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Abstract. We present parallel lightweight algorithms to construct wavelet trees, rank and
select structures, and suffix arrays in a shared-memory setting. The work and depth of our parallel
wavelet tree algorithm matches that of the best existing algorithm while requiring asymptotically
less memory. Our experiments show that it is both faster and more memory-efficient than existing
parallel algorithms. We also present an experimental evaluation of the parallel construction of rank
and select structures, which are used in wavelet trees. Next, we design the first parallel suffix array
algorithm based on induced copying. The induced copying requires linear work and polylogarithmic
depth for constant alphabets. When combined with a parallel prefix-doubling algorithm, it is more
efficient in practice both in terms of running time and memory usage compared to existing parallel
implementations. As an application, we combine our algorithms to build the FM-index in parallel.

Introduction. In recent years, compressed full-text indexes [23] have become popular as
they provide an elegant way of compressing data while at the same time supporting queries
on it efficiently. The most popular indexes all rely on three basic concepts: succinct rank and
select on bit-vectors, wavelet trees, and suffix arrays. Modern applications need algorithms
for constructing these data structures that are fast, scalable, and memory-efficient. The
Succinct Data Structure Library (SDSL) [7] is a state-of-the-art library for constructing these
data structures sequentially. Additionally, in recent years wavelet tree construction [6, 28]
and linear-work suffix array construction [13] have been successfully parallelized. However,
so far most parallel implementations are not memory-efficient. The goal of this work is to
develop parallel algorithms for constructing these data structures that are memory-efficient
while at the same time being fast and scalable.

For wavelet tree construction, we reduce the space usage of the algorithm by Shun [28]
from O(n log n) to n log σ+o(n) bits of additional space beyond the input and output for an
input size n and alphabet size σ. Our algorithm requires O(n log σ) work and O(log n log σ)
depth. Our experiments on 64 cores show that our modified algorithm achieves a speedup of
2–4x over the original algorithm of [28], and achieves a speedup of 23–38x over the fastest
sequential algorithm. Additionally, we propose a variation of the domain-decomposition
algorithm by Fuentes et al. [6], which requires the same work and space as our first algorithm
when σ/ log σ ∈ O(log n). We also present an experimental evaluation of constructing rank
and select structures, which are used in wavelet trees, in parallel, and show speedups of
11–38x on 64 cores.

For suffix array construction there are three main classes of algorithms described in
the literature [27]: prefix doubling, recursive, and induced copying (sorting) algorithms.
While prefix doubling [17] and recursive algorithms [13] have been parallelized in the
past, the sequential algorithms that are the fastest and most memory-efficient in practice
all use induced copying. Induced copying algorithms are hard to parallelize because they
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use sequential loops with non-trivial data dependences. In this work, we develop a parallel
algorithm using induced copying. We first use parallel rank and select on bit-vectors to
develop a more memory-efficient version of the parallel implementation of prefix doubling
from the Problem Based Benchmark Suite (PBBS) [29]. Then we show how to parallelize
an iteration of induced copying for constant-sized alphabets in polylogarithmic depth.
Finally we combine both techniques to generate a parallel version of a two-stage algorithm
introduced in [11]. Our experiments show that our algorithm uses only slightly more space
than the most memory-efficient sequential algorithm, and among parallel algorithms it is
the most memory-efficient and usually the fastest. On 64 cores, our algorithm is up to 1.6x
faster and uses 1.8x less memory than the fastest existing parallel algorithm, and achieves a
speedup of 4–9x over the fastest sequential algorithm.

Finally, we use our algorithms to construct FM-indexes [4], a compressed full-text index,
in parallel and integrate our implementations into the SDSL. Using the algorithms as part
of the SDSL for FM-index construction, on 64 cores we achieve self-relative speedups
of 17–33x and absolute speedups of 6–9x over the sequential SDSL implementation on a
variety of real-world inputs.

Preliminaries. For cost analysis we use the work-depth model, where work W is the
number of total operations required and depth D is the number of time steps required. Using
Brent’s scheduling theorem [12] we can bound the running time by O(W/P + D) using
P processors on a PRAM. We allow for concurrent reading and writing to shared memory
locations. We make use of the parallel primitives prefix sum, filter, and split. Prefix sum takes
an arrayA of n elements, an associative operator⊕ and an identity element 0 with 0⊕x = x
for all x, and returns the array {0, A[0], A[0] ⊕ A[1], . . . , A[0] ⊕ A[1] . . . ⊕ A[n − 2]} as
well as the overall sum A[0]⊕ A[1] . . .⊕ A[n− 1]. Prefix sum can be implemented with
O(n) work and O(log n) depth [12]. Filter and split both take an array A of n elements and
a predicate function f with f(A[i]) ∈ {0, 1}. Split returns two arrays A0 and A1 where Ak
holds all elements with f(A[i]) = k. Filter only returns A1. Both filter and split preserve
the relative order between the elements and can be implemented using prefix sums in O(n)
work and O(log n) depth. By dividing the input in groups of log n elements and processing
each group sequentially and in parallel across all groups, filter and split can be implemented
with n bits of space in addition to the input and output.

A string S is a sequence of characters from a finite ordered set Σ = [0, . . . , σ−1], called
the alphabet, where σ = |Σ|. |S| = n denotes the length, S[i] denotes the i’th character
(zero-based) and S[i, . . . , j] denotes the substring from the i’th to the j’th position of S
(inclusive). If j = |S| − 1 then S[i, . . . , j] is the i’th suffix of S. The ordering of Σ induces
a lexicographical ordering for strings. The suffix array (SA) of a string is an array storing
the starting positions of all suffixes of S in lexicographic order. As all suffixes of a string
are unique, SA is a permutation and the inverse permutation is called the inverse suffix array
(ISA). The Burrows-Wheeler transform (BWT) of a string S is the permutation BWT of S
with BWT [i] = S[SA[i]− 1] for i ∈ {0, . . . , n− 1} where S[−1] = S[n− 1].

We define the three following queries on a string S: S[i] accesses the i’th element,
rankc(S, i) counts the appearances of character c in S[0, . . . , i− 1] and selectc(S, i) calcu-
lates the position of the i’th appearance of c in S. For bit-vectors (σ = 2), there are rank
and select structures using n+ o(n) bits of space and supporting the queries in O(1) work.



Wavelet trees (WT) generalize this to larger alphabets [8]. A WT of the string S over the
alphabet [a, . . . , b] ⊆ [0, . . . , σ − 1] has root node v. If a = b then v is a leaf node labeled
with a. Otherwise v has a bit-vector Bv where Bv[i] = 1 if S[i] ≤ (a+ b)/2 and Bv[i] = 0
otherwise. Let Sk be the string of all S[i] with Bv[i] = k. The left child of v is the WT of the
string S0 over the alphabet [a, . . . , b(a+ b)/2c] and the right child is the WT of the string S1

over the alphabet [b(a+ b)/2c+ 1, . . . , b]. The WT can support the three queries above in
O(log σ) work. By changing the definition of Bv, the shape of the WT can be altered from a
balanced binary tree to, for example, a Huffman-shaped tree. We refer the reader to [22] for
numerous applications of WTs.

The FM-index is a compressed full-text index using the BWT of a text [4]. By supporting
efficient rank and select queries on the BWT of a text S (for example, with a wavelet tree),
the FM-index can efficiently count the number of occurrences of a pattern P in the text S.
By additionally sampling the SA of S, the exact locations of the occurrences in S can be
calculated. In this work we refer to the FM-index of S as the wavelet tree over the BWT of
S augmented with rank and select structures.

Related Work. Fuentes et al. [6] describe two O(n log σ) work and O(n) depth algorithms
to construct WTs. The first uses the observation that the levels of the WT can be built
independently; the second splits the input among processors, then builds WTs over each
part sequentially and finally merges the WTs. Shun [28] introduces the first polylogarithmic-
depth WT construction algorithms and also describes how to build the rank and select
structures on the bit-vectors in parallel. The algorithm performing best in practice constructs
the WT level-by-level. Each level is computed from the previous level in O(log n) depth.
Recently, Ferres et al. [5] describe how to construct range min-max trees in parallel. Their
structure can support rank/select queries on bit-vectors in O(log n).

Suffix arrays were first introduced by Manber and Myers [21] as a space-efficient
alternative to suffix trees. Since then, many different suffix array algorithms have been
developed, including the difference cover (DC3) algorithm [13] and the induced sorting
algorithm (SA-IS) [24]. DC3 was one of the first linear-work suffix array algorithms,
and it can be efficiently parallelized in various computational models. There are parallel
implementations of DC3 available for shared memory [29], distributed memory [15], and
GPUs [3, 26, 31]. SA-IS is a lightweight linear-work algorithm and one of the fastest in
practice. Unfortunately, it is hard to parallelize as induced sorting consists of multiple
sequential scans with non-trivial data dependences.

Many bioinformatics applications use compressed SAs, and thus there have been many
frameworks with parallel SA implementations optimized for DNA inputs [10, 18]. For
example, PASQUAL [18] has a fast implementation using a combination of prefix doubling
and string sorting algorithms. For certain applications, only the BWT is needed so there has
been significant work on constructing the BWT in parallel [9, 19].

Parallel Wavelet Tree Construction. In this section, we develop space-efficient paral-
lel algorithms for WT construction. In addition to the tree structure and bit-vectors per
node, each node of the WT also requires a rank/select structure. We describe our parallel
implementation of rank/select structure construction at the end of this section.

The levelWT algorithm proposed by Shun [28] uses prefix sums over the bit-vectors
of a level of the WT to calculate the bit-vectors for the next level, allocating two integer



arrays each of length n. As a result the algorithm has a memory requirement of O(n log n)
bits. We reduce the memory requirement by substituting the prefix sums with the parallel
split operation, reducing the memory down to n log σ bits of additional space excluding
the input and output. A further optimization is to implement the algorithm recursively
instead of strictly level-by-level as done in [28]. In particular, the two children of a node are
constructed via two recursive calls in parallel. This approach avoids explicitly computing
the node boundaries per level, which requires O(σ log n) bits of space, and instead each
processor computes the boundaries when it launches the two recursive calls, requiring
O(log n log σ) bits of stack space per processor (one pointer for each level of the tree). We
refer to this algorithm as recursiveWT, and the pseudocode is shown below. Note that Lines
8 and 9 can proceed in parallel, and is implemented with fork-join. This algorithm has
O(n log σ) work and O(log n log σ) depth, matching that of the original levelWT algorithm.

1 recursiveWT (S , Σ = [a, b]) :
2 if a = b : return leaf labeled with a
3 v := root node
4 v.bitvector := bitvector of size |S|
5 parfor i := 0 to |S| − 1 :

6 v.bitvector[i] =

{
0, if S[i] ≤ (a+ b)/2,

1, else
7 (S0, S1) = parallelSplit (S, v.bitvector)
8 v.leftChild = recursiveWT (S0, [a, ba+b

2 c]) // asynchronous parallel call
9 v.rightChild = recursiveWT (S1, [ba+b

2 c+ 1, b]) // asynchronous parallel call
10 return v

Our second algorithm for WT construction (ddWT) is a modified version of the domain
decomposition algorithm introduced by Fuentes et al. [6]. The first part of our algorithm
is the same as the original algorithm: the input string is split into P chunks, and a WT is
constructed for each chunk independently in parallel. The second part of the algorithm
involves merging the WTs. In the original algorithm of [6], the bit-vectors of each level are
merged sequentially, leading to linear depth. We observe that merging the WTs essentially
requires reordering the bit-vectors. If σ/ log σ ∈ O(log n) then our algorithm requires
O(n log σ) work, O(log n log σ) depth and in O(n log σ) bits of space. Due to limited space,
we refer the reader to [16] for a detailed description and cost analysis.

Both recursiveWT and ddWT can easily be adapted to construct different shapes of WTs,
such as Huffman-shaped WTs [20]. As part of a parallel version of the SDSL, we provide
implementations of recursiveWT for constructing various shapes of WTs.

We now describe our parallel implementation of constructing rank and select structures
on bit-vectors based on the ideas of [28]. For rank, we chose to parallelize the broadword
implementation in SDSL [30]. The answers to the rank queries are pre-computed and stored
in first and second-level lookup tables. The rank structure uses 25% additional space for the
bit-vector and has a cache-friendly memory layout. The construction can be parallelized
using prefix sums. For select, we parallelize the SDSL implementation of a variant of
the structure by Clark [2]. First, the location of every 4096’th 1-bit is stored. The regions
between stored 1-bits define blocks. We refer to a block that spans more than log4 n bits
as a long block, and the remaining blocks as short blocks. For long blocks, the answers to
all queries are stored explicitly. For short blocks, the location of every every 64’th 1-bit is



stored, again defining sub-blocks. For sub-blocks of longer than log(n)/2 bits, the answers
are stored explicitly, and for the other blocks, a linear scan of the original bit-vector in the
range of the sub-block is performed to answer the query.1 For a more detailed analysis,
see [2]. Prefix sums can be used to categorize the blocks into long and short blocks. After
categorizing the blocks, they can be initialized independently. As short blocks are only of
polylogarithmic size, they can be initialized sequentially in polylogarithmic depth. Long
blocks are also initialized with prefix sums.

Parallel Suffix Array Construction. Previous parallel SA algorithms either use the
recursive [13] or prefix doubling [17] approach. However the fastest and most space-efficient
sequential SA algorithms use induced copying [27], so our goal here is to parallelize such an
algorithm. We first describe a simple parallel prefix doubling algorithm, which in practice
needs n(2 + log n) + o(n) bits of memory in addition to the input and output. We then
introduce a parallel algorithm which uses induced copying, and uses the prefix doubling
algorithm as a subroutine. The algorithm uses n+ o(n) additional bits of space.

ParallelRange from the PBBS [29] is a parallel version of the algorithm described by
Larsson and Sadakane [17]. It starts with an approximate SA and ISA, in which the suffixes
are only sorted by their first character. A series of refinement steps are then applied, where on
step d, groups of suffixes with the same ISA value from the previous step are sorted by their
first 2d characters by accessing ISA[SA[i] + 2d] for suffix i. In the original implementation,
two integer arrays (one for reading and one for writing) are used to keep track of groups of
same ISA value, occupying an additional 2n log n bits. To reduce memory consumption,
we mark the boundaries of groups with a bit-vector. Using a parallel select structure allows
us to iterate over all groups of the same ISA value efficiently. Thus the algorithm only
needs n log n additional bits for the ISA array, 2n+ o(n) bits for two bit-vectors with select
structures, and the space for the sorting routine. Using a parallel integer sorting algorithm
with O(n) work and O(nε) depth for 0 < ε < 1 [12], parallelRange has O(n log n) work
and O(nε log n) depth. In practice, the work is usually much closer to linear.

Using parallelRange, we can parallelize the DivSufSort implementation of the two-stage
algorithm [11] by Mori. In the first step the suffixes are categorized into A, B, and B∗

suffixes. A suffix S[i, . . . , n− 1] is of type A if S[i+ 1, . . . , n− 1] < S[i, . . . , n− 1] and
of type B otherwise. B∗ suffixes are all B-type suffixes that are followed by an A-type
suffix. This step can be parallelized using two parallel loops and prefix sums in O(n) work
and O(log n) depth. The second step lexicographically sorts all of the B∗ substrings. B∗

substrings are all substrings formed by the characters between two consecutive B∗ suffixes.
Then each B∗ substring can be replaced by its rank among the B∗ substrings, forming a
reduced text. Note that there are very efficient parallel string sorting algorithms available [1].
Our implementation, however, only parallelizes an initial bucket sort and uses the sequential
multikey quicksort for the resulting buckets, which we found to be sufficient in practice.
The third step constructs the SA of the reduced text. As the text size has reduced by at
least half, the unused part of the SA can be used for the ISA, and thus parallelRange can
be applied with only n+ o(n) bits additional space, plus the space needed for the sorting
routine. In the final step, the sorted order of the B∗ suffixes is used to induce the sorting
of the remaining suffixes. We describe induced sorting next, and introduce a linear-work

1In theory, a lookup table is used to store all possible answers to small sub-blocks, however a linear scan works better in practice.



1 bucketA := Starting positions of the A buckets
2 bucketB := Ending position of the B buckets
3 for i := n− 1 to 0 :
4 if SA[i] has been initialized and SA[i]− 1 is a B−type suffix :
5 SA[bucketB[S[SA[i]− 1]]] = SA[i]− 1
6 bucketB[S[SA[i]− 1]]−−
7 for i := 0 to n− 1 :
8 if SA[i]− 1 is an A−type suffix :
9 SA[bucketA[S[SA[i]− 1]]] = SA[i]− 1

10 bucketA[S[SA[i]− 1]] + +

Figure 1: Induced sorting of all A and B-type suffixes by using the already sorted B∗-type suffixes.
i 0 1 2 3 4 5 6 7 8 9 10 11

S[i] a a b c a a a b c a b c
type B B B* A B B B B* A B B* A

S[SA[i]] a a a a a a b b b c c c

SA[i] 4 0 5 9 1 6 10 2 7 11 3 8

Figure 2: Example of induced sorting of B suffixes using B∗ suffixes. The SA entries corresponding to
the B∗ suffixes are circled, and the order in which SA is filled in is denoted by the arrows. Each chain
of arrows corresponds to a run of B suffixes ending with a B∗ suffix.

polylogarithmic-depth algorithm for induced sorting on constant-sized alphabets.
The sequential algorithm for induced sorting (shown in Figure 1) consists of two se-

quential loops, one sorting the B suffixes and one sorting the A suffixes. At the beginning,
the SA entries corresponding to B∗ suffixes are initialized. The order in which the SA is
traversed is crucial to guarantee a correct sorting. B-type suffixes are defined such that if a
B-type suffix is directly preceded (in text order) by anotherB-type suffix, then the preceding
suffix has to be lexicographical smaller. Figure 2 shows an example of how induced sorting
inserts B-type suffixes into the SA. The arrows indicate the insert operations in Line 5 of the
induced sorting algorithm. Intuitively, induced sorting works because insert operations into
a bucket are made in decreasing lexicographical order. For A-type suffixes the observation
is analogous. For a full proof that this algorithm induces the correct SA, we refer the reader
to [24]. Now we describe how to parallelize the induced sorting of the B-type suffixes.
Sorting the A-type suffixes can be done analogously.

Inspecting Lines 3–6 of Figure 1 reveals dependences in SA and bucketB among
iterations. We say that SA position bucketB[S[SA[i]− 1] is being initialized by position
i. To perform the iteration i of the for-loop independently from the other iterations, we
need to know the value of SA[i] and of bucketB[S[SA[i]− 1] before the for-loop executes.
Assuming an interval of SA values have already been initialized, the size of the buckets
can be pre-computed using prefix sums, enabling the for-loop to be executed in parallel.
If we make the simplifying assumption that consecutive characters are always different in
the input string, then S[SA[i] − 1] < S[SA[i]] holds on Line 5. Hence, no B-type suffix
will be initialized by a suffix in the same bucket. Thus, once the loop has been executed for
all B-type suffixes with lexicographical larger first characters than α, all B-type suffixes
starting with character α have been initialized. This gives us a way to parallelize induced
sorting for the case of no consecutive repeated characters in the input string by executing
the for-loop σ times, each time processing all suffixes starting with a particular character in
parallel. The pseudocode for this algorithm is shown in Figure 3. Note that the intervals



1 bucketB := Ending position of the B buckets
2 for α := σ − 1 to 0 :
3 [s, e] := interval in SA of all suffixes starting with α
4 bucketSums := array of arrays to count number of suffixes put into buckets
5 parfor i := e to s :
6 if SA[i] has been initialized and SA[i]− 1 is a B−type suffix :
7 bucketSums[S[SA[i]− 1]][i] + +
8 parfor α := 0 to σ − 1 :
9 perform prefix sum on bucketSums[α]

10 parfor i := e to s :
11 if SA[i] has been initialized and SA[i]− 1 is a B−type suffix :
12 b := S[SA[i]− 1]
13 SA[bucketB[b]− bucketSums[b][i]] = SA[i]− 1

Figure 3: Parallel induced sorting of all B-type suffixes for inputs with no repetitions of characters.

[s, e] on Line 3 have already been computed as a byproduct of determining the B∗ suffixes.
The complexity of the algorithm is dominated by the prefix sums, leading to an

O(σ log n) depth and O(σn) work algorithm. To make the algorithm linear-work, we
compute bucketSums[α][i] only for every σ log n’th position of i. Then we only need n bits
to store bucketSums. We can easily compute bucketSums[α][i− 1] from bucketSums[α][i]
in constant time. So we can fill in the gaps by executing blocks of size σ log n of the loop in
Line 10 sequentially, but in parallel across all blocks, thus resulting in an O(σ2 log n) depth
and O(n) work algorithm.

The previous algorithm assumes that there are no repeated consecutive characters.
However, this does not hold in general. We now generalize the algorithm. We present an
algorithm with depth O(σ log n

∑
α∈Σ Rα), where Rα is the longest run of the character α

in T . For general inputs, the property S[SA[i]− 1] < S[SA[i]] is relaxed to S[SA[i]− 1] ≤
S[SA[i]] when SA[i] − 1 is a B-type suffix. This means that even after executing the
loop for all B-type suffixes with lexicographical larger first character than α, not all SA
values in the interval [s, e] (refer to Figure 3) have been initialized. In particular, all B-type
suffixes with multiple repetitions of α have not been initialized. We observe that the B-type
suffixes that begin with multiple repetitions of α are lexicographically smaller than those
with only a single α. Thus [s, e] can be divided into two contiguous parts [s, e′ − 1] and
[e′, e] where all SA values in [e′, e] have already been initialized and all values [s, e′ − 1]
still need to be initialized. The algorithm shown in Figure 4 initializes in the k’th iteration
of the while loop all suffixes which have (k+ 1) repetitions of α, which would be done after
Line 3 of the algorithm in Figure 3. At most Rα iterations of the while loop in Line 3 of
Figure 4 are needed until all B-type suffix starting with α are initialized. Calculating m
and the filter primitive require O(log n) depth. The overall depth of the algorithm is then
O(σ log n

∑
α∈Σ Rα).

∑
α∈ΣRα has an upper bound of O(n), but is much smaller for most

real-world inputs. The overall work is O(n), as constant work is spent for each i ∈ [e′, e]
and all intervals [e′, e] are disjoint.

Theoretically, we can reduce the depth to O(σ2 log n + σ log2 n) while maintaining
linear work by processing suffixes with between 2k and 2k+1 repetitions in parallel, for each
value of k ∈ {0, . . . , logRα}. For each character, this requires O(log n) rounds, each with
O(log n) depth, leading to the O(σ log2 n) term. Due to space limitations, we describe the
details of this approach in [16]. For constant alphabet size, this results in a polylogarithmic-



1 [e′, e] := interval of SA values that already are initialized
2 α := first character of all the suffixes in SA[s, e]
3 while [e′, e] not empty:
4 m :=

∣∣{i ∈ [e′, e] | S[SA[i]− 1] = α}
∣∣

5 SA[e′ −m− 1, e′ − 1] = {x ∈ SA[e′, e] | S[SA[x]− 1] = α} // using filter
6 e := e′ − 1
7 e′ := e′ −m− 1
8 parfor i := e′ to e :
9 SA[i]−−
Figure 4: Subroutine of parallel induced sorting of B-type suffixes for inputs with repetitions (insert
after Line 3 of the pseudocode in Figure 3).

levelWT recursiveWT ddWT serWT
Input Input Size (MB) σ T1 T64 T1/T64 T1 T64 T1/T64 T1 T64 T1/T64 T1
sources 211 230 19 0.88 21.6 12 0.26 46.2 16 0.45 35.5 9.2
pitches 56 133 4.7 0.23 20.4 2.8 0.068 41.2 3.7 0.1 37.0 2.2
proteins 1184 27 72 2.9 24.8 56 1.1 50.9 69 1.7 40.6 39
dna 404 16 16 0.72 22.2 12 0.24 50.0 15 0.47 31.9 8.7
english 1024 239 99 4.4 22.5 65 1.3 50.0 110 2.2 50.0 49
dblp.xml 295 97 24 1.1 21.8 16 0.34 47.0 20 0.57 35.1 12
rnd-28 381 28 10 0.58 17.2 9.9 0.27 36.7 13 0.45 28.9 6.4
rnd-212 381 212 14 0.84 16.7 15 0.38 39.5 19 0.61 31.1 9.6
rnd-216 381 216 20 1.0 20.0 20 0.48 41.7 25 0.81 30.9 13
rnd-220 381 220 24 1.2 20.0 27 0.61 44.3 32 1.4 22.9 16

Table 1: Running times (seconds) sequential, parallel and self-relative speedup of WT construction
algorithms on 64 cores.

depth and linear-work parallelization of the induced sorting approach used by DivSufSort
or by the SA-IS algorithm (note that for polylogarithmic depth, this approach is only used
for the first iteration, as σ may increase afterward). We did try an implementation of this
algorithm but found that the simpler O(σ log n

∑
α∈Σ Rα) depth algorithm was much faster

in practice due to
∑

α∈ΣRα being small and large overheads in the theoretically-efficient
version. We report experimental results for the simpler version.

Parallel FM-Index Construction. By combining our parallel algorithms for WTs, rank
and select structures, and SA construction, we can construct FM-indexes [4] in parallel.
The BWT required by the FM-index is computed from the SA in the naive way. Our
parallelization of induced sorting can also be applied to algorithms computing the BWT
without first computing the SA. To compute the number of occurrences of a pattern in the
text, only the WT of the BWT is needed. To compute the actual position of matches in the
text, a sample of the SA is generated in parallel at the beginning and stored.

Experiments. We present experimental results of our implementations of the parallel
algorithms described in this paper. We use a 64-core machine with four 2.4 GHz 16-core
AMD Opteron 6278 processors, and 188GB main memory. We use Cilk Plus to express
parallelism, and the code is compiled with the gcc 4.8.0 with the -O2 flag. We use the
Pizza&Chili corpus http://pizzachili.dcc.uchile.cl and random integer sequences
with alphabet sizes 2k for testing. The file sizes and alphabet sizes are listed in Table 1.
We report both running times and memory consumption of the algorithms. Memory con-
sumption includes the input and the output. The fastest or most memory-efficient parallel
implementations are marked in bold in the following tables. Plots of speedup versus thread
count can be found in [16].

Table 1 compares the 64-core running time of our algorithms ddWT and recursiveWT to
the parallel levelWT implementation and the serial serWT implementation from [28], and



Input levelWT recursiveWT ddWT serWT Input levelWT recursiveWT ddWT serWT
sources 11.5 3.9 4.8 3.8 dblp.xml 11.4 3.7 4.5 3.7
pitches 11.6 4.0 4.9 3.8 rnd-28 30.0 26.0 29.6 25.9
proteins 11.1 3.5 4.0 3.5 rnd-212 29.6 28.2 31.8 25.7
dna 11.0 3.4 3.8 3.3 rnd-216 32.2 28.4 34.1 28.3
english 11,5 3.8 4.7 3.8 rnd-220 34.8 31.0 81.9 30.9

Table 2: Memory consumption (bytes per input character) of WT construction on 64 cores.
parallelRank SDSL-Rank parallelSelect SDSL-Select

Input T1 T64 T1/T64 T1 T1 T64 T1/T64 T1
sources 0.93 0.028 33.2 0.5 2.5 0.22 11.4 4.4
pitches 0.24 0.0077 31.2 0.13 0.67 0.061 11.0 1.1
proteins 3.4 0.09 37.8 1.8 13 0.88 14.8 48
dna 0.88 0.027 32.6 0.49 3.9 0.3 13.0 24
english 4.9 0.13 37.7 2.7 13 1.2 10.8 28
dblp.xml 1.1 0.034 32.4 0.63 3.4 0.3 11.3 7.1

Table 3: Sequential and parallel running times (seconds), and self-relative speedup of rank and select
structure construction algorithms on 64 cores.

Table 2 compares their memory consumption. ddWT and recursiveWT clearly outperform
levelWT on byte alphabets. recursiveWT also scales very well on larger alphabets, while
ddWT is slower on larger alphabets. On byte alphabets recursiveWT is around 3x faster than
levelWT while using around 2.8x less memory. Both recursiveWT and ddWT achieve good
self-relative speedups on 64 cores, and compared to serWT, they are 23–28x and 11–22x
faster, respectively.

Table 3 compares the construction times of our parallel implementation of rank/select
structures on 64 cores to the sequential times from the SDSL. As input the concatenated
levels of the WTs of the input files were used. The self-relative speedup is 31–38x for rank
and 11–14x for select. Compared to the sequential SDSL times, we are 16–20x faster for
rank and 18–81x faster for select (note that our parallel select on a single thread outperforms
the sequential SDSL implementation). We speculate that speedups for rank are higher than
for select due to the simpler memory layout of the rank structure.

Table 4 and Table 5 compare the running time and memory usage of our parallel DivSuf-
Sort algorithm (parDSS) to several existing parallel algorithms. Range is an implementation
of the prefix doubling algorithm [17] from the PBBS (without the changes described in
this work), KS is an implementation of the DC3 algorithm [13] from the PBBS, Scan is the
in-memory version of the recently published algorithm by Karkkainen et al. [14], and serDss
is the original DivSufSort implementation. On 64 cores, parDSS achieves a self-relative
speedup of 15–32x and outperforms Scan, Range, and KS on almost all inputs, achieving
up to 1.6x speedup over the fastest existing parallel implementation. Compared to serDSS,
parDSS is 4–9x faster on 64 cores. Additionally, parDSS is almost in-place, so it reduces
memory consumption by around 4x compared to KS, 5x compared to Range, and 1.8x
compared to Scan.

We also compare with results reported in the literature for other algorithms. parDSS
takes 7.9 seconds to build the SA for the chr1 file2 on 16 threads, which is 14x faster than
the times reported for computing the BWT in [9], 8x faster than the times reported for
computing the SA with mkESA [10], and 2.8x faster than the bwtrev algorithm [25]. parDSS
takes 236 seconds to build the SA for the complete HG19 file2 on 12 threads, which is 4x
faster than the 12-thread running time reported for the ParaBWT algorithm [19].

Table 6 shows that by plugging our algorithms into the SDSL we can get parallel
speedups of 17–33x constructing FM-indexes and reduce the absolute construction time

2Downloaded from https://genome.ucsc.edu/



KS Range parDss Scan serDss
Input T1 T64 T1/T64 T1 T64 T1/T64 T1 T64 T1/T64 T1 T64 T1/T64 T1
sources 220 11 20.0 190 7.9 24.1 99 4.8 20.6 35 8.7 4.0 28
pitches 42 2.5 16.8 50 2.1 23.8 23 1.4 16.4 7.3 2.5 2.9 6.2
proteins 1900 65 29.2 1800 49 36.7 1100 34 32.4 380 53 7.2 300
dna 480 20 24.0 280 10 28.0 190 13 14.6 94 17 5.0 80
english 1900 62 30.6 2700 78 34.6 1300 41 31.7 320 47 6.7 230
dblp.xml 310 15 20.7 210 11 19.1 130 7.0 18.6 54 12 4.5 42

Table 4: Sequential and parallel running times (seconds), and speedup of SA construction on 64 cores.
Input KS Range parDss Scan serDss
sources 21.4 28.5 5.2 10.0 5.0
pitches 21.3 28.1 5.7 10.0 5.0
proteins 20.1 26.3 5.1 10.0 5.0
dna 21.4 27.8 5.5 10.0 5.0
english 21.5 28.9 5.2 10.0 5.0
dblp.xml 21.5 28.7 5.6 10.0 5.0

Table 5: Memory consumption (bytes per input
character) of SA construction on 64 cores.

Input T1 T64 T1/T64 T1
sources 180 7.5 24.0 45
pitches 42 2.0 21.0 11
proteins 1600 49 32.7 420
dna 290 17 17.1 110
english 1700 53 32.1 360
dblp.xml 240 10 24.0 72

Table 6: Sequential and parallel running times
(seconds), and self-relative speedup of FM-
index construction on 64 cores.

by 5.3–8.5x (using a Huffman-shaped WT). For constructing the FM-index, our parallel
performance is comparable to the parallel PASQUAL framework [18], but PASQUAL is
designed to handle only DNA inputs.
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