
Efficiently Finding the Most Parsimonious

Phylogenetic Tree via Linear Programming

Srinath Sridhar ?, Fumei Lam ??, Guy. E. Blelloch ?, R. Ravi ?? and Russell

Schwartz? ? ?

Abstract. Reconstruction of phylogenetic trees is a fundamental prob-
lem in computational biology. While excellent heuristic methods are
available for many variants of this problem, new advances in phylogeny
inference will be required if we are to be able to continue to make ef-
fective use of the rapidly growing stores of variation data now being
gathered. In this paper, we introduce an integer linear programming for-
mulation to find the most parsimonious phylogenetic tree from a set of
binary variation data. The method uses a flow-based formulation that
could use exponential numbers of variables and constraints in the worst
case. The method has, however, proved extremely efficient in practice on
datasets that are well beyond the reach of the available provably efficient
methods. The program solves several large mtDNA and Y-chromosome
instances within a few seconds, giving provably optimal results in times
competitive with fast heuristics than cannot guarantee optimality.

1 Introduction

Phylogeny construction, or the inference of evolutionary trees from some
form of population variation data, is one of the oldest and most inten-
sively studied problems in computational biology, yet it remains far from
solved. The problem has become particularly acute for the special case
of intraspecies phylogenetics, or tokogenetics, in which we wish to build
evolutionary trees among individuals in a single species. In part, the
persistence of the problem reflects its basic computational difficulty. The
problem in most reasonable variants is formally NP hard [15] and thus
has no known efficient solution. The continuing relevance of phylogeny
inference algorithms also stems from the fact that the data sets to be
solved have been getting increasingly large in both population sizes and
numbers of variations examined. The genomic era has led to the identi-
fication of vast numbers of variant sites for human populations [21, 30],
as well as various other complex eukaryotic organisms [29, 11, 10]. Large-
scale resequencing efforts are now under way to use such sites to study
population histories with precision never previously possible [9]. Even

? Computer Science Department, Carnegie Mellon University. Email: {guyb, sri-
nath}@cs.cmu.edu

?? Tepper School of Business, Carnegie Mellon University. Email: lam@math.mit.edu,
ravi@cmu.edu

? ? ? Department of Biological Sciences, Carnegie Mellon University. Email: rus-
sells@andrew.cmu.edu

more vast data sets are available for microbial and viral genomes. As a
result, methods that were adequate even a few years ago may no longer
be suitable today.
In this work, we focus on the inference of intraspecies phylogenies on
binary genetic variation data, which is of particular practical importance
because of the large amount of binary SNP data now available. The
binary intraspecies phylogeny problem has traditionally been modeled by
the minimum Steiner tree problem on binary sequences, a classic NP hard
problem [15]. Some special cases of the problem are efficiently solvable,
most notably the case of perfect phylogenies, in which each variant site
mutates only once within the optimal tree [1, 16, 22]. However, real data
will not, in general, conform to the perfect phylogeny assumption. The
standard in practice is the use of sophisticated heuristics that will always
produce a tree but cannot guarantee optimality (e.g. [3, 12, 27]). Some
theoretical advances have recently been made in the efficient solution of
near-perfect phylogenies, those that deviate only by a fixed amount from
the assumption of perfection [6, 13, 31, 32]. These methods can provide
provably efficient solutions in many instances, but still struggle with some
moderate-size data sets in practice. As a result, some recent attention has
turned to integer linear programming (ILP) methods [17]. ILPs provide
provably optimal solutions and while they do not provide guaranteed run-
time bounds, they may have practical run times far better than those of
the provably efficient methods.
In the present work, we develop an ILP formulation to solve the most par-
simonious phylogenetic tree problem on binary sequences. This method
finds provably optimal trees from real binary sequence data, much like the
prior theoretical methods and unlike the prevailing heuristic methods.
Practical run time is, however, substantially lower than that of the exist-
ing provably efficient theoretical methods, allowing us to tackle larger and
more difficult datasets. Below, we formalize the problem solved, present
our methods, and establish their practical value on a selection of real
variation data sets. These methods provide a platform for more exten-
sive empirical studies of variation patterns on genomic scales than were
previously possible. They may also help lay the groundwork for more
sophisticated optimization methods that are likely to be needed in the
future.

2 Preliminaries

We will assume that the input to the problem is a haplotype matrix
H where each row corresponds to a haploid sequence of a taxon and
each column corresponds to a binary marker such as a Single Nucleotide
Polymorphism (SNP). The input H can therefore be viewed as an n×m
binary matrix.

Definition 1. A phylogeny T for input I is a tree where each vertex
represents a binary string in {0, 1}m and all the input sequences are
represented in T . The length of T is the sum of the Hamming distances
between all the adjacent vertices. The problem of constructing the most

parsimonious (optimal) phylogeny is to find the phylogeny T ∗ such that
length(T ∗) is minimized.

Definition 2. A phylogeny T for input I with m varying sites is q-near-
perfect (or q-imperfect) if length(T) = m + q.

The problem of reconstructing phylogenies is closely related to the Steiner
Tree Problem, a well studied problem in combinatorial optimization (for
a survey and applications, see [8, 20]). Given a graph G = (V, E) and a
set of terminals in V , the problem is to find the smallest subgraph of G
such that there is a path between any pair of terminals.
The problem can be related to the phylogeny construction problem as
follows. Let graph G be the m-cube defined on vertices V = {0, 1}m and
edges E = {(u, v) ∈ V × V :

P

i |ui − vi| = 1}. The vertices are binary
strings of length m and an edge connects two vertices if and only if their
Hamming distance is 1. Let VT ⊆ V be the set of species correspond-
ing to the rows of input matrix H. The maximum parsimony problem
is then equivalent to the minimum Steiner tree problem on underly-
ing graph G with terminal vertices VT . Even in this restricted setting,
the Steiner tree problem has been shown to be NP-complete [14]. How-
ever, the phylogeny reconstruction problem when the optimal phylogeny
is q-near-perfect can be solved in time polynomial in n and m when
q = O(log(poly(n, m))) [32]. If q is very large, though, such algorithms
do not perform well. Moreover, these algorithms use a sub-routine that
solves the Steiner tree problem on m-cubes when the dimensions are
small. Therefore, improving the existing solutions for the general prob-
lem will also improve the running time for the restricted cases.

3 Preprocessing

We now describe a set of preprocessing steps that can substantially re-
duce the size of the input data without affecting the final output.

3.1 Reducing the set of possible Steiner vertices

The complexity of solving the Steiner tree problem in general graphs
is a consequence of the exponentially many possible subsets that can
be chosen as the final set of Steiner vertices in the most parsimonious
phylogeny. Therefore, an important component of any computational
solution to the Steiner tree problem is to eliminate vertices that cannot
be present in any optimal tree. We describe an approach that has been
used to eliminate such vertices when the underlying graph is the m-cube.
For input graph H and column c of H, the split c(0)|c(1) defined by c is
a partition of the taxa into two sets, where c(0) is the set of taxa with
value 0 in column c and c(1) is the set of taxa with value 1 in column
c. This forms a partition of the taxa since c(0) ∪ c(1) is the set of all
taxa and c(0)∩ c(1) is empty. Each of c(0) and c(1) is called a block of c.
Buneman used the blocks of binary taxa to introduce a graph, now called
the Buneman graph B(H), which captures structural properties of the

function findBuneman(VT)

1. let λ← VT ; let v ∈ λ
2. bunemanNeighbor(λ, v)

function bunemanNeighbor(λ, v)

1. for all j ∈ {1, . . . , m}
(a) let v′ ← v; v′

j ← cj(1 − ij)
(b) if v′ is Buneman and v′ /∈ λ then

i. λ← λ ∪ {v′}
ii. bunemanNeighbor(λ, v′)

Fig. 1. Finding the Buneman graph in polynomial time

optimal phylogeny [7]. We will explain the generalization of this graph
due to Barthélemy [4]. Each vertex of the Buneman graph is an m-tuple
of blocks [c1(i1), c2(i2), . . . cm(im)] (ij = 0 or 1 for each 1 ≤ j ≤ m), with
one block for each column and such that each pair of blocks has nonempty
intersection (cj(ij) ∩ ck(ik) 6= ∅ for all 1 ≤ j, k ≤ m). There is an edge
between two vertices in B(H) if and only if they differ in exactly one
block. Buneman graphs are very useful because of the following theorem.

Theorem 1. [3, 28] For input matrix H, let T ∗

H denote the optimal
phylogeny on H and let B(H) denote the Buneman graph on H. If matrix
H has binary values, then every optimal phylogeny T ∗

H is a subgraph of
B(H).

Using the above theorem, our problem is now reduced to constructing
the Buneman graph on input H and solving our problem on underlying
graph B(H). Ideally we would like to find the Buneman graph in time
O(poly(k)) where k is the number of vertices in the Buneman graph. Note
that this is output-sensitive. We first state the following theorem, which
we will use to show the Buneman graph can be generated efficiently.

Theorem 2. [28] The Buneman graph B(H) is connected for any input
matrix H in which all columns contain both states 0, 1 and all pairs of
columns are distinct.

To generate the graph B(H), let i1, i2, . . . im be the first taxon in H.
Then v = [c1(i1), c2(i2), . . . cm(im)] is a vertex of B(H). Now, there are
several ways to generate the graph B(H). The pseudo-code in Figure 1
begins with VT the set of vertices of the B(H) corresponding to H. The
algorithm then iteratively selects a vertex v and enumerates all the neigh-
bors. For each vertex, the algorithm checks if it obeys the conditions of
the Buneman graph, if so it is added to λ and we recurse.

Lemma 1. The algorithm in Figure 1 finds the Buneman graph B(H)
for the given input in time O(km) where k is the number of vertices in
B(H).

Proof. The algorithm begins with a vertex v ∈ B(H) and determines
B(H) in the depth-first search order. By Theorem 2, the algorithm will
visit all vertices in B(H). Step 1a iterates over all m possible neighbors of
vertex v in the m-cube which takes time O(m). For each vertex v ∈ B(H)
function bunemanNeighbor is called using v exactly once. Therefore if
there are k vertices in B(H), then the time spent to discover all of B(H)
is O(km). Note that instead of using depth-first search, we could use
breadth-first search or any other traversal order. ut

3.2 Decomposition into smaller problems

In addition to allowing us to reduce the set of possible Steiner vertices,
we show how Theorem 1 also allows us to decompose the problem into
independent subproblems.

Definition 3. [2] A pair of columns i, j conflict if the matrix H re-
stricted to i, j contains all four gametes (0, 0), (0, 1), (1, 0) and (1, 1).
Equivalently, the columns conflict if the projection of H onto dimensions
i, j contains all four points of the square.

For input I, the structure of the conflicts of I provides important in-
formation for building optimal phylogenies for I. For example, it is well
known that a perfect phylogeny exists if and only if no pair of columns
conflict [16, 28]. In order to represent the conflicts of H, we construct
the conflict graph G, where the vertices of G are columns of H and the
edges of G correspond to pairs of conflicting columns [18]. The following
theorem has been stated previously without proof [18]. For the sake of
completeness, we provide an explicit proof in the Appendix using The-
orem 1 and ideas from Gusfield and Bansal [18]. We denote the matrix
H restricted to set of columns C as C(H).

Theorem 3. Let χ denote the set of non-trivial connected components of
conflict graph G and let Visol denote the set of isolated vertices of G. Then
any optimal Steiner tree on H is a union of optimal Steiner trees on the
separate components of G and length(T ∗

H) = |Visol|+
P

C∈χ
length(T ∗

C(H)).

Our decomposition preprocessing step proceeds as follows. We first con-
struct the conflict graph G for input matrix H and identify the set of
connected components of G. We ignore the columns corresponding to
the isolated vertices Visol since they each contribute exactly one edge to
the final phylogeny. Then the columns corresponding to each connected
component c of χ can be used independently to solve for the most par-
simonious phylogeny. Our problem is now reduced to input matrices H
consisting of a single non-trivial connected component.

3.3 Merging Rows and Columns

We now transform the input matrix H to possibly reduce its size. We
can remove rows of H until all the rows are distinct since this does not
change the phylogeny. Furthermore, we can remove all the columns of H

that do not contain both states 0 and 1 since such columns will not affect
the size or the topology of the phylogeny. Finally, we will assign weights
wi to column i; wi is initialized to 1 for all i. We iteratively perform the
following operation: identify columns i and j that are identical (up to
relabeling 0, 1), set wi := wi +wj and remove column j from the matrix.
Notice that in the final matrix H, all pair-wise rows are distinct, all
pair-wise columns are distinct (even after relabeling 0, 1), every column
contains both 0, 1 and all the columns have weights wi ≥ 1. From now,
the input to the problem consists of the matrix H along with vector w
containing the weights for the columns of H. We can now redefine the
length of a phylogeny using a weighted Hamming distance as follows.

Definition 4. The length of phylogeny T (V, E) is
length(T) =

P

(u,v)∈E

P

i∈D(u,v) wi, where D(u, v) is the set of indices
where u, v differ.

It is straight-forward to prove the correctness of the pre-processing step.

Lemma 2. The length of the optimal phylogeny on the pre-processed
input is the same as that of the original input.

4 ILP Formulation

A common approach for studying the minimum Steiner tree problem
is to use integer and linear programming methods. For convenience, we
will consider the more general problem of finding a minimum Steiner tree
for directed weighted graphs G (we represent an undirected graph as a
directed graph by replacing each edge by two directed edges). The input
to the minimum directed Steiner tree problem is a directed graph, a set
of terminals T and a specified root vertex r ∈ T . The minimum Steiner
tree is the minimum cost subgraph containing a directed path from r to
every other terminal in T .
For a subgraph S of graph G, we associate a vector xS ∈ R

E, where edge
variable xS

e takes value 1 if e appears in the subgraph S and 0 otherwise.
A subset of vertices U ⊂ V is proper if it is nonempty and does not
contain all vertices. For U ⊂ V , let δ+(U) denote the set of edges (u, v)
with u ∈ U , v 6∈ U and for a subset of edges F ⊆ E, let x(F) =

P

e∈F
xe.

Finally, edge-weights are given by we ∈ RE.
The problem of finding a minimum directed Steiner tree rooted at r has
previously been examined with an ILP based on graph cuts [5, 24, 35]:

min
P

u,v
wu,vxu,v (1)

subject to x(δ+(U)) ≥ 1 ∀ proper U ⊂ V with r ∈ U , T ∩ U 6= ∅ (2)

xu,v ∈ {0, 1} for all (u, v) ∈ E. (3)

Constraints (2) impose that r has a directed path to all terminal vertices
T . Note that in our phylogenetic tree reconstruction problem, the under-
lying graph for the problem is the Buneman graph and any input taxon
can be chosen as the root vertex r. Since the Buneman graph may have

an exponential number of vertices and edges with respect to the size of
the input matrix H, the running time for solving this integer program
may be doubly-exponential in m in the worst case.
We develop an alternative formulation based on multicommodity flows
[35]. In this formulation, one unit of flow is sent from the root vertex
to every terminal vertex. Every terminal vertex except the root acts as
a sink for one unit of flow and the Steiner vertices have perfect flow
conservation. We use two types of binary variables f t

u,v and su,v for
each edge (u, v) ∈ E. The variables f t

u,v are real valued and represent
the amount of flow along edge (u, v) whose destination is terminal t.
Variables su,v are binary variables denoting the presence or absence of
edge (u, v). The program is then the following:

min
P

u,v
wu,vsu,v (4)

subject to
P

v
f t

u,v =
P

v
f t

v,u for all u 6∈ T (5)
P

v f t
v,t = 1,

P

v f t
t,v = 0,

P

v f t
r,v = 1 for all t ∈ T (6)

0 ≤ f t
u,v ≤ su,v for all t ∈ T (7)

su,v ∈ {0, 1} for all e ∈ E. (8)

Constraints (5) impose the condition of flow conservation on the Steiner
vertices. Constraints (6) impose the inflow/outflow constraints on ter-
minals in T . Finally, constraints (7) impose the condition that there is
positive flow on an edge only if the edge is selected. By the max-flow min-
cut theorem, the projection of the solution onto the variables s satisfy
constraints (2) [24]. The results will thus satisfy the following theorem:

Theorem 4. All integer variables of the above linear program are binary
and the solution to the ILP gives a most parsimonious phylogenetic tree.

5 Empirical Results

We applied the ILP to several sets of variation data chosen to span a
range of data characteristics and computational difficulties. We used only
non-recombining data (Y chromosome, mtDNA, and bacterial DNA) be-
cause imperfection in non-recombining data is most likely to be explained
by recurrent mutations. We used two Y chromosome data sets: a set of
all human Y chromosome data from the HapMap [21] and a set of pre-
dominantly chimpanzee primate data [33]. Several different samples of
mitochondrial DNA(mtDNA) were also included [34, 26, 23, 19]. Finally,
we analyzed a single bacterial sample [25].
The pre-processing and ILP formulation was performed in C++ and
solved using the Concert callable library of CPLEX 10.0. In each case, the
ILP was able to find an optimal tree on the data after preprocessing. We
also used the pars program of phylip which attempts to heuristically find
the most parsimonious phylogeny. pars was run with default parameters.
Empirical tests were conducted on a 2.4 GHz Pentium 4 computer with
1G RAM, running Linux. We attempted to use the penny program of
phylip, which finds provably optimal solution by branch-and-bound, but

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Im
pe

rf
ec

tio
n

Position

Complete mtDNA Imperfection Scan

Fig. 2. Imperfection of the most parsimonious phylogeny for overlapping windows
across the complete mitochondrial genome. The x-axis shows the sites in their order
along the genomic axis. The y-axis shows the imperfection for the window centered on
the corresponding site. The hyper variable D-loop region (1 . . . 577 and 16028 . . . 16569)
shows significantly larger imperfection.

it terminated in under 20 minutes only for the smallest mitochondrial
data set and was aborted by us after 20 minutes for all other tests.

We first used the mitochondrial data as a basic validation of the correct-
ness of the methods and the reasonableness of the maximum parsimony
criterion on these data. The HVS-I and HVS-II segments of the mitochon-
drial D-loop region have exceptionally high mutation rates [34], providing
a good test case of the ability of our algorithm to distinguish regions we
would expect to have perfect or near-perfect phylogenies from those ex-
pected to have highly imperfect phylogenies. Figure 2 shows a scan of
201-site long windows across the complete 16569-site mtDNA genome.
Since the mtDNA is circular, the windows wrap around over the ends
in the genome order. The y-axis corresponds to imperfection, which is
the number of recurrent mutations in the most parsimonious phylogeny.
The figure does indeed show substantially larger phylogenies within the
high mutation rate D-loop region (1 . . . 577 and 16028 . . . 16569) than
in the low mutation rate coding regions, confirming the relevance of a
parsimony metric for such data sets.

We then ran the methods on a collection of data sets to assess efficiency
of the methods. Figure. 3 provides two examples of most parsimonious
phylogenies for data sets at opposite extremes of difficulty: an mtDNA
sample [34] with imperfection 21 (Fig. 3(a)) and the human Y chromo-
some sample, with imperfection 1 (Fig. 3(b)). Table 1 presents the em-
pirical run-time data for all of the datasets. The columns ‘input before’
and ‘input after’ correspond to the size of the original input and that
after preprocessing. Run times vary over several orders of magnitude and
appear largely insensitive to the actual sizes of the data sets. Rather, the

0

38

1

41

1

43

1

55

1

7

1

59

1

95

1

24

1

12

3

122

2

23

1

2

3

1

4

5

1

6

1

9

2

11

2

50

1

60

1

28

1

22

2

10

1

8

3

15

1

16

2

46

1

14

44

1

13

1

131

1

51

1

17

1

32

1 1

1

1

39

1

49

1

106

1

164

1

88

1

1

25

1

19

2

1

27

1

53

1

26

1

52

1

57

2

21

1

66

1

168

1

74

1

120

1

18

1

250

1

156

1

199

1

29

1

31

1

20

2

274

1

30

1

0

1

1

4

1

3

2

2

1

10

1

11

1

12

1

13

2

5

6

1

7

1

9

8

1

15

1

1 1

(a) (b)

Fig. 3. Examples of trees of varying levels of difficulty. (a) Human mitochondrial data
from Wirth et al. [34] (b) Human Y chromosome from HapMap [21]

major determinant of run time appears to be a dataset’s imperfection,
i.e., the difference between the optimal length and the number of vari-
ant sites. It has recently been shown that the phylogeny problem under
various assumptions is fixed parameter tractable in imperfection [6, 13,
31, 32] possibly suggesting why it is a critical factor in run time deter-
mination. The pars program of phylip, despite providing no guarantees
of optimality, does indeed find optimal phylogenies in all of the above
instances. It is, however, slower than the ILP in most of these cases.

6 Conclusions

We have developed an ILP formulation for optimally solving for the
most parsimonious phylogeny using binary genome variation data. The
method fills an important practical need for fast methods for generating
provably optimal trees from large SNP variation datasets. This need is
not served well by the heuristic methods that are currently the stan-
dard for tree-building, which generally work well in practice but cannot
provide guarantees of optimality. More recent theoretical methods that
find provably optimal trees within defined run-time bounds are ineffi-
cient in practice without a fast sub-routine to solve the general problem
on smaller instances. The ILP approach allows extremely fast solutions
of the easy cases while still yielding run-times competitive with a widely
used fast heuristic for hard instances. Methods such as ours are likely to
be increasingly important as data sets accumulate on larger population
groups and larger numbers of variant sites.

input time(secs)

Data Set before after length our ILP pars

human chrY [21] 150 × 49 14 × 15 16 0.02 2.55

bacterial [25] 17 × 1510 12 × 89 96 0.08 0.06

mtDNA chimp [33] 24 × 1041 19 × 61 63 0.08 2.63

y chimp [33] 15 × 98 15 × 98 99 0.02 0.03

human mtDNA [34] 40 × 52 32 × 52 73 13.39 11.24

human mtDNA [19] 395 × 830 34 × 39 53 53.4 712.95

human mtDNA [26] 13 × 390 13 × 42 48 0.02 0.41

human mtDNA [23] 44 × 405 27 × 39 43 0.09 0.59

Table 1. Empirical run-time results on a selection of non-recombining datasets.

Acknowledgments

We thank Daniel Gusfield for helpful discussions and for motivating our
use of LP for problems in phylogenetics. This work was supported by
U.S. National Science Foundation grants IIS-0612099, CCR-0105548, and
CCR-0122581 (The ALADDIN project).

References

1. R. Agarwala and D. Fernandez-Baca. A polynomial-time algorithm
for the perfect phylogeny problem when the number of character
states is fixed. SIAM Journal on Computing, 23:1216–1224, 1994.

2. V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as
perfect phylogeny: A direct approach. Journal of Computational
Biology, 10:323–340, 2003.

3. H. J. Bandelt, P. Forster, B. C. Sykes, and M. B. Richards. Mi-
tochondrial portraits of human populations using median networks.
Genetics, 141:743–753, 1989.

4. J. Barthélemy. From copair hypergraphs to median graphs with
latent vertices. Discrete Math, 76:9–28, 1989.

5. J.E. Beasley. An algorithm for the Steiner problem in graphs. Net-
works, 14:147–159, 1984.

6. G. E. Blelloch, K. Dhamdhere, E. Halperin, R. Ravi, R. Schwartz,
and S. Sridhar. Fixed parameter tractability of binary near-perfect
phylogenetic tree reconstruction. International Colloquium on Au-
tomata, Languages and Programming, 2006.

7. P. Buneman. The recovery of trees from measures of dissimilarity.
Mathematics in the Archeological and Historical Sciences, F. Hodson
et al., Eds., pages 387–395, 1971.

8. X. Cheng and D.Z. Du (Eds.). Steiner Trees in Industry. Springer,
2002.

9. The ENCODE Project Consortium. The ENCODE (ENCyclopedia
Of DNA Elements) Project. Science, 306(5696):636–640, 2004.

10. Lindblad-Toh et al. Genome sequence, comparative analysis and
haplotype structure of the domestic dog. Nature, 438(7069):803–
819, 2005.

11. Lindblad-Toh K et al. Large-scale discovery and genotyping of single-
nucleotide polymorphisms in the mouse. Nature Genetics, pages
381–386, 2000.

12. J. Felsenstein. PHYLIP (Phylogeny Inference Package) version 3.6.
distributed by the author, Department of Genome Sciences, Univer-
sity of Washington, Seattle, 2005.

13. D. Fernandez-Baca and J. Lagergren. A polynomial-time algorithm
for near-perfect phylogeny. SIAM Journal on Computing, 32:1115–
1127, 2003.

14. L. R. Foulds and R. L. Graham. The Steiner problem in phylogeny
is NP-complete. Advances in Applied Mathematics, 3, 1982.

15. Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., New York, NY, USA, 1979.

16. D. Gusfield. Efficient algorithms for inferring evolutionary trees.
Networks, 21:19–28, 1991.

17. D. Gusfield. Haplotyping by pure parsimony. Combinatorial Pattern
Matching, 2003.

18. D. Gusfield and V. Bansal. A fundamental decomposition theory
for phylogenetic networks and incompatible characters. Research in
Computational Molecular Biology, 2005.

19. A. Helgason, G. Palsson, H. S. Pedersen, E. Angulalik, E. D. Gun-
narsdottir, B. Yngvadottir, and K. Stefansson. mtDNA variation in
Inuit populations of Greenland and Canada: migration history and
population structure. American Journal of Physical Anthropology,
130:123–134, 2006.

20. F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree
Problem, volume 53. Annals of Discrete Mathematics, 1992.

21. The International HapMap Consortium. The International HapMap
Project. www.hapmap.org. Nature, 426:789–796, 2005.

22. S. Kannan and T. Warnow. A fast algorithm for the computation and
enumeration of perfect phylogenies. SIAM Journal on Computing,
26:1749–1763, 1997.

23. C.M. Jr. Lewis, R.Y. Tito, B. Lizarraga, and A.C Stone. Land, lan-
guage, and loci: mtDNA in Native Americans and the genetic history
of Peru. American Journal of Physical Anthropology, 127:351–360,
2005.

24. N. Maculan. The Steiner problem in graphs. Annals of Discrete
Mathematics, 31:185–212, 1987.

25. M. Merimaa, M. Liivak, E. Heinaru, J. Truu, and A. Heinaru.
Functional co-adaption of phenol hydroxylase and catechol 2,3-
dioxygenase genes in bacteria possessing different phenol and p-cresol
degradation pathways. Eighth Symposium on Bacterial Genetics and
Ecology, 31:185–212, 2005.

26. Sharma S, Saha A, Rai E, Bhat A, and Bamezai R. Human mtDNA
hypervariable regions, HVR I and II, hint at deep common maternal
founder and subsequent maternal gene flow in Indian population
groups. American Journal of Human Genetics, 50:497–506, 2005.

27. N. Saitou and M. Nei. The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Molecular Biology and Evolu-
tion, 4(4):406–425, 1987.

28. C. Semple and M. Steel. Phylogenetics. Oxford University Press,
2003.

29. The Chimpanzee Sequencing and Analysis Consortium. Initial se-
quence of the chimpanzee genome and comparison with the human
genome. Nature, 437(7055):69–87, 2005.

30. Elizabeth M. Smigielski, Karl Sirotkin, Minghong Ward, and
Stephen T. Sherry. dbSNP: a database of single nucleotide poly-
morphisms. Nucleic Acids Research, 28(1):352–355, 2000.

31. S. Sridhar, G. E. Blelloch, R. Ravi, and R. Schwartz. Optimal im-
perfect phylogeny reconstruction and haplotyping. Computational
Systems Bioinformatics, 2006.

32. S. Sridhar, K. Dhamdhere, G. E. Blelloch, E. Halperin, R. Ravi, and
R. Schwartz. Simple reconstruction of binary near-perfect phyloge-
netic trees. International Workshop on Bioinformatics Research and
Applications, 2006.

33. A. C. Stone, R. C. Griffiths, S. L. Zegura, and M. F. Hammer. High
levels of Y-chromosome nucleotide diversity in the genus Pan. Pro-
ceedings of the National Academy of Sciences USA, pages 43–48,
2002.

34. Thierry Wirth, Xiaoyan Wang, Bodo Linz, Richard P. Novick, J. Koji
Lum, Martin Blaser, Giovanna Morelli, Daniel Falush, and Mark
Achtman. Distinguishing human ethnic groups by means of se-
quences from Helicobacter pylori: Lessons from Ladakh. Proceedings
of the National Academy of Sciences USA, 101(14):4746–4751, 2004.

35. R.T. Wong. A dual ascent approach for Steiner tree problems on a
directed graph. Mathematical Programming, 28:271–287, 1984.

7 Appendix

In this section, we provide a proof of Theorem 3.
Proof of Theorem 3 We use the fact that the optimal phylogeny is
contained in the Buneman graph and show that the connected compo-
nents impose restrictions on the set of possible edges in the Buneman
graph. For two columns c and c′, the block c(i) is the dominated block
of c with respect to the pair (c, c′) if block c(i) is contained in some
block of c′ (i.e., c(i) ⊂ c′(0) or c(i) ⊂ c′(1)). Similarly, block c(i) is the
dominating block of c with respect to the pair (c, c′) if c(i) contains some
block of c′.
Let C be a component in χ∪ Visol. If C is the only component in G, the
theorem follows immediately. Otherwise, we can reorder the columns
so that C consists of the first k columns, i.e., c1, c2, . . . ck ∈ C and
ck+1, . . . cm 6∈ C. Recall that for any edge in the Buneman graph B(H),
its endpoints correspond to two m-tuples of blocks which differ in exactly
one column; label this edge by the column for which its endpoints differ.
For any collection of columns α1, α2, . . . αl, let T ∗

H [α1, α2, . . . αl] denote
the subgraph of T ∗

H induced by the set of edges labeled by α1, α2, . . . αl.

We will characterize all edges in the Buneman graph labeled by columns
in C using the following lemma from Gusfield and Bansal [18].

Lemma 3. [18] For a column ci with i > k, ci does not conflict with
any column in connected component C, and therefore, exactly one of ci(0)
or ci(1) is the dominating block in ci with respect to every column in C.

Let ci(li) (i > k) denote the set of dominating blocks of ci with respect
to C. (It follows that ci(1− li) is the dominated block in ci with respect
to every column in C).
Any vertex in the Buneman graph is an m-tuple of blocks which have
pairwise nonempty intersection. Therefore, an edge e labeled by a col-
umn in C, say c1, must have endpoints in which the blocks of column
ck+1, ck+2, . . . cm, intersect both c1(0) and c1(1). This implies the blocks
of ck+1, ck+2, . . . cm are forced to be the dominating blocks with respect
to component C, i.e., the last m − k coordinates of the endpoints of e
must be ck+1(lk+1), ck+2(lk+2) . . . cm(lm). Let B(C) be the subgraph of
B(H) generated by the vertices whose last m−k columns have this form.
Then any edge labeled by a column in C has both endpoints in B(C).

Lemma 4. T ∗

H [C] = T ∗

H [c1, c2, . . . ck] is an optimal Steiner tree on B(C).

Proof. We say that vertex v ∈ B(C) is a C-projected terminal vertex if
there exists h ∈ H with the same states as v in columns of C. We first
show that any two terminals in B(C) that are C-projected vertices are
connected by a path in T ∗

H [c1, c2, . . . ck]. Suppose otherwise and let v1

and v2 be two distinct vertices in B(C) which are not connected by such
a path. By definition of T ∗

H , there is a path P in T ∗

H connecting v1 to v2;
we can assume that v1 and v2 are chosen so that the length of path P is
minimized. Let d1, d2, . . . dl denote the edge labels of P (by assumption,
at least one of d1, d2, . . . dl is not in {c1, c2, . . . ck}). If for some i, we have
di ∈ {c1, c2, . . . ck}, then the endpoints u and w of di are in B(C), and
either v1, u or w, v2 is a pair that is not connected in T ∗

H [c1, c2, . . . ck], a
contradiction to the choice of vertices v1, v2.
Therefore, all edge labels di are in the set {ck+1, ck+2, . . . cm}. However,
since v1 and v2 are in B(C), the final m − k components of these two
vertices are ck+1(lk+1), ck+2(lk+2) . . . cm(lm) by definition. Finally, since
there are no edges in P labeled by c1, c2, . . . ck, it follows that v1 and v2

are equal in all components, a contradiction.
Therefore, T ∗

H [c1, c2, . . . ck] is a Steiner tree on B(C) where the set of
terminal vertices are the C-projected terminal vertices. Therefore if T ∗

H

is not optimal, then by removing T ∗

H [c1, c2, . . . ck] from T ∗

H and replacing
it by a tree of smaller cost, we obtain a Steiner tree for H with smaller
cost than T ∗

H , a contradiction.
ut

The terminal vertices of C(H) correspond to C-projected terminal ver-
tices of B(H). Therefore, the above shows that for every connected com-
ponent C, T ∗

C(H) is a subgraph of T ∗

H . Therefore,

length(T ∗

H) =
X

C∈χ∪Visol

length(T ∗

C(H)) = |Visol|+
X

C∈χ

length(T ∗

C(H))

This completes the proof of Theorem 3. ut

