure

d(o, c,v)
c v v o’ g'| if/where
add 21 addiw 1
addi1 i |11 + 12, - 1
sub 21 Sl.lbi17 1
sub;, i2|i1 — 2, - 1
mul 4 (mul;,, - 1
mul;, iz i1 *i2, 1
div iy | divy,, 1
div; ||/, 1
1t i [Ty, - 1
1t;, i |1, l—cl(,zAyx)] 1 (i1 <i2, IO
It;, 2|1, l—cl(,zA yy)] 1|i1 >4, €0

Fig. 10. The 6 function defining constant application. The values resulting from the 1t; application
are standard A-calculus encoding of booleans.

the expression e evaluates to value v and the new store o’ with computation graph
g, or

poke 50,
if it is derivable from the rules of Figure [l

We are primarily interested in the “top level” case where the evaluation starts

with an empty environment, i.e., -,- F e PSL v, 0; g represents the evaluation of pro-
gram e to its result value v.

As usual, a constant evaluates to itself; an abstraction evaluates to a closure
containing the current environment; and a variable evaluates to the value found
for that variable in the current environment. An application evaluates both the
function and argument and
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Expr. e: ¢ (CONST) or Az.e (LAM) z (VAR)

Graph g: o /

X
where e’ is the expression comput-
ing the value of =
Expr. e: e1 e2 (APP) e1 e2 (APPC)
€1 & €&

Graph g:

where the bottom subgraph is for the | where the bottom subgraph is for
body of the user-defined function (clo- | the application of the constant to
sure) to which e; evaluates which ey evaluates

Fig. 11. [Illustration of computation graphs for the PSL model. The dashed lines represent
possible dependencies. Where applicable, nodes are labeled with the expression whose evaluation is
represented by the subsequent graph. Nodes labeled “@” represent the initiation of an application
and are used to simplify the later correspondence with the machine of Section Bl It corresponds
to the 1 in the APP and APPC rules.

—if the function value is a closure, it evaluates the closure body using the closure’s
defining environment or

—if the function value is a constant, it evaluates the constant application as defined
by 4.

Using the APPC rule with the § function is a convenient way to define the appli-
cation of most constants—in particular, those that do not depend on the general
evaluation relation. Alternatively, we could define a separate semantic application
rule for each constant.

Figure [T]illustrates the computation graphs that are formed by the rules of the
semantics. Evaluating a constant or abstraction creates a single node. Evaluating
a variable also creates a single node but adds an edge from the sink of the subgraph
that evaluated the value of the variable to its use. Recall that the environments
used in the semantics store along with every value the subgraph that describes its
evaluation. Evaluating an application e; es evaluates the function e; and argument
eo in parallel, and then sequentially after evaluating e; it evaluates the function
body or constant application.
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[x— U](z) =l
- (VAR) = Ds
[xt—lh]Fz—=1l1,01
o (LAM) s (LAM)
- FAr.x — g, 00 oo Ayl —li,o1 Do
- (APP) = Dy
o F Q) (A1) — li,01
(CONST) (CONST)
D, o1 F2Fi2,0'1 [y»—>2},o‘1F1P§1,0'1
Py (APP)
S F Q) (Ayl) 2 — 1,01
where o9 = [lg — cl(-,z,z)], o1 = oo[l1 — cl(-,y,1)]

Fig. 12. PSL profiling semantics derivation for Example Il omitting the computation graphs. For
readability, the derivation tree is broken into three subtrees.

We choose a consistent sequential ordering on the evaluation of subexpressions,
placing the function’s subgraph before that of the argument. This choice makes the
branching in computation graphs resemble that of the corresponding syntax tree.
As explained later, this ordering will reflect the execution ordering when there are
not enough processors to parallelize all computation.

Example 1. Consider the evaluation of the following expression:
Az.z) (A\y.1) 2.

Figures [[2] and [[3] show the derivation tree (excluding costs) and the overall com-
putation graph, respectively. The left spine including the root represents the main
thread; the other two nodes are separate threads, only one of which synchronizes.

The reader may be concerned whether the computation graphs actually represent
real costs. First, the nodes may represent significantly different amounts of real
work, as, for example, synchronization would take significantly more time than
evaluating a constant. Second, either or both of variable lookup or closure creation
(i.e., evaluating a variable or a function) could take nonconstant time, but they
are both represented by single nodes. It is important to realize, however, that the
computation graphs represent the time costs as defined abstractly in the language
model, and these costs must still be mapped to the machine model. Furthermore to
achieve more accurate cost predictions it would not be difficult to refine the model
by, for example, adding weights to the nodes.

We now describe the form of PSL computation graphs to get a better intuitive
grasp of speculative computation. There is a single node to start the application,
with edges to the subcomputations, but there is not necessarily a single node for
synchronization. There is also an edge from the function’s graph to that of the
function body, but the existence of edges from the argument’s graph depends on
whether its value is accessed. In an application, edges may connect the interior
nodes of the subgraphs, from either the function or argument subgraph to the
function body subgraph. What edges exist depend on the expressions:

—FEdges from the argument value (i.e., the argument’s minimum sink) connect to
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(Axx) (Ay.1) 2

(Ax.x) (Ay.1) 2

Fig. 13. PSL computation graph for Example [I] For an application expression, the “@Q” node
between the function and the function body represents the application of the function value and
a placeholder for its argument.

Fig. 14. PSL computation graphs may have multiple edges from nodes.

each of its uses within the function body. Note that there may be multiple such

edges, as Figure[I4] illustrates, although other figures show only one edge to avoid
clutter.

—If the argument’s value is a closure, it may communicate the name of another
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Fig. 15. Illustration of PSL computation graph where the function branch accesses a list’s elements
in order and the argument branch creates the list. To access each element, the function must first
access the cons-cell containing the element. The graph is simplified, with some nodes consolidated,
but still representing constant amounts of computation.

value being computed within the argument’s subgraph. If that value is used in
the function body, there is an edge from within the argument subgraph to its
use, somewhere below the node linked to the argument’s value. For example,
if the argument constructs a list, its value represents the first cons-cell. Edges
would exist for each accessed element and cons-cell of the list, as illustrated in
Figure M0

—Similarly, the edge from the function to the function body may also communicate
names of other values being computed within the function. These names are in
the environment of the closure to which the function evaluates.

For an application expression, the “@” node between the function and the function
body represents the application of the function value and a placeholder for its
argument. It could be omitted with a resulting constant factor difference in the
work and depth. Also, note that the computation graphs are not compositional in
terms of their subgraphs.

While each edge represents a control dependence and allows for the flow of data,
it can be intuitively helpful to distinguish two classes of edges. The edges for
applications can be thought of as “control” edges, and the edges for variable lookups
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Fig. 16. PSL computation graph of nested applications (e1 e2) e3, where e; evaluates to Az.ef,
and ey e2 evaluates to )\y.e’lz.

would be “data” edges.

The asymmetric nature of these graphs leads to a useful notion of threads, which
is formally defined in the abstract machine. The thread evaluating an application
expression

—spawns a new thread to evaluate the argument,
—evaluates the function, and

—evaluates the function body.

Recursively, the evaluation of both the function and function body generally use
additional threads. For example, in Figure [10, evaluating (e; es) es, the initial
thread spawns a new thread for ez, then evaluates the inner application, spawning
a new thread for ey, and then evaluates e;. The same thread then evaluates the
function bodies €} and ef,. Although not shown, additional data edges may come
into the graph for the inner application body €} from outside the graph for the
application e; es. As in the following example, threads follow the leftmost control
edges until encountering a parent thread or until the thread simply ends.
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(Ax.1) (Ay-e) 2)

Fig. 17. PSL computation graph for Example

Ezample 2. Consider the evaluation of the following expression:

(Az.1) ((\y.e) 2).

The computation graph for this expression is given in Figure[I7l. The leftmost edges
including the root represent the main thread; the middle branch, another thread;
and the rightmost node, another. The evaluation of e may use additional threads.
No thread synchronizes with the main thread, but the rightmost thread might need
to synchronize with the evaluation of e.

3. FULLY SPECULATIVE INTERMEDIATE MODEL

Section B introduced an abstract semantic model which we now show how to im-
plement in a more concrete machine model and prove performance bounds for the
implementation. As in a compiler, staging the implementation via an intermediate
language or model frequently simplifies the problem. Here we stage the implemen-
tation using a parallel abstract machine model called the P-CEK}g; .. The CEK
in the name comes from the fact that each state consists of Control information,
an Environment, and a “K”ontinuation. The “P” indicates that there are multiple
states that run in parallel, the “PSL{” that it evaluates the fully speculative PSL
model, and the ¢ specifies the maximum number of states evaluated on each step.

In this section we describe the P-CEKfg;, model, give some background on
computation graph traversals, and then use this to prove a relationship between
work and depth in the PSL model and the number of steps of the P-CEKfg; ;. In
Section [4] we describe the implementation of the intermediate P-CEKlq:,SLf machine
model on more standard parallel machine models.

3.1 The Model

The P-CEK{¢; ; machine performs a series of steps, each transforming an ordered
set of states (technically substates) and a store into a new ordered set of states
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StA;
77/
StAj+
NN b
StAj.2
StAqJ

Fig. 18. Illustration of F’—CEKQPSLf active states during an evaluation. It starts with one active
state representing the entire program and ends with no active states. The states are kept in a
stack. At most ¢ states are selected each step. Here ¢ = 5, and these states are shaded. These
can create zero or more new states (solid arrows). Unselected states are still active in the next
step (dashed arrows).

and new store for the next step. Figure illustrates this process. The states
that can be transformed on a given step are called the current active states, each
representing a thread of computation which can be performed in parallel. The
machine starts with a single active state representing the entire computation, and
it ends when there is no active state left. Each state uses a location for its eventual
result value, so the program’s result is accessible through the initial state once it
has been evaluated. Each state is used for computation on only one step—that step
creates new states to perform any successive computation, i.e., we think of creating
new states and discarding old states rather than modifying states. Each step also
uses a global store to not only keep track of the program’s store contents, but also
to record partial results of the computation. Each state consists of a control string
C, consisting of the expression to be evaluated and a thread identifier (discussed
below), an environment p, and a continuation k.

Since the intermediate model is machine-like, different costs are of interest than
in the profiling semantics. Here we track two costs: @, the total number of states
processed, and 1, the number of parallel steps. We will relate these costs to the
computation graphs of the profiling semantics.
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The currently active states represent those states whose computation can be
performed now. Other states can be suspended waiting for a variable value. On
each step we select and use at most ¢ active states (g is a parameter of the machine
and is fixed during a computation). In other models, this is necessary for space
efficiency [Blelloch and Greiner 1996; Greiner 1997], as it bounds the numbers of
active states and thus the space to store them. Here, it provides no such bound in
general, but does reduce the space in many typical examples. We later relate ¢ to
the number of processors available on the machine.

We formalize the intuitive notion of a thread as a central data structure of the
implementation. A thread represents a series of states over time computing the
same value, as described previously. A thread T is a pair of locations that contain
the information common to these states:

(1) The first location contains either the resulting value v of the thread or a marker
Noval indicating the value has not been computed yet. Since a thread provides
a pointer to its result value, environments now map variables to the threads
evaluating them, rather than to their values. Of course, a more realistic imple-
mentation would also cache the value in the environment once computed, to
avoid the extra indirection.

(2) The second location contains a set of suspended states waiting for this thread’s
value. When this thread finishes, these states are reactivated so that they can
continue with the value.

A thread’s two components are selected with 7 and ms.

Each state records which thread it belongs to by including the thread in its
control string C. This information is passed from state to state, for example, from
application state to the state representing the function branch, and eventually to
the state representing the function body. Only one state of a thread is accessible
(i.e., active or suspended) in the machine at any given time. Thus, while we describe
the machine in terms of states, we could describe it equivalently in terms of threads.

When a thread 71 evaluates an expression e; es a new thread 7 is created to
evaluate eq, and a pointer to it is placed in the continuation of 7. The thread 7
then evaluates e1, and assuming this results in Az.e, it removes 75 from its contin-
uation and evaluates e with x bound to 75 in the environment. The continuation
is used only to record the thread of its argument so that this information can be
passed to the function body. When a thread finishes (has computed and written
its result) it can simply die.

The initial state and thread of the computation uses a location [,..s for the
thread’s eventual result. When the machine finishes, the result value v is in that
location, and there are no active states left.

The above descriptions lead us to the definition of domains for the intermediate
machine given in Figure [[9] where the ellipsis represents the basic A-calculus ex-
pressions of Figure @l Note that we also introduce an expression not in the profiling
semantics. The expression @ v 7 represents the decision point after a function has
evaluated and is about to be applied as to whether its value v is a constant or a
closure.
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I € Locations
v € Values n=c|l
sv € StoreValues = cl(p,x,e) closure
7 € Threads a= (1)
ValueOpts = Noval | v optional value
e € FExpressions n= ... |QuourT application
C € Controls n= (e,T)
p € Environments = Variables fip Threads
k € Continuations n= e thread finishing
fun({r &) function finishing
st € States w= (C,p, k)
St € StateArrays = st
I € IntermediateStates ::= St | new /reactivated states
Fin(v 7) finishing state
o € Stores — Locations ™% (StoreValues+
ValueOpts+
StateArrays)

Fig. 19. P—CEKqPSLf domains. The ellipsis represents the expressions of Figure Ml

Definition 3. A step i of the P-CEK{g, ; machine, written

PSLf,q
StAi,O'i — StAi+1,Ui+1;Qi,

is defined in Figure It starts with a stack of active states StA; and a store
o; and produces a new stack and store for the next step. This step processes Q;
states.

Definition 4. In the P-CEK}g; ; machine, the evaluation of expression e to value
v, starting in the environment p and store oo, ends with store oy, and processes Q
states, in ¢ steps, or

PSLf,q
p,O'()'*e — ’Uvo"lﬂ;Qv’L/)'

For each of these i € {0,...,9% — 1} steps,

PSLf,q
StAi,O'i — StAi+1,Ui+1;Qi,

such that

—the machine starts with one active state and one thread for the whole program:
StAO = [((evT)apa .)]7 00 = [lTES = NOVE'][Z;ES = H]?
—the machine ends with zero active states and the result value: StA, = [],

0y (lyes) = v; and
—the total number of states processed is QQ = Z;p:_ol Q;.

Each step consists of one substep for computation and two substeps for com-

S S . , ... PsL
munication and synchronization. The computation substep’s transition — comp
performs a case analysis on the state’s expression and generates up to two new
states or a special intermediate state for use in the following substeps:
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PSL
Computation substep, — comp:
st I if/where
PSL
((e, T), = K) — = comp throw(c,T,kK)
PSL
((SC, T)v P H) 0 > comp thmw(v,r, H) . O—(ﬂ-l(p(x))) =v
PSL
(Az.e, 7),p, K) 0 = comp throw(l,T,kK) l—cl(pze)] o
PSL
((61 €2, T)v P H) 0 > comp [((6177—)7/)7fun<7-l H>)7 [l = NOV3|, Tl = (lvl/)v lvl/ Q 4
bar ((e2,7'), p, )] =]
((@ l T’v T)7 ) H) g > comp [((677—)7p[x and T/LH)] : U(l) = Cl(p,m,e)
PSL
(@e7',7),:, K) 0 = comp throw(v',7,k) o’ o(mit’) =,
d(o,c,v) =0, 0’5 —
where throw(v, T, e) = Fin(v 7)
throw (v, T, fun(r’ k)) = [((Qv 7/, 7),, K)]
PSL PSL
Reactivation and blocking substeps, — reqct and — piockt
I St
- PSL
Fin(v 7) 0 = react o(maT) [m1T — 0] (reactivate)
- PSL
st — = react H . (ignore)
st St if /where
PSL
(=,  7)pk) 0 = biock [] oma(p(z)) — o(m1(p(x))) = Noval (block)
bs [sthto(m2(p(z)))]
(Q@c7'7)yK) ¢ = block [] olmar — o(m17’') = Noval (block)
[sthto(mar’)]
PSL
st O S plock |St] o otherwise (ignore)
PSLf,
Step, — ‘
PSLf,q - N
StA,o " (St (4 ST sty sti), 0
if StA = [sto,...,stk_1]
q = min(g, k) select at most g states per step
PSL
sti, 0 S comp Li, 0y Vi€ {0,...,¢ — 1} o =cu(Jd)
PSL -
1;, U_/‘ — react Sti, O} vie {0,...,q — 1} U(’)’:J’U(UJ’)
st = [st|st € Io, ..., I _1] collect newly created states
ko= st
tl 11 F:iL Stl 1 [ t- 11 L2 V 0 k 1 " __ 11
stl, o block St}, 0%, sequentially” Vj € {0,...,k =1} " = o)

Fig. 20. Definition of the P—CEK%SM abstract machine step. Assume all new locations of the
computation step are chosen or renamed to be distinct. Note that +H and + are array append
operators.
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—The cases for constants and abstractions correspond to those in the profiling
semantics.

—A variable lookup must get the value from the appropriate thread. Note that the
variable lookups are guaranteed not to block because active states correspond to
ready nodes, i.e., a previous step’s use of the third substep guarantees this value
is available when requested.

—FEvaluating an application e; e creates two states, one to evaluate the function
e1 and one to evaluate argument e,. Later steps can evaluate the function and
argument in parallel. The continuation of each new state indicates which branch
it is. Also, the state for function and the state eventually created for the function
body are considered to be the same thread as the application. The state for the
argument starts a new thread.

—Evaluating an expression @ v 7 initiates evaluation of the function body or per-
forms a constant application, as appropriate.

Each step uses the P:i%comp transition in parallel for each of the selected active
states.

The communication substeps finish and suspend states, respectively. For each
intermediate state Fin(v 7), representing a thread that is finishing this step, the

PSL o .
second substep uses the — ... transition to reactivate the states suspended on
thread 7 and store its result value v. Reactivated states correspond to ready nodes,
since the value that they need is now available.
For each newly created state (i.e., we do not need to consider the reactivated

states), the third substep uses the P:iLblock transition to check whether it would
block and, if so, add it to the set of suspended states owned by the thread on which it
would block. The blocked thread reactivates in a later instance of the second substep
once the value is available. While Figure 20 describes the semantics sequentially
for simplicity, the following section shows that the instances of this transition can
be parallelized so that all these states suspend at once. Synchronization is required
between the two communication substeps to ensure that a thread’s result value is
found in the last substep if stored in the second substep.

The step ends by adding the new states that have not blocked and the reactivated
states to the active states stack. In the P-CEKQPSLf, the active states do not need
to be treated as a stack, but that is one way to ensure determinacy.

Since each transition represents constant work, the total work for the step is
defined as ¢'.

Ezample 3. As an example of P-CEK}¢; ; execution, Figure 2Tl shows the active
states at the beginning of each step of evaluating (Az.A\y.x) ((Az.z) (add 1 2)).
Figure 22 shows additional detail of one step. For lower values of ¢, the evaluation
might take more steps, but it processes the same total number of states. The
computation graph of the corresponding profiling semantics evaluation is shown for
comparison in Figure 23] using the appropriate states’ expressions as node labels.
Observe that each of these executions is a greedy g-traversal of the graph.

Ezxample 4. If we apply the previous example program to another argument, the
main thread must then wait for the computation of the value 3, as Figure[24] shows.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 2, March 1999.



A Provably Time-Efficient Parallel Implementation of Full Speculation
g=>4 qg=2
Step expressions in StA; q expressions in StA; q
0 Az Ay.z) (Az.2) (add 12)) | 1 Az Ay.z) (Az.2) (add 1 2)) | 1
1 Az y.x, (A\z.z) (add 1 2) 2 Az y.x, (A\z.2) (add 1 2) 2
2 Qlp 11, Az.2, add 1 2 3 Qlp 11, Az.z, add 1 2 2
3 Ay.x, @ l; 19, add 1, 2 4 Ay.x, @Ql; 79, add 1 2 2
4 add, 1 2 || add 12 1
5 @ add 73 1 add 1, 2 2
6 @ add; 7 1 add, 1 2
7 z 1 @ add T3 1
8 Q@ add; 74 1
9 z 1
States processed: | 15 States processed: | 15
where o contains cl(—,z,\y.x),

l1 contains cl(—,z,z), and
71 and T2 are defined in Figure

263

Fig. 21. F’—CEK%SLf evaluations for Example[3] The underlined expressions correspond to the
selected states of each step.

C | Ayx1y) |(@1115,1p) (Addy,T3) | (2,T5)
o] [X - "] StA3
K . . fu n(T5 *y .

Cc (add,t3) (1,1y)

p StA,

K ffun<ty, .

fun<tg *»
where 73 has state ((z,72),[z — —], ) in its suspended queue at the start of step 4.

Fig. 22. Active states for step 3 (¢ > 4) of Example B

3.2 Graph Traversals

The following definitions and theorems about traversals are either standard graph
terminology or are from Blumofe and Leiserson [1993] or Blelloch et al. [1995]. Note
that the definition of a graph traversal is somewhat different than is standard in
that it requires all nodes to be visited.
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(AxAy.X) ((Az2) (add 1 2))

AY.X ()\z 2) (add 1 2)

)\zz add1 2

-

Ay.X

Fig. 23. PSL computation graph for Example[3l The threads are numbered left to right, i.e., the
leftmost spine is 79, the next leftmost is 71, etc. Note that this is not the order of creation of the
threads in this example. Also note that the value (a location pointing to the closure for \y.z)
is obtained at the end of step 3. The remainder of the computation is for the value of z if this
closure were applied.

Definition 5. A parallel traversal of a graph g is a sequence of k > 1 steps,
where each step i, for i = 0,...,k — 1, defines a set of nodes, V; (that are visited,
or scheduled, at this step), such that the following two properties hold:

(1) Each node appears exactly once in the schedule: the sets Vj, ..., Vi_1 partition
the nodes of g.

(2) A node is scheduled only after all its ancestors have been: if n’ € V; and n is
an ancestor of n’, then n € Vj for some k < i.

Definition 6. A g-traversal of a graph g, for ¢ > 1, is a parallel traversal such
that each step schedules at most ¢ nodes.

Consider a traversal T' =V, ..., Vix_1 of g. A node n of g is scheduled prior to a
step ¢ in T if it appears in the traversal prior to step i, i.e., n € VoU---UV;_1. An
unscheduled node n is ready at step ¢ in T if all its ancestors (equivalently, all its
parents) are scheduled prior to step i. Any sequence P =Vp,...,V;, fori <k, is a
prefix of T.

Definition 7. A greedy g-traversal T, of a graph ¢ is a traversal that schedules ¢
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(AxAy.X) (Az2) (add 1 2)) 4

/N

(AXAyX) (Az2) (@dd12)) 4

Ax.»@.x/g*(add 12)

add1 2

>
N
N

Fig. 24. PSL computation graph for Example [l

ready nodes on each step (or all the ready nodes when there are fewer than gq).
Computation graphs are dynamically unfolding in that

—initially, only the source node is revealed;
—when a node is scheduled, its outgoing edges are revealed; and

—when all of the incoming edges of a node are revealed, the node is revealed and
available for scheduling.

We consider only online scheduling algorithms for these graphs, i.e., each step’s
scheduling decision is based on only the revealed graph nodes and edges. In other
words, computation is scheduled at run time, not compile time.

THEOREM 3.2.1. A greedy q-traversal of graph g takes at most W(g)/q + D(g)
steps [Blumofe and Leiserson 1993].
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3.3 Equivalence of the Language and Intermediate Models

This section relates the PSL profiling semantics to the P-CEK}; ; abstract ma-
chine. We show that the machine executes a greedy g¢-traversal of the computation
graph. This provides a bound on the total states processed and the number of steps
taken by the machine. This also shows that the models compute the same result,
although details of the extensional equivalence are omitted [Greiner 1997].

Since the profiling semantics and abstract machine do not use the same domains,
we first define an equivalence between their values and environments in Definition[8.

Definition 8. A PSL value and store v,o correspond with a P-CEK}g;, value

and store v’, o’

v,o~=v, 0,
if the values are the same constant, or if they are closures with syntactically identical
bound variables and expressions and corresponding environments and stores.

A PSL environment and store p,o correspond with a P-CEK}g;, environment
and store p’, o/,

p,o=p o,
if they have the same domains, and for each variable x in the environments’ domain,
o(m(p(x))), 0 ~ o' (m(p(x))), 0"

To show extensional equivalence between the profiling semantics and the inter-
mediate model (Theorem [B.3.1)), we use the more general, but more complicated,
Lemma [3:3:1] To allow induction on the structure of a profiling semantics deriva-
tion, it includes the following:

—It describes multiple evaluations performed in parallel.
—The context of each evaluation may be any environment and store.

—To describe the evaluation of variables, it requires assumptions about the behav-
ior of any suspended threads.

LEmMA 3.3.1. If, for some number of expressions n > 1, and where j ranges
over {1,...,n}, and

—the expressions evaluate in the pmﬁling semantics, for each 7,
PSL
/ .
Pj,0; F €5 — V5,035,

—some step i of the P-CEK}Lg; ; selects states corresponding to the start of these
evaluations, for each j,

StA; = [st1,...,st,HSt stj = ((ej,Tj),p;,Aj)

for some St, and

—the machine has computed or will compute values corresponding to those in the
semantics’ environments, for each j, dom(p;) = dom(p}), and for each x €
FV(e;), there exists some step m' (before or after i) that starts with store oy,
and there exists value v such that m(p;(x)), 0} ~ v,0m 11, when the machine
calls

throw(v, pj(z), ),
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then the machine computes the corresponding values and reactivates any threads
suspended on these states: for each j, for some step m’; > i that starts with store
O +1 there exists value v such that vj, o} ~ vj, O, when the machine calls

throw (v}, 7;, ;).

PROOF. We prove this by simultaneous induction on the structure of the pro-
filing semantics derivations. Then for each of the j expressions, we perform the
following case analysis on the form of the expression. We apply the induction in
order, 1,...,n, on the expressions to show that the previous expressions eventu-
ally terminate so that any states spawned by st; are eventually selected, so that
induction may be applied to those spawned states.

cases CONST, LAM (e; = c, ej = Az.€’). The corresponding value is computed
in a single step (m} = i).

case VAR (e; = x). By the third assumption, the value of = is computed on step
m'. The machine computes the corresponding value in a single step, although it
may have to wait for it to be computed (m} = max(i, m' + 1)).

case APP (e; =€’ €”). As previously described, the two states for evaluating e’
and e” are eventually selected, so that induction may be applied to those evalu-
ations. This gives evaluations terminating on some future steps m’ and m”, re-
spectively. The former results in a state for evaluating @ [ 7/, for some location [
containing a closure with body ¢’ and where 7’ is the thread for e”.

At some step after m/, the “@” application state is selected, generating in one
step a state to execute ¢””’. Then at some step after that, the state for e’’’ is selected,
and induction on its semantics derivation applies.

The conclusion then holds, since the value of €” is the value of the application
and, since the thread and continuation of the function body’s initial state are also
those of st;.

"

case APPC (e; =€’ ¢”). We apply induction on e’ and €’ as in the APP case.
Evaluation of the resulting “@” application state is also like the APP case, except
that it also requires the value of the argument, and thus may have to wait for it
to be computed, like the VAR case. That extra condition corresponds to the extra
edge in g; relative to the APP case.

Again the conclusion holds, since the value of the call to ¢ is the value of the
entire application and, since the thread and continuation of the “@” application
state are also those of st;. [

Theorem B3l is the special case of extensional equivalence between the profiling
semantics and abstract machine about which we are usually concerned.

THEOREM 3.3.1. If e evaluates in the profiling semantics
ER Fe @) v,0:9,

then it evaluates in the abstract machine

PSLf,q
',"76 = U/,U/;Q,¢

such that it computes a corresponding value, v,o ~v',o’.
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PROOF. This follows from Lemma B.3.1] by limiting it to a single profiling seman-
tics derivation of empty context, and by the definition of evaluation in the abstract
machine. [

THEOREM 3.3.2. If e evaluates in the profiling semantics

PSLf )
KN Fe— v,0:4,
then it also evaluates in the abstract machine
PSLf,q
KN Fe = ’U/,O'/;Q,’l/l,
such that v,o =~ v',d’, and the machine executes a greedy q-traversal of g, i.e.,

—the selected states and visited nodes correspond at each step and
—the active states and ready nodes correspond at each step.

PROOF. First, Theorem [B.3.1] shows that the abstract machine computes the
same result as the profiling semantics, so in the remainder of this proof, we gloss
over the extensional equivalences. To show that computation is a greedy g-traversal,
we show by induction on the number of abstract machine steps that the appropriate
states and nodes correspond at each step. Let this traversal be T'= Vg, ..., Vi_1,
and let its prefixes be P, = Vp,...,V;_q for i € {0,...,k}.

For the base case, we observe that the machine starts with a single active state
corresponding with the source node of g (which is trivially ready).

Inductively we show that on step i of the P-CEK}g; , machine, if

(1) it starts with active states
StA; = [Stl, ceey Stq/]—H-StA

where ¢’ = min(q, |StA;]),

(2) the active states StA; correspond 1-1 with the ready states of the prefix P, =
Vo, ..., Vic1 (which also means that the nodes of P; have been visited),

(3) it selects states sti, ..., sty,, which correspond 1-1 with the nodes of V;, and

(4) any node with two parents, one visited prior to this step (in P;) and one visited
on this step (node n, in V;), corresponds to a suspended state that is reactivated
on this step by a state corresponding to n,

then

(1) the active states StA;11 correspond 1-1 with the ready states after the prefix
P41 (i.e., any nonsuspending newly created state or reactivating state corre-
sponds 1-1 with a ready state) and

(2) any state suspending on this step corresponds to a node with two parents, one
visited on this step (in V;, corresponding to the state that created this state)
and one not yet visited (in Viyq1,..., Vi_1).

By definition, the unselected states (StA) are part of StA;;1, and the conclusion
holds for them by the first assumption. So we perform a case analysis on each of
stq,..., sty to show that one of the two mutually exclusive conclusions holds for
each state it creates.
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For the case analysis, let st; = ((e, 7), p, k) (where j € {1,...,¢'}), and let n be
the node to which this states corresponds.

case e = ¢. This state corresponds to the unit graph of the CONST rule.

If kK = o, then n is the second parent node as described in the fourth assumption
for zero or more children. This step reactivates those children, adds them to StA; 4,
and which by the fourth assumption those children are ready on the next step.

If ¢ = fun(7’ k'), this step creates a state ((@Q ¢ 7'), -, ") which corresponds 1-1
with the unit graph (n') of each possible constant application (¢f. the APPC rule
and Figure [[T). Node n’ has a second parent for the constant function’s argument.
If the argument value is not available (that node has not been visited), this cre-
ated state suspends, and the second conclusion holds by the fourth assumption. If
the argument value is available, the created state is added to StA;;1, so the first
conclusion holds, since n’ is ready.

case e = x. This state corresponds to the unit graph of the VAR rule. By defi-
nition of the machine, the value is available (since the requesting state would have
blocked when first created, if the value was unavailable then) from a state corre-
sponding to n’s second parent.

If kK = o, the second conclusion follows like the e = ¢ case.

If k = fun(7’ £’), one of the conclusions follows as in either the e = ¢ or e = Az.¢’
case, depending on the looked-up value.

case e = \z.e’. This state corresponds to the unit graph of the LAM rule.

If kK = o, the second conclusion follows like the e = ¢ case.

If k = fun{7’ k'), this step creates a state ((@Q [ 7’),-, k'), for an appropriate I,
which corresponds 1-1 with the unit graph (n') in the APP rule. Node n’ has only
the one parent, so it is ready, and the created state is added to StA;41, so the first
conclusion holds.

case e = e ey. This state corresponds to the source node of the APP rule’s
graph. This step creates two new states st] and sth, corresponding 1-1 with the
two child nodes n; and ns, respectively, of n.

For each of j' € {1,2}, if the expression in st;-, is a variable, n;-, has a second
parent, and the appropriate suspending or nonsuspending conclusion holds as in
the second part of the e = ¢ case. Otherwise, n;, has only the one parent, so it is

ready, and the created state is added to StA; 1, so the first conclusion holds.

case e = @Q [ 7/. This state corresponds to the unit graph of the APP rule’s
graph. This step creates a state corresponding to the source node of the appropriate
function body graph. The conclusion then holds following the same analysis done
for the new states of the e = e; ey case.

case e = @ ¢ 7’. This state corresponds to the unit graph of each of the constant
function applications in the APPC rule. By definition of the machine, the argument
value is available from a start corresponding to n’s second parent.

If kK = o, the second conclusion follows like the e = ¢ case.

If k = fun(r’ £’), one of the conclusions follows as in either the e = ¢ or e = Az.¢’
case, depending on the constant value. [
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COROLLARY 3.3.1. If e evaluates in the profiling semantics
e P—SL>U,U;g,
then it also evaluates in the abstract machine
. ePS:Lquv,U’;Q,z/J
such that

—the number of states processed by the machine equals the work of the profiling
semantics, @ = W (g), and

—the number of steps in the machine is bounded by a function of the work and
depth of the profiling semantics, 1» < W(g)/q+ D(g).

PRrOOF. The first conclusion follows from the one-to-one correspondence of ac-
tive states processed and nodes in the graph. The second conclusion follows by

Theorem 32,11 O

4. FULLY SPECULATIVE MACHINE MODELS

We now need to simulate the P-CEK}¢; ; on each of our machine models. First,
Section BTl shows how to implement the active states multistack and the sets of
suspended states efficiently in parallel, using the fetch-and-add operation. Then,
Section shows how to implement the rest of the machine efficiently in each of
the models.

4.1 Representation of the Active States Multistack and Sets of Suspended States

The multistack (stack, for short) of active states requires three operations:

—<creating a new stack at the beginning of an evaluation,
—pushing states onto the stack in parallel, and
—popping states from the stack in parallel.

The sets of suspended threads similarly require three operations:

—creating a new set when creating a new thread,
—adding threads onto multiple sets in parallel, and
—removing all threads from multiple sets in parallel.

We do not have a bound on the maximum size of the stack or sets, so their repre-
sentations must be able to grow.

For both the stack and the sets, we use an array-based representation for its
constant-time lookup and update per element. To grow the data structure, we cre-
ate a new larger array when necessary, and copy the old elements into the new array.
The key to efficiency is to copy infrequently, so that copying does not dominate the
cost of using the data structure. The standard technique for this is to double the
size of the array each time it grows. The copying is sufficiently infrequent that its
cost is amortized to a constant time per step.

The implementation uses an operation called fetch-and-add that allows efficient
implementation of the queuing operations on multiple queues at once. Our cost
bounds are parameterized by the time cost of this operation, TF(p), as Figure
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TF(p)

Machine Time for fetch-and-add
Hypercube O(log p)
EREW PRAM | O((logp)®/?/+/loglogp)
CREW PRAM | O(logploglogp)
CRCW PRAM | O(logp/loglog p)

Fig. 25. Time bounds TF(p) for implementing fetch-and-add on randomized machines with p
Processors.

shows. These bounds hold with high probability [Ranade 1989; Matias and Vishkin
1991; 1995; Gil and Matias 1994].

The stack of active states StA and the queues of suspended states are each
implemented by multithreaded dynamically growing arrays (MDGAs). An MDGA
of states is a pair (m, s}) of its length m and an array of states St such that

—the array is at least as large as the specified length, m < |st|;

—the rear of the array stores the MDGA’s contents, so that it can grow at the
front; data element i of StA is St 5i)—mtis for each i € {0,...,m — 1}; and

—the array elements are sorted as to age in the array, i.e., elements having been in
the array longer are in the rear.

Sets are also implemented by MDGAs. Each operation returns a new pair of the
length and a new or modified array.

To 1n1t1a11y create an MDGA with one element, create the pair (m, st) where

=1, |st| > 1 and where the state is in the last element of the array, i.e. St|st| 1-
A larger initial array would delay the need for creating a larger array as the stack
grows. This clearly requires constant time and space.

We show that each step of a P—CEKf,STLI;( ) machine can be implemented in
O(TF(p)) amortized time, with high probability. Thus the cost bounds of the
implementation are parameterized by the cost of fetch-and-add. The amortization
comes from how we grow the active state stack. Since we have a bound on the
number of steps required by the machine, this allows us to bound the total running
time for these machines.

In the push operation, m MDGAs of arbitrary size may need to grow at the same
time, and we must parallelize the allocation and copying of all of the relevant data
in these arrays. Each processor i € {0,...,p — 1} has states in an array St; to add
to some MDGA m;. Clearly there are at most p MDGAs relevant to any given
instance of this operation, so m < p. The state array of MDGA i is labeled St}, for
i €{0,...,m —1}. The operation is implemented as follows:

(1) Compute (using a fetch-and-add) the number of states being added to each
MDGA i, k; = sum of |St;| such that m; = ¢, and the total number of original
and new states, K = 327" ' St} and k = Z?;é |St;|.

This requires O(TF(p)) time and O(p) temporary space for the fetch-and-add
operation, plus O(T'S(p)) times for two add-reduces.

(2) Increase the size of MDGA arrays, where necessary, as Figure 2] illustrates.
(a) Determine which MDGAs need larger arrays, and consider only these for

the remainder of this step,
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v Stnq e original data

copy

[] []

St L ]
0 m-1 o
2 for each source subarray, indicates
ArrDst | o e S Isti starting point for data elements
i=o within St
0 k-1,
ESrcA for each data element, indicates its
AT 101 0 fwww | m-1 fy m-1 source subarray
0 K —1,
ESrcp for each data element, indicates its
rcPos|0}.. |Sto| ~1fs « = 0 Stm-1| =3 position in its source subarray
0 k-1,
for each data element, indicates
EDst|0]..| O |aws QArrDst, | .JrrDst, .| starting pointinSt for its source
subarray

Step 2 of a push operation on a multithreaded dynamically growing array (MDGA),

allocating more space for the original data. There are m original subarrays and k’ total original
data elements.

This requires constant time to check the new length of each of the m < p
MDGAs, and O(m) temporary space to store these lengths.

Create a single array St such that each MDGA will use a subarray of it. As
before, each MDGA allocates twice as much space as its new total number
of states. The length of St is then the sum of the total space needed for
each of the MDGAs and is computed with an add-reduce.

This requires O(T'S(p)) time, at most O(k’) control space, and O(m) tem-
porary space.

Each MDGA computes (using an add-scan) the starting point within St
for its array, and stores this in ArrDst.

This requires O(T'S(p)) time and O(m) temporary space.

For each location in array St that receives an old state, record the source
of its states. For example, the source for one location might be the Oth
element of St4. Thus the sources are stored in an array ESrcArr of MDGA
numbers (here, 3) and an array ESrcPos of indices within the corresponding
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MDGA’s states (here, 0). These are computed by a segmented distribute
of m and a segmented index, respectively.

This requires O(k’/p + T'S(p)) time and O(k’) temporary space.

For each location in array St that receives an old state, record the destina-
tion of its states. The destinations are stored in an array EDst of offsets
into St marking where the new MDGA arrays start and in array FESrcPos.
The former is computed by using ESrcArr to index into ArrDst.

This requires O(k’/p) time and O(k’) temporary space.

Copy the current contents of these arrays into St. Each processor copies
a proportional share of the array, using ESrcArr and ESrcPos to index
into the appropriate arrays St;. For example, the 7th data element is
copied from element ESrcPos7 of array St/ESrc Arry into element EDst7 +

ESrcPosy of array St.

For each MDGA ¢, the time for copying each of its |St;| elements is counted
against the time for initially writing the elements that will be written into
the array until the next time it grows. There are at least |St}| such elements,
since the array doubles in size each time it grows. If the array does not
grow again, the cost of this copy operation is counted instead against the
initial writing of these elements. Thus, the time for copying data is at most
twice that of initially writing data. This requires O(k’/p) amortized time
and O(k’) space.

From now on, ignore the old arrays for these MDGAs and use the new ones.
Thus this step requires O(k'/p+TS(p)) amortized time, O(k’) space, and O(k')
temporary space.

(3) Move the new states into the MDGA arrays such that the load is evenly dis-
tributed among the processors, as Figure 271] illustrates.

(a)

For each location in the arrays St; that receives a new state, record the
source of its state. The sources are stored in an array ESrcArr of pro-
cessor numbers and an array ESrcPos of indices within the corresponding
processor’s states. These arrays are computed by a segmented distribute
of the processor numbers and a segmented index of the lengths of St;,
respectively.

This requires O(k/p +T'S(p)) time and O(k) temporary space.

For each location in the arrays St. that receives a new state, record this des-
tination. The destinations are stored in an array EDstArr of MDGA num-
bers and an array EDstPos of indices within the corresponding MDGA’s
states. The former is computed by using ESrcArr to index into 1, and
the latter by segment distributing the MDGA lengths and adding them to
ESrcPos.

This requires O(k/p + TS(p)) time and O(k) temporary space.

Copy the states into arrays St;. Each processor copies a proportional share
of the data, using the sources and destinations just computed to control
the indirect reads and writes, respectively.

This requires constant time per element, or O(k/p) total time and no space.

Thus this step requires O(k/p + T'S(p)) time and O(k) temporary space.
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new data
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0 k-1
for each data element, indicates its
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EDSTAIT Mg || My fwasl My_q |f My destination subarray
0 k-1
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EDStPOS|Sty| sy 1= =+ [St, | | “|st.”|-1| position in its destination subarray

Fig. 27. Step 3 of a push operation on a multithreaded dynamically growing array (MDGA),
adding new data to the array St. There are p processors and k total new data elements.

So in total, this requires O((k' 4+ k)/p+ T F(p)) amortized time and O(k’ + k) space
for the data, plus O(p) temporary space. This temporary space can be reused in
each step.

We remove elements from the data structure when selecting (at most) ¢ states
for each step. To pop k states, each processor indexes into the array and grabs the
appropriate k/p states. We use a scan operation to assign states to processors and
ensure that they are assigned to processors in order (i.e., lower-numbered processors
get lower-numbered states). Finally, the stack length is decremented by k. This
requires O(1) time and O(k) space.

4.2  Machine Models

Using the basic data structures just described, we now simulate the P-CEK}g; ,
on our machine models. First we examine the time required for each step of the
P-CEKJ]g; ¢, then total this for all steps.

THEOREM 4.2.1. Each P-CEK}; ¢ step can be simulated within O(q/p+TF (p))
amortized time on the p processor hypercube and PRAM machine models, with high
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probability.

PRrOOF. Each processor is responsible for up to ¢/p elements, i.e., processor i is
responsible for the elements i[¢'/p],..., (i + 1)[¢'/p] — 1, for ¢ = min(q, |StA]).
We assume each processor knows its own processor number, so it can calculate a
pointer to its section of the array.

The simulation of a step consists of the following:

PSL
(1) locally evaluating the states (= comp), and synchronize all processors;

(2) saving the result value, reactivating the queued states of all finishing states

PSL ..
(= block ), and synchronizing all processors;

PSL
(3) suspending all states requesting to do 8o (= eqct); and
(4) creating a new active state stack for the next step.

We now show each of these is executed in the given bounds.

We assume that environment access requires constant time, since the number
of variables, and thus the maximum size of any environment, is fixed once given
a program. Without this assumption, our time bounds need to be generalized to
account for the time for environment accesses and updates, e.g., by representing
environments as balanced binary trees, this adds a logarithmic factor in the number
of distinct variables in the program [Blelloch and Greiner 1995]. We can then as-
sume that the variables are renamed (e.g., using deBruijn indices) so as to minimize
the number of variables.

Locally evaluating the states requires the time it takes to process k = [¢'/p]

. . PSL . . .
states. The implementation of — .oy is straightforward and requires constant
time for the various operations. Thus the total time for locally evaluating the
states on the machine models of interest is O(k + T F(p)), where T F(p) provides
an upper bound on any memory latency or space allocations.

In the second substep, each processor has up to k states to finish. Each processor
writes its states’ results, then returns pointers to their suspended sets. This requires
O(k 4+ TF(p)) time, including memory latency.

In the third substep, each processor has up to 2k states that suspend. The states
suspend with a single push operation, requiring O(k + T F(p)) amortized time.

The new active state stack is the appending of the newly created and reactivated
states to the unselected original active states. There are at most 2q new states.
On average, there are at most 2¢q reactivated states, since each state is blocked and
later reactivated at most once. Thus we amortize, over all steps, the number of
states being added to the active states stack. We can push these elements onto the
stack in O(q/p + TF(p)) amortized time. O

To account for memory latency in the hypercube, and for the latency in the
fetch-and-add operation for all three machines, we process p- T F(p) states on each
step instead of just p, i.e., we use a P-CEKggf(p) machine.

COROLLARY 4.2.1. FEach step of the P—C’EKZ];,'STL};(p) machine can be simulated
within O(T'F(p)) amortized time on the p-processor hypercube and PRAM machine
models, with high probability.
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COROLLARY 4.2.2. If e evaluates in the profiling semantics
kR Fe @) v,054,

then its evaluation in the abstract machine,

PSLE,p-TF(p)
e = v

- 70-/;6271/]7

can be simulated within O(W (g)/p+ D(g)TF(p)) amortized time on the p-processor
hypercube and PRAM machine models, with high probability.

"y

5. PARTIALLY SPECULATIVE IMPLEMENTATIONS

A partially speculative implementation can abort and discard any irrelevant com-
putation. We consider two definitions of relevance, varying in what program’s result
is treated.

(1) If the result of the computation is only the semantic value obtained, i.e., a
constant or location, the definition is as follows:
A node n of a computation is relevant if there is a path from n to the minimum
sink nt of the overall graph, i.e., the final value depends on n.

(2) If the result of the computation is either a constant or the entire data structure
referenced from a location, the definition is as follows:
A node n of a computation is relevant if there is a path from n to the minimum
sink nt of the overall graph, i.e., the final value depends on n, or if n is reachable
from the value computed in nt, i.e., it is part of the final result data structure.

Note that both of these definitions are stronger than saying that an application’s
argument is relevant if its value is used in its function body, since that function
body (or that part of it) might not be relevant.

The simplest appropriate modification to the fully speculative implementation
is to end on the first iteration that the main thread is done, i.e., when [,.s has a
value. But since the fully speculative implementation does not maintain the states
in any particular order, we might be unlucky and schedule all irrelevant compu-
tation before the relevant computation. Thus it might make sense to prioritize
computations to minimize the amount of irrelevant computation. This might also
allow us to detect and discard irrelevant threads during evaluation.

Sections [5.1] and [5.2] discuss some strategies and implementations for prioritizing
and aborting threads. Then Section discusses the benefits of partial speculation.

5.1 Prioritizing Threads

On each step, we select the (up to) ¢ active states with the highest priority. The goal
of prioritizing threads is to minimize the number of irrelevant states used during a
computation, so as to reduce the cost of the computation. Since we do not know
whether a thread is relevant or not until the computation is done, any priority
scheme is either very restricted or based on heuristics. Furthermore, more involved
prioritization methods introduce more complicated data structures to store the
active states. The cost of prioritizing threads has the potential for overwhelming
the cost of evaluation.
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The most basic priority scheme distinguishes necessary threads, those known to
be relevant, from speculative threads, those not yet known to be relevant or irrel-
evant. Necessary threads are given higher priority than speculative threads. The
initial thread is immediately necessary, as is any thread spawned from a necessary
thread by APPC, or any thread that a necessary thread blocks on. To implement
this scheme, we can use two active state stacks, one for each priority, with only a
constant factor of overhead (e.g., each newly created or reactivated state checks to
which of the two stacks it should be added). This priority scheme was proposed by
Baker and Hewitt [1977].

More general priority schemes can be based on the distinguishing degrees of
“speculativeness”:

—Threads created by APPC have the same priority as the original parent thread,
because they are relevant (or irrelevant) if and only if the original thread is.

—Threads created by APP are more speculative than the original thread, because
the original parent thread must be used to communicate this one’s name for it
to be used.

The prioritization used by Partridge [Partridge and Dekker 1989; Partridge 1991] is
an example of this. If we assume that each speculative child has equal probability
to be relevant, then the active states should be kept as a tree, where each node
represents active states of equal priority, and each edge represents a speculative
child relationship. Selecting the highest-priority threads is removing them from
the top of the tree, which seems unlikely to be efficient. But adding new threads
can be easily done by adding them in the appropriate places of the tree. Adding
reactivated threads is also easy if we remember where they would have been placed
when they blocked. Blocking also requires updating the priority of the thread
blocked on to the higher of its current priority and the blocking thread’s priority,
but comparing two priorities is also unlikely to be faster than logarithmic in the
depth of the priority tree.

Further generalizing the scheme to allow arbitrary probabilities of relevance would
likely be even more inefficient. Maintaining the accurate thread ordering can domi-
nate the cost of computation, since it can involve touching many additional threads
per step. As a simple example, consider storing the threads in order of relevance in
an array. Inserting threads involves a sorted merge operation, requiring work linear
in the number of currently active threads.

5.2 Aborting Threads

To distinguish unnecessary threads, those known to be irrelevant, requires a form
of garbage collection on threads. For example, consider the evaluation of an ap-
plication e; es resulting in a closure. Even if the function body does not use the
argument eo, the closure can contain a reference to the argument which is then
used by the enclosing context. Only following all the relevant pointers can tell us
which threads are no longer accessible, and thus unnecessary.

Several methods of garbage collection of processes has been previously described.
Baker and Hewitt [1977] and Hudak and Keller [1982] used a mark-and-sweep ap-
proach, which is not asymptotically efficient, since it traverses pointers too many
times. Grit and Page [1981] and Partridge [Partridge and Dekker 1989; Partridge
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1991] used a reference-counting approach which can be efficient if we do not spend
too much effort garbage collecting on each step. We discuss this option in more
detail.

For each thread we maintain a count of the references to this thread from environ-
ments. The count is one when the thread is created. Counts are incremented when
environments are extended, creating a new copy of the environment. Of course,
if environments are partially shared to minimize space, the counts should appro-
priately reflect the sharing. And the appropriate counts are decremented when
environments are restricted or threads finish.

When a state is selected at the beginning of a step, we check the count of its
thread. If its count is zero, we abort this thread, including decrementing all counts
of threads reachable from its environment. But these environments contain values,
which in turn contain environments, etc., and we cannot efficiently traverse the
entire environment and decrement all these counts at once. So, we use a queue
(implemented with an MDGA, but with queue operations) of environment bindings,
decrementing k - ¢ reference counts each step, for some constant k.

We can augment this scheme further by observing that all threads spawned by
an irrelevant thread (i.e., its children) are themselves irrelevant. When a thread is
aborted, we also abort its children. To implement this, each thread also keeps a set
of pointers to its children. When aborting a thread, the machine sets the counts of
its descendants to zero and aborts them. While a given thread can have many more
than g descendants, the machine can amortize the cost of aborting them over all the
steps, accounting this cost against the cost of creating the threads. Alternatively,
we can use a queue of threads to abort, and abort & - ¢ of these on each step, adding
the children of any aborted thread onto the queue. This queue of threads could
be implemented by an MDGA, although Grit and Page [1981] used a less efficient
binary tree data structure for this.

Reference counting is asymptotically efficient, since we only need to change counts
for threads that the machine is touching anyway. Thus it involves only a constant
factor overhead.

The standard problem with reference counting in garbage collection is accounting
for recursive data. Here it works with recursive functions because a recursive closure
cl(p,z,y,e) would not be represented recursively. The key to that representation is
explicitly naming the closure x and unrolling the recursion only when necessary.
The same technique could be applied to circular data structures, e.g., the semantics
suggested in the Appendix could be altered so that it created a named pair value,
similar to the named closure, that is unrolled when applied to the selectors fst or
snd.

5.3 Cost Benefits of Partial Speculation

When a priority scheme schedules computation well, for some computations it can
greatly reduce the number of states processed or steps an evaluation. Clearly any
partially speculative implementation should quickly detect that the potentially large
computation e in the expression (Az.1) e can be aborted.

Consider the subgraph g, consisting of only the relevant nodes of a computation
graph g. Note that a serial call-by-need implementation requires W (g,) time to
evaluate the computation. Unlike the PSLf, any partially speculative abstract ma-
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chine correctly prioritizing necessary computation processes at most q-W(g,) states
and W(g,) steps, since at least one relevant node is traversed on each step. This
implies that it terminates if the call-by-need implementation does. But we conjec-
ture that it is possible to construct, for any priority scheme, example computation
graphs that the priority scheme does not significantly parallelize even if its relevant
subgraph has significant parallelism.

Garbage collecting threads obviously benefits the space cost of evaluation. But
it is unclear whether it can improve the worst-case asymptotic space bounds of an
evaluation strategy. Consider an irrelevant subcomputation that generates many
threads before the main thread of this subcomputation is known to be irrelevant. As
the machine aborts these threads, their descendants, since they are not yet known
to be irrelevant, can generate new irrelevant threads. The aborting of threads will
eventually catch up with the spawning of new irrelevant threads if the machine does
both of the following;:

—It aborts more threads per step than it creates, e.g., it aborts up to k - g threads
per step, for some constant k > 1.

—It aborts on at least two levels of the graph each step, e.g., its aborts some
threads, which adds those threads’ children to the abort queue and then aborts
some of these children.

Without the latter condition, spawning could always be a level ahead of aborting,
as in Grit and Page’s description.

6. RELATED WORK

The PSL model is “speculative” in two senses. First, it is speculatively paral-
lel relative to a call-by-value model (e.g., the PAL model [Blelloch and Greiner
1995; Greiner 1997]), as it allows a function body and argument to be evaluated
in parallel when possible, which is consistent with Hudak and Anderson’s call-by-
speculation [Hudak and Anderson 1987]. Second, it is speculative relative to a
call-by-need evaluation, as it at least starts the evaluation of an argument even if
it is irrelevant. This contrasts with some descriptions of speculativeness [Osborne
1989; Flanagan and Felleisen 1995; Moreau 1994] that are speculative relative to a
call-by-value evaluation. By definition of those descriptions, the parallel execution
of a program must be extensionally equivalent to the serial execution, even in the
presence of control escapes or side-effects, e.g., when evaluating let * = e; in e,
if e; has an error or escape, then any escapes or side-effects of es’s evaluation must
be ignored. Thus, e; is considered mandatory, while es is speculative. Similarly,
any side-effects in e; must occur before any conflicting side-effects in e;. Compu-
tation of e; and ey may still be parallelized within these constraints. Our results
are still applicable to this alternate view of speculation by simply reversing which
evaluations are considered mandatory or speculative.

In Multilisp, any expression can be designated as a future that spawns a thread
which may be executed in parallel. If its value is needed and not yet computed,
the thread requesting the future’s value blocks until the value is available. A future
can be explicitly touched to force its evaluation and its synchronization with the
touching thread. It can also be explicitly aborted—if its value is relevant, this leads
to an error. Speculative evaluation is equivalent to designating all expressions as
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futures and disallowing touching. Full speculation also disallows aborting futures,
whereas partial speculation allows aborting them, but in a safe manner not in the
programmer’s control.

Full speculation and leniency are essentially the same thing, although the term
“leniency” originally implied a specific lack of evaluation ordering [Traub 1988].
Id and pH evaluate all subexpressions fully because they may contain side-effects,
although a compiler might optimize cases when this is not necessary.

Graph reduction is one technique for implementing lazy (call-by-need) functional
languages. But since lazy evaluation entails an inherent lack of parallelism [Ken-
naway 1994; Tremblay and Gao 1995], parallel versions of these languages have
incorporated partial speculation, compromising on the laziness of the language.

By using computation graphs as our costs, we have been able to simplify the
semantics as compared to those by Roe [1990; 1991] and by Greiner and Blelloch
[1996]. Similar to here, they included depths in an environment to describe when
values had been computed. But they also required the context of a judgment to
contain a depth at which the evaluation begins, like threading clocks through the
evaluation. Here we accomplish this result by building computation graphs which
contain the same information in the connections.

Roe’s semantics suffers from an additional complication resulting from his use of
some serial expressions. Each expression results in two depths (or Roe’s “times”):
when the value becomes “available” (i.e., the depth of the minimum sink) and when
the evaluation has finished traversing the expression. This latter is just the depth
of the minimum sink in our model, but to explain the difference in his, consider a
pairing expression, (e1,e2). The most natural rule for it in the PSL would express
that the two subexpressions start evaluating at the same depth. But using a typical
encoding, similar to that for cons e; e in the Appendix, the second subexpression
starts at a constant lower depth than the first. This happens in Roe’s model, despite
there being a rule specifically for pairing expressions. Described operationally, first
evaluation of the first component is started, then the second, and then the pair is
created where the component values eventually reside.

Another difference from Roe’s semantics is that he tags every value with the
depth at which it becomes available. This is a result of his inclusion of explicit data
structures (cons-cells). These tags are subsumed here by

—tagging values in environments with their computation graphs (recall that the en-
coding of a data structure is a closure, which contains an environment), together
with

—the evaluation judgment resulting in a value and its graph.

Flanagan and Felleisen [1995] and Moreau [1994; 1995; 1996] also provided se-
mantics for speculative languages that were augmented with costs. Both used small-
step contextual-style operational semantics and included continuations or escapes
in the language. Moreau also included side-effects. Each described two measures
of the work cost of evaluation: the total and the mandatory, i.e., nonspeculative,
work. Note that in an expression let x = e; in es, they considered ez, not e;, to
be speculative, since e; could abort, so that the result of es would not be needed.
Neither measured depth, or any related cost, even though both described parallel
computation.
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Moreau [1995; 1996] uses two similar, but more abstract, machines for speculative
computation. The more detailed of the two is similar in form, as it is also based on
the CEKS serial machine and consists of a series of steps transforming a collection
of states and a store, such that each state contains a control string, environment,
and continuation. It has three primary differences from ours:

—it includes side-effects and continuations;
—it does not explain how to schedule threads; and

—it uses one giant set of suspended threads, rather than a queue per thread.

Nikhil introduces the P-RISC [Nikhil 1990] abstract machine for implementing
Id, a speculative language. The machine, however, is not meant as a formal model
and does not fully define the interprocess communication and the selection of tasks
to evaluate. It is a more pragmatic concurrent model designed to reduce communi-
cation costs, rather than a synchronous one designed to formally analyze runtime
across a whole computation. Aside from the basic idea of having queues of blocked
threads, the P-RISC and P-CEK}; ; have little in common.

7. DISCUSSION

We have specified a fully speculative implementation of the A-calculus (and related
languages) and proved asymptotic time bounds for several machine models. Our
time bounds are good in the sense that they are work-efficient and within a loga-
rithmic factor optimal in terms of time. To obtain these bounds, we introduce fully
parallel operations on queues of suspended threads.

We believe that the approach we use is an important step in trying to make it
possible for users to better understand the performance of high-level parallel lan-
guages without requiring them to understand details of the implementation. As
discussed in the introduction, however, the “implementation” as described was op-
timized to make the proofs easy for the asymptotic case and therefore has many
constant-factor overheads that are likely to make it impractical. The introduction
mentioned how many of these overheads might be reduced; however, this article
certainly does not prove that these lead to fast implementations. Another impor-
tant step therefore would be an actual implementation with experimental results
comparing predicted and actual times.

The standard A-calculus encodings of many language constructs including data
structures (e.g., lists), conditionals, local bindings, and recursion behave as desired
under speculative evaluation. Furthermore these encodings only involve constant
overhead in work and depth [Greiner 1997] over a direct definition. Here we briefly
describe some of these constructs.

Lists. Using the standard encodings of lists into the A-calculus ensures that they
are speculative, as desired. For example, an encoding of the list constructor cons
is

cons = AT1.AT2.AT.X T1 To
Az.x (Axy.Azo.21)

cdr = x.x (Ax1.Ax2.22).

car
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PSL PSL
p, o el — vi,01501 plx — vi;91],01 - ea — v2,02; 92

— (SLET)
p,otslet x =e1 in 220 — v2,02; 1P g1 D g2

Fig. 28. Potential PSL rule for a serial binding expression. This assumes that the definition of
expressions is suitably extended.

Then expression cons ey es evaluates e; and e speculatively and returns a cons-cell
in constant work and depth.

Conditionals. Using the standard call-by-value encodings of conditionals and
booleans leads to nonspeculative evaluation of conditional branches—only the ap-
propriate branch is evaluated. Here we have

if e; then e else e3 = e; (A\x.e3) (Az.e3)
true = Axi. Ax2.21 0

false = Ax;.A\x2.22 0

where x is a fresh variable. During the execution of a conditional, both of the
abstractions encoding the branches are evaluated speculatively. But since they are
abstractions, they terminate in one step. Only the appropriate branch, i.e., the
body of the corresponding abstraction, is evaluated once the test has been evalu-
ated. An encoding which does not wrap ey and e3 in abstractions would lead to
speculative evaluation of both branches, an option offered in some languages [Os-
borne 1989].

Let. The standard definition
let x = e;ines = (Ax.e2) 1

results in the two subexpressions e; and e being evaluated in parallel.

Serial Let. Since we include no basic serialization construct in the core of PSL,
providing a serializing binding construct, for example, is more difficult. But it can
be encoded using a continuation passing style (CPS) transformation (e.g.,Plotkin
[1974]):

slet z = e; in es = CPS[e1] (Mz.e2)

Traditionally used for serial computation, CPS makes the standard serial path
of evaluation control explicit. The transformation to CPS introduces additional
dependences, so that no significant computation can be performed in parallel under
speculative evaluation. Alternatively, we could simply add a special expression with
a serial semantics, as in Figure

Recursion. If we consider only recursive functions, the standard translation of
letrec using the call-by-value Y-combinator introduces only constant work and
depth overhead to each unrolling of a recursive function.

However, it might make sense to create a subclass of recursive data structures—
those that are circular. For example, consider the following recursive definition in
an extended speculative language:

letrec = (e1,x) in e

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 2, March 1999.



A Provably Time-Efficient Parallel Implementation of Full Speculation : 283

, PSL
pokFer —vi,01;01

pliofl =01k ez = v, 02; g2 (LETREC-pair)

. PSL
p,0 F letrec x = cons e; in ea — v,02;1 &G g2

where | & o, p' = plz — ;1]

Fig. 29. Potential PSL rule for creating circular pairs. This assumes that the definition of expres-
sions is suitably extended.

The semantics rule of Figure 29 would result in a circular pair. In this example,
the definition returns a location for the pair value in constant work and depth and
binds it to x while the pair’s components are still evaluating. The pair’s second
component returns having the value of the pair itself, circularly.

This form of a letrec expression can also be encoded in the basic A-calculus, but
its evaluation results in an infinitely long chain of pairs being created. Each pair in
this chain is created by a separate thread in finite work and depth, but the overall
computation never stops creating new threads for the rest of the chain. In full
speculation without explicit recursion, the only way to terminate with circular data
structures is to rewrite the program to delay and force the structures’ components.
In partial speculation without explicit recursion, any irrelevant threads should be
eventually aborted, assuming the particular variant of partial speculation allows
thread aborting to catch up with thread spawning, as discussed in Section [(.2.
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