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ABSTRACT
We present a class of synchronization called room synchro-
nizations and show how this class can be used to implement
asynchronous parallel queues and stacks with constant time
access (assuming a fetch-and-add operation). The room syn-
chronization problem involves supporting a set of m mutu-
ally exclusive \rooms" where any number of users can exe-
cute code simultaneously in any one of the rooms, but no two
users can simultaneously execute code in separate rooms.
Users asynchronously request permission to enter speci�ed
rooms, and neither the arrival time nor the arrival order nor
the desired room of such requests are known ahead of time.
We describe an algorithm for room synchronizations, and
prove it satis�es a number of desirable properties. We have
implemented our algorithm on a Sun UltraEnterprise 10000
multiprocessor. We present experimental results compar-
ing an implementation of a parallel stack using room syn-
chronizations to one using locks, demonstrating a signi�cant
scalability advantage for room synchronizations.

1. INTRODUCTION
There has been a long history of developing data struc-

tures for handling asynchronous parallel accesses|i.e., ac-
cesses for which neither the arrival times nor the number of
processors involved is known ahead of time. Unfortunately,
it has been very di�cult to develop truly e�cient solutions
for even some of the simplest asynchronous data structures,
such as stacks and queues. Solutions based on locks are typ-
ically very simple, often relying directly on the sequential
version, but they can fully sequentialize the access. Fur-
thermore locks have the problem that if the process with
the lock is blocked (e.g., swapped out by the OS or dies),
then all processes can become blocked.
To avoid this problem many non-blocking (or lock-free)

implementations of data-structures have been suggested [1,
2, 9, 10, 17, 18, 24, 25]. As with the versions that use
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locks, however, these implementations still sequentialize the
access. For example the implementations of non-blocking
queues [13, 17, 24] and stacks [22] sequentialize the inserts
and deletes. Furthermore, most of these implementations
have other problems such as requiring an atomic double
compare-and-swap operation or requiring unbounded mem-
ory.
An asynchronous implementation of queues that does not

sequentialize access was developed by Gottlieb et al. [8].
Their implementation uses a parallel fetch-and-add opera-
tion, and it is not non-blocking. Unfortunately, it does not
implement a linearizable1 queue (we give a counterexample
in Section 5). It also seems unlikely that the technique can
be extended to other data structures such as stacks.
Our goal is to develop data structures for handling asyn-

chronous parallel accesses that (a) are linearizable, and (b)
do not sequentialize access. The problem arose in the con-
text of a real-time parallel garbage collector [3, 5]. In such
contexts, whenever one of the program threads allocates
memory, it also participates in the garbage collection. Thus
the threads access the collector data structures asynchro-
nously, in parallel, and somewhat unpredictably. Lineariz-
ability is needed for correctness. Avoiding sequential access
is needed to guarantee real-time bounds, and more generally
to insure good performance.
To achieve our goals, in this paper we introduce a class

of synchronizations called room synchronizations. The room
synchronization problem involves a set of m mutually exclu-
sive rooms in which any number of users can execute code
simultaneously in any one of the rooms, but one or more
users can not be simultaneously in more than one room.
Users enter and exit a room by executing enter and exit
routines. We describe an algorithm that supports room syn-
chronizations. For a constant number of rooms, and as long
as each user only runs for constant time within a room, the
implementation guarantees that a user will never wait more
than constant time to enter a room (more speci�cally, time
proportional to a fetch-and-add).
We show how linearizable stacks and queues can be easily

implemented using room synchronizations, all with constant
time access regardless of the number of processors. We also
present experimental performance results for a shared work
stack. We compare our version using room synchronizations
with a locking version of a stack, on up to 30 processors.
Although, not surprisingly, the lock based implementation

1A linearizable data structure [14] has the highly desirable
property that the high-level data structure operations (such
as push, pop, enqueue, dequeue) can be viewed as atomic.
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void push(val y) {
int j;
j = fetchAdd(&top,1);
A[j] = y;

}

val pop() {
int k;
val x;
k = fetchAdd(&top,-1);
if (k <= 0) {
fetchAdd(&top,1);
x = EMPTY;

}
else x = A[k-1];
return x;

}

(a)

void push(val y) {
int j;
enterRoom(PUSHROOM);
j = fetchAdd(&top,1);
A[j] = y;
exitRoom();

}

val pop() {
val x;
int k;
enterRoom(POPROOM);
k = fetchAdd(&top,-1);
if (k <= 0) {
fetchAdd(&top,1);
x = EMPTY;

}
else x = A[k-1];
exitRoom();
return x;

}
(b)

Figure 1: The code for a parallel stack. (a) Does not
work if the push and pop are interleaved in time. (b)
Avoids this problem using a room synchronization.

degrades linearly with the number of processors (because
accesses are sequentialized), our version scales almost per-
fectly, beyond an initial cost for going from one to two pro-
cessors. The room synchronizations introduced in this paper
have been incorporated into our real-time garbage collector
code [5], where they are used extensively.
One disadvantage of room synchronizations is that if a

user fails or stops while inside a room, the user will block
other users from entering another room. This property is
clearly not desirable under all conditions, but in many con-
ditions, including the garbage collector, it is not a problem.
We discuss this issue in Section 5.

1.1 A Motivating Example
Tomotivate our problem, we consider implementing a par-

allel stack using a fetch-and-add. We assume the stack is
stored in an array A and the index top points to the next
free location in the stack (the stack grows from 0 up). The
fetchAdd(ptr,cnt) operation adds cnt to the contents of
location ptr and returns the old contents of the location (be-
fore the addition). We assume this is executed atomically.
Consider the stack code shown in Figure 1(a). Assuming a
constant-time fetchAdd, the push and pop operations will
take constant time. The problem is that they can work
incorrectly if a push and pop are interleaved in time. For
example, in the following interleaving of instructions

j = fetchAdd(&top,1); // from push
k = fetchAdd(&top,-1); // from pop
x = A[k-1]; // from pop
A[j] = y; // from push

the pop will return garbage. Without an atomic operation
that changes the counter at the same time as modifying the
stack element, we see no simple way of �xing this problem.
One should note, however, that any interleaving of two or
more pushes or two or more pops is safe. Consider pushes.
The fetchAdd reserves a location to put the value y, and the
write inserts the value. Since the counter is only increasing,

it does not matter what order relative to the increments the
values are inserted.
Therefore, if we can separate the pushes from the pops,

we would have a safe implementation of a stack. Room syn-
chronizations allow us to do this as shown in Figure 1(b).
The room synchronization guarantees that no two users will
ever simultaneously be in the PUSHROOM and POPROOM, so the
push and pop instructions will never be interleaved. How-
ever, it will allow any number of users to be in either the
push or pop room simultaneously.
In the full paper [4] we show that using our room syn-

chronization algorithm (a) asynchronous accesses (pushes or
pops) can arrive at any time, (b) every access is serviced in
time proportional to the time of a fetch-and-add2 , and (c)
that this implements a linearizable stack. The experiments
described in Section 4 are based on a variant of this stack in
which multiple elements are pushed or popped within each
room.

Outline. The paper is organized as follows. Section 2
formally de�nes room synchronizations, and presents an al-
gorithm that provably implements them. Section 3 shows
how room synchronizations can be e�ectively used to imple-
ment shared queues and dynamic shared stacks. Section 4
presents our experimental results. Section 5 discusses fur-
ther issues and related work, and Section 6 concludes.

2. ROOM SYNCHRONIZATIONS
The room synchronization problem involves a set of m

rooms, and a set of p independent users who wish to access
the rooms. A user wishing access to a room calls an En-
ter Room primitive, which returns once the user is granted
permission to enter the room. The user is then said to be
inside the room. When done with the room, the user exits
the room by calling an Exit Room primitive. The rooms
synchronization construct must ensure that at any point in
time, there is at most one \open" room with users inside it.
However, any number of users can be inside the open room.
In this section, we provide details on the room synchro-

nization problem, discuss necessary and desirable properties
for protocols implementing room synchronization, present a
protocol that implements room synchronization, and show
that this protocol satis�es all these properties.

2.1 Primitives
The basic primitives of room synchronization are:

Create Rooms. Given a positive integer m, create a
rooms object R for a set of m rooms, and return a pointer
(a reference) to R. There can be multiple rooms objects at
the same time.

Enter Room. Given a pointer to a rooms object R and
a room number i, try to enter room i of R. Return when
the user has succeeded in entering the room. When the
primitive returns, the user is said to be inside the room. A
room with a user inside is said to be open.

Exit Room. Given a pointer to a rooms object R, exit
the room in R that the user is currently inside. Because the
user can be inside at most one room in R, there is no need
to specify the room number. When a user requests to exit
a room, it is no longer considered to be inside the room. If

2This is under certain assumptions about all processors
making progress.
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there are no users remaining inside the room, the room is
said to be closed.

Destroy Rooms. Given a pointer to a rooms object,
deallocate the rooms object.

Other primitives. In addition to these four basic primi-
tives, there is a Change Room primitive, which is equivalent
to an Exit Room followed by an Enter Room, but with the
guarantee of immediate entry into the requested room if it
is the next room to be opened. There is also an Assign Exit
Code primitive, discussed at the end of Section 2.3.

The Enter Room and Exit Room primitives can be viewed
as the counterparts to the \trying" (e.g., lock) and \exit"
(e.g., unlock) primitives for the mutual exclusion problem.
As with the mutual exclusion problem, what the users do
while inside the room (or critical section) is part of the appli-
cation and not part of the synchronization construct. This
enables the generality of the primitive, as the same construct
can be used for a variety of applications. The drawback is
that, as with mutual exclusion, the construct relies on the
application to alternate entering and exiting requests by a
given user.
The Create Rooms and Destroy Rooms primitives are ex-

ecuted once for a given rooms object, in order to allocate
and initialize the object prior to its use and to deallocate
the object once it is no longer needed. To simplify the dis-
cussions that follow, we will focus on a single rooms object,
for which Create Rooms has already been executed, and De-
stroy Rooms will be executed once the object is no longer
needed. Extending the formalizations and discussions to
multiple rooms objects and to issues of creating and de-
stroying objects is relatively straightforward.

2.2 Formalization
We can formalize the room synchronization problem using

the I/O Automaton model [16]. Our terminology and formal
model are an adaptation of those used in [16] for formalizing
mutual exclusion.
Each user j is modeled as a state machine that commu-

nicates with an agent process pj by invoking room synchro-
nization primitives and receiving replies. The agent process
pj , also a state machine, works on behalf of user j to per-
form the steps of the synchronization protocol. Each agent
process has some local private memory, and there is a global
shared memory accessible by all agent processes. The set of
agent processes, together with their memory, is called the
protocol automaton. An action (an instruction step) is a
transition in a state machine. We say an action is enabled
when it is ready to execute. Actions are low-level atomic
steps such as reading a shared memory location or incre-
menting a local counter. An execution is a sequence of al-
ternating states and actions, beginning with a start state,
such that each action is enabled in the state immediately
preceding it in the sequence and updates that state to be the
state immediately succeeding it. Thus actions are viewed as
occurring in some linear order.3

3Although an execution is modeled as a linearized sequence
of low level actions, this is a completely general model for
specifying parallel algorithms and studying their correctness
properties: The state changes resulting from actions occur-
ring in parallel are equivalent to those resulting from some
linear order (or interleaving) of these actions, given that the
actions are de�ned to be su�ciently low level.

Asynchrony is modeled by the fact that actions from dif-
ferent agent processes can be interleaved in an arbitrary
manner; thus one agent may have many actions between
actions by another agent. We will consider various fairness
metrics for executions and for room accesses. A weak form
of fairness among the agent actions is the following: An ex-
ecution is weakly-fair if it is either (a) �nite and no agent
action is enabled in the �nal state, or (b) in�nite and each
agent has in�nitely many opportunities to perform an ac-
tion (either there is an action by the agent or no action is
enabled).
Certain actions are specially designated as external ac-

tions; these are the (only) actions in which a user communi-
cates with its agent. For room synchronization, the external
actions for a user j (and its agent) are:

� EnterRoomReqj (i): the action of user j signalling to
its agent pj a desire to enter room i.

� EnterRoomGrantj (i): the action of agent pj signalling
to user j that its Enter Room request has been granted.

� ExitRoomReqj : the action of user j signalling to its
agent pj a desire to exit its current room.

� ExitRoomGrantj : the action of agent pj signalling to
user j that its Exit Room request has been granted.

The trace (trace at j) of an execution is the subsequence of
the execution consisting of its external actions (for a user
j).
The terminology above focuses on modeling the agents

that act on behalf of user requests, as needed to formal-
ize both the room synchronization problem and protocols
that provide room synchronizations. Section 3, on the other
hand, focuses on modeling user applications, such as stacks
and queues, that make use of room synchronizations. All
of the terminology stated above for agents can be similarly
de�ned in order to model users. For example, each user pro-
cess has some local private memory, and there is a global
shared memory accessible by all user processes. From the
perspective of the present section, however, all users do is
make requests to enter or exit rooms.

Necessary properties. We �rst state formally a condi-
tion on users of room synchronization and their agents. A
trace at j of an execution for a rooms object with m rooms
is said to be behaved if it is a pre�x of the cyclically ordered
sequence:

EnterRoomReqj(i1), EnterRoomGrantj(i1), ExitRoomReqj,
ExitRoomGrantj, EnterRoomReqj(i2); : : :

where i1; i2; : : : 2 [1::m]. In other words, (i) the Enter Room
and Exit Room primitives by a given user alternate, starting
with an Enter Room, (ii) the user waits for a request to be
granted prior to making another request, (iii) conversely, the
agent waits for a request before granting a request and only
grants what has been requested, and (iv) the requested room
numbers are valid. We say a user j's requests are behaved
if no request is the �rst misbehaved action in the trace at
j (formally, there is no EnterRoomReqj or ExitRoomReqj
in the trace at j such that the pre�x of the trace up to but
not including this action is behaved, but the pre�x including
the action is not behaved). In a behaved trace at j, Enter-
RoomReqj (i) transitions user j from outside all rooms to
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preparing to enter room i, EnterRoomGrantj (i) transitions
user j from preparing to enter room i to inside room i, Exit-
RoomReqj transitions user j from inside to preparing to
exit, and ExitRoomGrantj transitions user j from preparing
to exit to outside.
We can now state formally what it means for a protocol

to implement room synchronization. A protocol automa-
ton A solves the room synchronization problem for a given
collection of users with behaved requests if the following
properties hold:

P1. Trace behaved: In any execution, for any j, the trace
at j is behaved. One implication is that only users re-
questing to enter a room are given access to the room,
and only after its EnterRoomReq and before any sub-
sequent ExitRoomReq.

P2. Mutual exclusion among rooms: There is no reach-
able state of A in which more than one room is open.4

Equivalently, in any execution, between any Enter-
RoomGrantj(i) in the trace and the next ExitRoom-
Reqj (or the end of the trace if there is no such action)
there are no EnterRoomGrant(i0) actions for i0 6= i.

P3. Weakly-concurrent access to rooms: There are
reachable states of A in which more than one user is
inside a room.

P4. Global progress: At any point in a weakly-fair exe-
cution: (1) If there is a user j preparing to enter room i

(i.e., its most recent external action is an EnterRoom-
Reqj(i)), and there are no rooms with users inside,
then at some later point some user is inside some room
(i.e., there is a EnterRoomGrant action). (2) If there is
a user j preparing to exit a room (i.e., its most recent
external action is an ExitRoomReqj ), then at some
later point user j is outside the room (i.e., there is an
ExitRoomGrantj action).

Note that properties P1{P4 do not guarantee any fair-
ness among rooms or among users, the delays in entering or
exiting a room, etc. These are considered next.

Desirable properties. Properties P5{P11 de�ne addi-
tional desirable properties for a protocol automaton A solv-
ing the room synchronization problem. It is useful to ana-
lyze protocol performance (such as in P6, P7, P9, and P10
below) assuming an upper bound � on the (wall clock) time
between successive actions by an agent.5

P5. No room starvation: In any weakly-fair execution:
If all users inside a room eventually prepare to exit the
room, then any closed room requested by at least one
user is eventually opened.

P6. Bounded delay for rooms: In any execution withm
rooms and p users: If each user is inside a room for at

4A stronger property is to require that at most one room
can be open even if some user requests are not behaved.
5The time bound only applies if the second action is enabled
no later than when the �rst action occurs: an agent blocked
waiting for, say, a request from its user can be arbitrarily
delayed. Also, note that in the absence of a positive lower
bound on the time between successive actions, we have not
restricted the relative speeds of the agents. Finally, note
that the time bound applies only to the analysis of the time
performance, and not to any correctness (safety) properties.

most time �, and the time between successive actions
of each agent preparing to enter or preparing to exit is
at most �, then any closed room requested by at least
one user is open within time TR = TR(�;�;m; p).

P7. Constant delay for rooms: This is a stronger ver-
sion of P6 in which TR is independent of p.

P8. Lockout-freedom (i.e., no user starvation): In any
weakly-fair execution: (1) If all users inside a room
eventually prepare to exit the room, then any user
preparing to enter a room eventually gets inside the
room. (2) Any user preparing to exit a room eventu-
ally gets outside the room. Note that this is a stronger
property than P5.

P9. Bounded time to enter and exit: In any execution,
any user preparing to enter a room is inside the room
within time T1 = T1(�; �;m; p), and any user preparing
to exit a room is outside the room within time T2 =
T2(�;m; p), where �, �, m and p are as de�ned in P6.

P10. Constant time access: This is a stronger version of
P9 in which T1 and T2 are independent of p. Note that
this implies unbounded concurrent access to rooms
(otherwise the time bound would necessarily depend
on p).

P11. Demand driven: When a user is inside a room or
outside all rooms, there are no actions by its agent.
Thus, an agent performs work only in response to a
request by its user.

2.3 A room synchronization protocol
We now present a protocol (an algorithm) for solving the

room synchronization problem that satis�es all the proper-
ties P1{P11. The protocol assumes a linearizable shared
memory [14] supporting atomic reads, writes, fetch-and-
adds, and compare-and-swaps on single words of memory.6

In our actual implementation of this protocol, we do not
assume a linearizable shared memory, and instead explic-
itly insert Memory Barriers into the code (details in the full
paper [4]).
Consider a rooms object with m rooms. It includes three

arrays of size m: wait, grant, and done. The arrays hold
three counters for each room, all initially zero. It includes
a numRooms �eld, set to m. It also includes an activeRoom

�eld, which holds the room number of the (only) room that
may be open. The special value -1 is used to indicate when
there is no active room, e.g., initially and whenever there
are no users either inside a room or waiting to enter a room.
The protocol is depicted in Figure 2.7 For conciseness

and readability, we present C code instead of a full I/O Au-
tomaton speci�cation. Agents enter a room by incrementing
the wait counter to get a \ticket" for the room (Step 2),
and then waiting until that ticket is granted (Steps 3{10).

6We have explicitly avoided atomic operations on two or
more words of memory. We use only the weaker fetch-and-
increment form of fetch-and-add. Also note that we could
in principle implement rooms using only reads and writes,
following ideas used, e.g., in the Bakery Algorithm [15] for
mutual exclusion, at the cost of far greater delays.
7We show only the code for enterRoom and exit-
Room. The complete version of the code is available at:
www.cs.cmu.edu/afs/cs/project/pscico/www/rooms.html
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1 void enterRoom(Rooms t *r, int i) f
2 int myTicket = fetchAdd(&r->wait[i],1) + 1; // get ticket for the room
3 while (myTicket - r->grant[i] > 0) f // wait until your ticket is granted
4 if (r->activeRoom == -1) f // while waiting, if no active room
5 if (compareSwap(&r->activeRoom,-1,i) == -1) f // then make i the active room
6 r->grant[i] = r->wait[i]; // enable all with tickets to enter room i

7 break;
8 g
9 g
10 g
11 g

12 int exitRoom(Rooms t *r) f
13 int ar = r->activeRoom; // preparing to exit room ar
14 int myDone = fetchAdd(&r->done[ar],1) + 1; // increment the done counter
15 if (myDone == r->grant[ar]) f // if last to be done
16 for (int k = 0, newAr = ar; k < r->numRooms; k++) f
17 newAr = (newAr + 1) % r->numRooms; // go round robin thru the rooms
18 if (r->wait[newAr] - r->grant[newAr] > 0) f // if ticketed waiters
19 r->activeRoom = newAr; // make it the active room
20 r->grant[newAr] = r->wait[newAr]; // enable all with tickets to enter room newAr
21 return 1;
22 g
23 g
24 r->activeRoom = -1; // no waiters found, so no active room
25 return 1; // 1 indicates was last to be done
26 g
27 return 0; // 0 indicates was not the last
28 g

Figure 2: C code for Enter Room and Exit Room.

Agents exit a room by incrementing the done counter (Step
14). Once the done counter matches the grant counter
(Step 15), then all agents granted access to the room have
exited the room. The unique agent to increment the done

counter up to the grant counter (the \last done") does the
work of selecting the next active room (Steps 16{23). The
grant counter of that active room is set to be equal to its
current wait counter (Step 20), thereby granting all wait-
ing tickets for that room. If the last done agent fails to
discover a room with waiting tickets, it resets activeRoom
to �1 (Step 24). Whenever activeRoom = �1 (Step 4), a
ticketed agent can self-select its requested room as the next
active room (Step 5), and grant all waiting tickets for that
room (Step 6).

Theorem 1. The room synchronization protocol in Fig-
ure 2 satis�es properties P1{P11.

Proof. Due to page constraints, we only present the
proofs of property P1 (trace behaved) and property P2 (mu-
tual exclusion among rooms). Other properties are discussed
briey, with the details left to the full paper [4]. We also re-
strict our attention to the case where wait, grant, and done
are unbounded counters, and hence they are monotonically
nondecreasing. For ease of description, we view each step of
the C code as an atomic action. This is done without loss of
generality for all steps that access at most one shared mem-
ory location. For the other steps (Steps 6, 18, 20), the proof
is readily extended to have separate atomic actions for each
shared memory access. Finally, to simplify the notation, we
omit explicit reference to the rooms object pointer r, e.g.,
we use enterRoom(i) instead of enterRoom(r; i).

Property P1. In the protocol of Figure 2, an Enter-
RoomReqj (i) (ExitRoomReqj ) action corresponds to the
user j initiating a procedure call to enterRoom(i) (exit-
Room, respectively). An EnterRoomGrantj (i) (ExitRoom-
Grantj , respectively) action corresponds to the completion

and return of this procedure. Consider any execution and
any user j with behaved requests. An EnterRoomGrantj (i)
(ExitRoomGrantj ) action cannot be the �rst misbehaving
action in the trace at j, because it can occur in the trace only
immediately after the matching EnterRoomReqj (i) (Exit-
RoomReqj , respectively) that initiated the procedure call.
Thus the trace at j is behaved.

Property P2. To prove mutual exclusion, we will need
the following de�nitions and lemmas. For an execution �,
let �jj be the subsequence of � consisting of its actions for
a user j or its agent pj . A user j has a ticket for a room i

after an execution � for each Step 2 of enterRoom(i) in �jj
with no subsequent Step 14 of exitRoom in �jj. A user j
with a ticket for a room i is blocked after an execution � if
myTicket at j is greater than grant[i]. A user j is in the
advance room region after an execution � if Step 6, 16, 17,
18, 19, 20, or 24 is enabled, or Step 15 is enabled with a
successful conditional test.

Lemma 1. Each user (with a behaved trace) has at most
one ticket.

Proof. Suppose there exists an execution � such that a
user j has multiple tickets after �. By the de�nition of hav-
ing a ticket, for each such ticket, there is a Step 2 in �jj with
no subsequent Step 14 in �jj. For each such Step 2, there is
a preceding EnterRoomReqj , but no subsequent ExitRoom-
Grantj because Step 14 must precede any ExitRoomGrant.
Thus the trace at j is not behaved, and hence property P1
fails to hold, a contradiction.

Lemma 2. In any execution � (with behaved traces), if a
user j is inside room i after �, then j is an unblocked user
with a ticket for room i.

Proof. If user j is inside room i, then because the trace
at j is behaved, the last external action at j is EnterRoom-
Grantj(i). The last occurrence of Step 2 of enterRoom(i) in
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�jj precedes the EnterRoomGrantj (i) in �, and there can
be no subsequent Step 14 because there is no subsequent
ExitRoomReq in �jj. Thus j has a ticket for room i. More-
over, suppose j were blocked. Then myTicket at j is greater
than grant[i] after �. Let � = �1��2 where � is the above
Step 2, �1 is the pre�x of � prior to �, and �2 is the su�x
of � after �. By Lemma 1 and examination of the code,
we see that there is no possible step by user j that mod-
i�es myTicket at j: its value is the same in all states in
�2. Because grant[i] is a nondecreasing counter, user j's
myTicket> grant[i] in all states in �2. Thus j would never
exit the enterRoom while loop, and hence there would be no
EnterRoomGrantj (i) in �2jj, a contradiction. Thus user j
is not blocked.
The heart of the mutual exclusion proof is the following

lemma, which presents three invariants that also provide
insight into the protocol.

Lemma 3. In any execution (with behaved traces):

1. For all rooms i, wait[i] � done[i] is the number of
users with tickets for room i, and wait[i]� grant[i]

is the number of blocked users with tickets for room i.
(Thus grant[i]� done[i] is the number of unblocked
users with tickets for room i.) All users with tickets
for room i have myTicket� wait[i].

2. At most one user is in the advance room region. If a
user is in the advance room region, then activeRoom
6= �1 and for all rooms i, grant[i]= done[i].

3. If there exists an unblocked user with a ticket for room
i then activeRoom= i. If Step 6 (14, 20) is enabled at
a user j, then activeRoom= i (ar, newAr, respectively)
at j and activeRoom 6= �1.

Proof. The proof is by induction on the number of ac-
tions in the execution. Initially, wait[i] = grant[i] =
done[i]= 0, and all three invariants hold for the start state.
Assume that all three invariants hold for all executions of
t � 0 actions. Consider an arbitrary execution � with t

actions and consider all possible next actions �. W.l.o.g.,
assume that � is an action by user j or its agent. Let s1
be the last state in � and s2 be the updated state after �
occurs.
To show invariant 1 holds in s2, we must consider all the

cases where � updates either myTicket, one of the counters,
the number of ticketed users, or the number of blocked users,
namely Steps 2, 6, 14, and 20. Step 2 of enterRoom(i) incre-
ments both wait[i] and the number of (blocked) users with
tickets for room i (by Lemma 1). In addition, each myTicket

is at most wait[i] in s2. Thus invariant 1 is maintained.
Step 6 of enterRoom(i) sets wait[i]� grant[i] to zero. It
follows inductively by invariant 1 that any user with a ticket
for room i in s1 must have myTicket� wait[i]= grant[i]
in s2, and hence cannot be blocked. Likewise, Step 20 main-
tains the invariant for room newAr. If Step 14 is enabled in
s1, then user j has a ticket (by de�nition) for some room
i. Moreover, by an argument similar to that in the proof of
Lemma 2, j is not blocked. Thus inductively by invariant 3,
activeRoom = i = ar in s1. Step 14 increments done[ar],
and by Lemma 1, it decrements the number of users with
tickets for room ar, so the invariant is maintained. Hence,
in all cases, invariant 1 holds in s2.

To show invariant 2 holds in s2, we again consider each
relevant case for �, namely, Steps 5{6, 14{20, and 24. If
� is a Step 5 that succeeds in enabling Step 6 in s2, then
activeRoom= �1 in s1 (otherwise, the compareSwap would
not return �1). Inductively by invariants 1 and 3, grant[i]
= done[i] for all rooms i in s1, and hence in s2. Inductively
by invariant 2, there are no users in the advance room region
in s1. Thus the invariant is maintained. If � is a Step 6,
15 (with a successful conditional), 16{20, or 24, then user j
is in the advance room region in s1. Inductively by invari-
ant 2, j is the only such user in s1. If � is a Step 6, 20,
or 24, then there are no users in the advance room region
in s2, and the invariant is maintained. On the other hand,
if � is a Step 15{19, then inductively by invariant 2 and
the fact that none of these steps add a user to the advance
room region, set activeRoom= �1, update grant, or update
done, the invariant is maintained. If � is a Step 14, then, as
argued above, Step 14 increments done[ar], where j is an
unblocked user with a ticket for a room ar in s1. Inductively
by invariants 1 and 3, grant[i] = done[i] in s1 and hence
s2 for all rooms i 6= ar, and grant[ar] > done[ar] in s1.
Thus inductively by invariant 2, there is no user in the ad-
vance room region in s1. In order for j to be in the advance
room region in s2, myDone at j must equal grant[ar] in s2
(so that Step 15 is enabled with a successful conditional).
This occurs only if grant[ar] = done[ar] in s2, because
myDone = done[ar] after �. Hence, in all cases, invariant 2
holds in s2.
Finally, to show invariant 3 holds in s2, we consider each

relevant case for �, namely, Steps 2, 5, 6, 13, 19, 20, and
24. If � is a Step 2, then by invariant 1 applied to both
s1 and s2, the number of unblocked users with tickets for
room i is unchanged. Moreover, activeRoom is unchanged,
so the invariant is maintained. If � is a Step 5 that succeeds
in changing activeRoom, then activeRoom = �1 in s1 and
i 6= �1 in s2. Thus, inductively by invariant 3 and the fact
that Step 5 does not create an unblocked ticketed user, the
invariant is maintained. If � is a Step 6, then inductively by
invariant 3, activeRoom= i in s1 and hence in s2. Step 6 can
only unblock users with tickets for room i, so the invariant
is maintained. The case for Step 20 is symmetric. If �
is a Step 13, then activeRoom is the same in s1 and s2.
For user j, � sets ar = activeRoom and enables Step 14.
As argued above, j is an unblocked user with a ticket for
a room ar in s1; thus ar 6= �1. Step 13 neither creates
a new unblocked ticketed user nor changes activeRoom, so
inductively by invariant 3, the invariant is maintained. If �
is a Step 19, then user j is in the advance room region in
s1, and hence inductively by invariant 2, there is no other
user in the advance room region in s1. Thus inductively by
invariants 1 and 2, there are no unblocked ticketed users in
s1, and hence in s2. As argued above, Step 14 is enabled at
some user j0 only if j0 is an unblocked ticketed user. Thus
Step 14 is not enabled at any user in s2. Moreover, Step 6
and Step 20 are enabled at some user j0 only if j0 is in the
advance room region. Thus neither step is enabled in s1, and
hence in s2, with the exception of Step 20 being enabled at
user j in s2. But � sets activeRoom = newAr 6= �1, as is
required. Hence, the invariant is maintained. The case for
Step 24 is the same as for Step 19, except that Step 20 will
not be enabled at user j. Hence, in all cases, invariant 3
holds in s2.
This concludes the proof of Lemma 3.
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To complete the proof of property P2, suppose there were
an execution resulting in two distinct rooms i and i0 with
users j and j0 inside the respective rooms. Then by Lemma 2,
j (j0) is an unblocked user with a ticket for room i (i0, re-
spectively). Thus by invariant 3 of Lemma 3, activeRoom
equals both i and i0, a contradiction.

Other properties. Let m be the number of rooms and p

be the number of users. Intuitively, the remaining properties
hold due to the following observations. (1) A user desiring
a ticket will get a ticket within a constant number of its
actions. (2) The last done when exiting a room i starts
at room i + 1 and cycles through all m rooms (including
back to i), granting access to the �rst room it encounters
with ticketed users. (3) A room with ticketed users gets
its turn within m turns or less. (4) Each ticketed user in
the enterRoom while loop will get inside the room within
a constant number of its actions after access is granted to
the room. (5) If we place an upper bound � on the time
a user is inside a room, and an upper bound � on the time
between successive actions of an agent preparing to enter or
exit a room, then we can compute the time to enter or exit
a room. Each turn for a room takes at most �+O(�) time,
thus in any execution, any user preparing to enter a room is
inside the room in time T1 � (�+ O(�)) �m. Moreover, in
any execution, any user preparing to exit a room is outside
the room in time T2 = O(� �m) for the last done and O(�)
for all others.
In the above time analysis, we are implicitly assuming that

� is not a function of p, e.g., the time for a fetch-and-add is
independent of p. If instead, we let tf = tf (p) be an upper
bound on the time for a fetch-and-add with p processors
(e.g., tf = log p), then T1 � (� + 2 � tf + O(�)) � m and
T2 � tf + O(� �m).
Note that all these time bounds and other properties hold

even in the presence of arbitrarily fast agents who do their
best to starve other agents. The reader is referred to the
full paper [4] for the proofs.

Remarks. The technique of using a wait counter and a
grant counter is used in mutual exclusion protocols such as
TicketME [6, 16]. Mutual exclusion protocols are simpler
because only one agent is granted access at a time. Thus
the grant counter can double as the done counter. Also,
the test for granting access is simply whether your ticket
equals the grant counter, so modulo p counters are used
for p users. With room synchronization, we need an in-
equality test between the ticket and the grant counter in
order to admit multiple waiting users at once, so modulo p

counting does not su�ce. Instead, and to avoid unbounded
counters, we rely on the fact that when integers are rep-
resented in twos-complement (and p is less than the maxi-
mum integer), then letting the counters wrap around to a
negative number (ignoring the overow) gives the desired
result for any inequality test in the protocol. This is the
reason for using myTicket - r->grant[i] > 0 instead of
myTicket > r->grant[i] in the enterRoom code.
Note that activeRoommay be set to �1 even when there

are users waiting with their tickets. However, such users
must have grabbed their tickets after the last agent done
checked to see if there were ticketed waiters. Moreover, al-
though all agents granted access to a room are spinning
waiting for that room to open, and hence will tend to pro-
ceed together into the room, in the worst case the agents
may proceed to enter the room and exit the room at very

di�erent rates. Thus a room may open and close multi-
ple times before all the granted agents are done with the
room. Furthermore, an agent that is slow to grab a ticket
may be bypassed by faster agents an unbounded number of
times. This does not contradict properties P9 or P10, be-
cause within time tf+O(�) the slow agent will grab a ticket,
and from there will proceed in constant time (a function of
�, �, and m) to enter inside the room. On the other hand,
if all agents run at roughly the same speed, an agent can be
bypassed for its desired room at most once.
Our protocol has the property that any user requesting to

enter an already open room cannot enter the room until all
users inside the room have exited.

Variants. To satisfy the stronger mutual exclusion among
rooms property discussed in the footnote to property P2, it
su�ces to ignore all misbehaving requests, as follows. Asso-
ciate with each room a vector V , one two-bit entry per user,
indicating the e�ective status of the user, as outside (0),
preparing to enter (1), inside (2), or preparing to exit (3).
At the beginning of enterRoom (prior to Step 2), determine
the id of the user, and if V [id] 6= 0 or the requested room
number is invalid, the user is misbehaving and a failure code
is returned. Otherwise, set V [id] = 1 and permit the user's
agent to proceed with Step 2. At the end of enterRoom (just
prior to Step 11), set V [id] = 2. Similarly, at the beginning
of exitRoom (prior to Step 13), determine the id of the user,
and if V [id] 6= 2, the user is misbehaving and a failure code
is returned. Otherwise, set V [id] = 3 and permit the user's
agent to proceed with Step 13. Finally, set V [id] = 0 just
prior to Steps 21, 25, and 27.
We implemented a version of the Exit Room primitive

that includes special exit code. Exit code is assigned to
a room using an Assign Exit Code primitive that takes a
pointer to a function and a pointer to the arguments to the
function. The exit code is executed by the last user to be
done, prior to searching for the next active room. Thus we
are guaranteed that the exit code is executed once, and only
after all users granted access to the room are no longer inside
the room, but before any users can gain subsequent access
to any room. We have found the exit code to be quite use-
ful in our applications of room synchronization (an example
is given later in Figure 4 and is also used in our experi-
ments of Section 4). Intuitively, the exit code can be viewed
as enabling functionality such as \the last one to leave the
room turns out the lights". The need for this functionality
does not arise with mutual exclusion, because there is only
a single user inside the critical section at a time.

3. APPLICATIONS
In this section we describe two additional applications

of room synchronizations: a shared queue and a dynamic
shared stack.

FIFO queue. The implementation of a linearizable FIFO
queue is given in Figure 3. The newQueue routine creates a
new queue object, including allocating an array of a �xed
size mysize and calling createRooms to create two rooms
associated with the queue (one for enqueuing and one for
dequeuing). The queue object contains top, which points
to the top of the queue (i.e., the next location to insert
an element), and bot, which points to the bottom of the
queue (i.e., the �rst element to remove). The implementa-
tion properly checks for overow and underow (emptiness).
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1 struct queue f
2 val *A;
3 unsigned size;
4 int top, bot;
5 Rooms t *r;
6 g Queue t;

7 Queue t *newQueue(int mysize) f
8 Queue t *q = (Queue t *)
9 malloc(sizeof(Queue t));
10 q->A = (val *) malloc(
11 mysize * sizeof(val));
12 q->size = mysize;
13 q->top = q->bot = 0;
14 q->r = createRooms(2);
15 return q;
16 g

17 int ENQUEUEROOM = 0;
18 int DEQUEUEROOM = 1;

19 int enqueue(val y, Queue t *q) f
20 int status = SUCCESS;
21 enterRoom(q->r, ENQUEUEROOM);
22 int j = fetchAdd(&q->top,1);
23 if (j - q->bot >= q->size) f
24 fetchAdd(&q->top,-1);
25 status = OVERFLOW;
26 g
27 else q->A[j % q->size] = y;
28 exitRoom(q->r);
29 return status;
30 g

31 val dequeue(Queue t *q) f
32 val x;
33 enterRoom(q->r, DEQUEUEROOM);
34 int j = fetchAdd(&q->bot,1);
35 if (q->top - j <= 0) f
36 fetchAdd(&q->bot,-1);
37 x = EMPTY;
38 g
39 else x = q->A[j % q->size];
40 exitRoom(q->r);
41 return x;
42 g

Figure 3: The code for a parallel queue using room synchronizations.

In the case of overow during an enqueue, the element is
not inserted and the top pointer is not incremented (the
implementation �rst increments it, but then goes back and
decrements it). Similarly in the case of an empty queue, the
bot pointer is not incremented. Assuming the int type is of
�xed precision then bot and top can both overow. In the
proof below we assume there is no overow. The code, how-
ever, works correctly even with overow as long as the range
int is greater than 2 * (q->size + P) for P processes, and
as long as the range of int is a multiple of q->size.8 Alter-
natively we could use exit code (see the end of the previous
section) to reset the counter when it is close to overowing.

Theorem 2. The algorithm of Figure 3 implements a lin-
earizable FIFO queue, such that both the enqueue and the de-
queue operations takeO(tf+�) time regardless of the number
of concurrent users, where tf is an upper bound on the time
for a fetch-and-add, and � is an upper bound on the time for
any other instruction.

Proof: We �rst show the queue is linearizable. Consider
a collection of p users executing enqueue and dequeue oper-
ations on a queue, and p agents executing enterRoom and
exitRoom operations in response to user requests, as indi-
cated in the code. Let � be the execution comprising the
actions by both users and agents and the complete state af-
ter each action. Consider the subsequence of the actions in �
comprised of the fetch-and-add actions generated by Step 22
of the enqueue operation and Step 34 of the dequeue oper-
ation. We call these the commit actions. We argue that the
ordering of these commit actions speci�es a proper linearized
order of the corresponding queue operations.
Consider the enqueue. We call any region between a

commit action of an enqueue and the next EnterRoom-
Grant(DEQUEUEROOM) action a safe enqueue region. Because
of property P2 of the rooms, this region will contain no ac-
tions from the body of the dequeue. In particular q->bot

will not change, and no dequeue will commit. Consider an
enqueue operation. In the case that the queue is not full
(the else branch is taken) the committing fetch-and-add ef-
fectively reserves a location to put the item to enqueue. Any

8As with the rooms code, this takes advantage of twos-
complement arithmetic and is sensitive to the particular way
the comparisons are made in Steps 22 and 34.

commits from other enqueues coming after but within the
safe enqueue region will reserve higher, and hence later in
\time", locations in the queue (because of the properties
of fetch-and-add). Also, all writes to the reserved locations
in Step 27 will complete while still in the safe enqueue re-
gion (because of property P2 of the rooms). Hence these
enqueues will have the proper linear order. If an enqueue
operation does return OVERFLOW (the if branch is taken), then
any other enqueues coming after but within the safe enqueue
region will also return OVERFLOW. This is because only an en-
queue that increments q->top such that q->top - q->bot

> q->size will take the if branch. By decrementing q->top
by one in Step 24 it cannot make it the case that q->top -

q->bot < q->size. Since no dequeue can commit in a safe
enqueue region, having all future enqueues within the region
return OVERFLOW is the expected results of the speci�ed lin-
ear order. The argument for the proper linearized order of
the dequeues is similar to that for enqueues.
In regards to time, we note that the time that a process is

in a room is bounded by the time for two fetch-and-adds (on
Steps 22 and 24 of enqueue, for example), and a constant
number of other standard instructions (i.e., reads, writes,
arithmetic operations and conditional jumps). Each user is
therefore in a room for at most � = 2tf +O(�) time. Based
on Theorem 1, the maximum time a processor will wait to
enter or exit a room is proportional to tf , � and � (e.g., the
time to enter a room is bounded by m � (� + 2tf + O(�))).
Therefore the total time to enter, process, and exit is O(tf+
�).

Dynamic stack. We now consider the implementation of
a linearizable dynamic stack. In a dynamic stack we assume
the size of the stack is not known ahead of time and hence
the space allocated for the stack must be capable of growing
dynamically. Each time it grows, we double the allocated
space, and the old stack is copied to the new larger one.
In practice such dynamic stacks are very important. If an
application uses a collection of stacks that share the same
pool of memory, it is crucial to minimize the space needed
by each stack (i.e., allocating the maximum that each might
possibly need is impractical). Our implementation is shown
in Figure 4. The copying from a smaller to a larger stack
is implemented incrementally. We assume that INITSIZE
is greater than the maximum number of concurrent users.
The pushRoomExit routine is assigned as the exit code to
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int PUSHROOM = 0;
int POPROOM = 1;

struct stack {
val *A; /* current stack */
val *B; /* prev stack */
int copy; /* being copied? */
int start;
long size, top;
Rooms_t *r;

} Stack_t;

void pushRoomExit(void *arg) {
Stack_t *s = (Stack_t *) arg;
if (s->start) {

s->start = 0;
s->copy = 1;
s->size = 2*s->size;
free(s->B);
s->B = s->A;
s->A = (val *) malloc(

s->size * sizeof(val));
}

}

Stack_t *newStack() {
Stack_t *s = (Stack_t *)

malloc(sizeof(Stack_t));
s->A = (val *) malloc(

INITSIZE * sizeof(val));
s->B = NULL;
s->top = s->copy = s->start = 0;
s->size = INITSIZE;
s->r = createRooms(2);
assignExitCode(s->r, PUSHROOM,

pushRoomExit, s);
return s;

}

val pop(Stack_t *s) {
val x;
enterRoom(s->r, POPROOM);
int j = fetchAdd(&s->top,-1);
if (j < 0) {
fetchAdd(&s->top,1);
x = EMPTY;

}
else if (s->copy && j < s->size/2)

x = s->B[j-1];
else x = s->A[j-1];
exitRoom(s->r);
return x;

}

void push(val y, Stack_t *s) {
enterRoom(s->r, PUSHROOM);
int j = fetchAdd(&s->top,1);
if (j >= s->size) {

s->start = 1;
fetchAdd(&s->top,-1);
exitRoom(s->r);
push(y, s);
return;

}
if (s->copy) {
if (j >= s->size/2) {

s->A[j - s->size/2] =
s->B[j - s->size/2];

s->A[j] = y;
}
else s->B[j] = y;

}
else s->A[j] = y;
exitRoom(s->r);

}

Figure 4: The code for a parallel dynamic stack.

the PUSHROOM. For simplicity, we have left out some details,
such as handling possible failures of malloc.

Theorem 3. The algorithm of Figure 4 implements a lin-
earizable stack of dynamic size, such that both the push and
the pop operations take O(tf + ta+ �) time regardless of the
number of concurrent users, where tf is an upper bound on
the time for a fetch-and-add, ta is the upper bound on the
time for a call to malloc or free and � is an upper bound
on the time for any other instruction.

We prove this in the full paper [4]. We note that since
the blocks of memory are powers of two, allocating from a
shared pool should be quite cheap using a buddy system
(i.e., ta should be small).

4. EXPERIMENTAL RESULTS
In this section we describe the results of a benchmark

that uses a shared stack to distribute work across processors.
The experiments were performed on an Sun UltraEnterprise
10000 with 64 250Mhz UltraSparc-II processors. This is a
shared-memory machine with a compare-and-swap instruc-
tion, but no fetch-and-add. The fetch-and-add is therefore
simulated using the compare-and-swap. We demonstrate the
e�ectiveness of room synchronizations by comparing the per-
formance of the shared stack using rooms and using locks.
We also implemented the Treiber non-blocking stack [21].
However, the performance of the non-blocking stack was so
poor due to a large overhead and general unscalability that
we did not include the results in this paper.
The benchmark is loosely structured after the parallel

graph traversal of a garbage collector [5]. When the bench-
mark �rst executes, the shared stack is initialized with 16,000
nodes with a count of 11. Each processor repeatedly pops
500 nodes from the shared stack onto its local stack, oper-
ates on the nodes, and then pushes the entire contents of its

local stack back to the shared stack. The pop of 500 nodes,
and push of the local stack are each done within a single
room (for the room synchronization version) or a single lock
(for the locked version). A node with a count of k(> 0)
turns into two nodes of count k� 1, and a node with a zero
count simply disappears. In other words, each of the origi-
nal 16,000 nodes is the root node of a fully balanced binary
tree of depth 11. In addition to processing the nodes on
the local stack, each processor waits for a random amount
of time between popping and pushing. The random time is
selected uniformly between 0 and 2tk , where tk is a param-
eter of the experiment, and is meant to represent the work
associated with processing a stack element. In the case of
garbage collection, such additional work might include de-
coding objects, copying objects, and installing forwarding
pointers.
An interesting problem posed by the shared stack bench-

mark (and also present in the garbage collector) is detect-
ing termination, which should occur only when there are no
nodes left for any processor to work on. One can correctly
test whether the shared stack is empty by using suitably
designed exit code in the push room. However, detecting
that the shared stack is empty ignores the work on the local
stacks of each processor in its work section (i.e., each proces-
sor not trying to enter the pop room and not having just left
the push room). To solve this, we centralize the emptiness
condition by including in the shared stack a counter indi-
cating how many local stacks have borrowed items from the
shared stack and are (possibly) non-empty. This counter is
updated when a processor performs a push or pop. Termi-
nation is triggered when the shared stack is empty and the
counter is simultaneously zero.
For each setting of the parameters (locks vs. rooms, num-

ber of processors (1 to 30), and an amount of additional
work), the experiments were run 5 times and the averages
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are reported. Figure 5 shows three graphs with di�ering
amounts of additional wait time (the parameter tk). The
graphs correspond, from left to right, to applications where
the time to process an item is 40%, 100%, or 600% of the
time it takes to transfer the items from the shared stack
to the local stack. In each graph, the bottom line (widely-
spaced dots) represents the work for the uniprocessor case
when no synchronization is performed and no wait time is
introduced. The next line (dotted) adds a varying amount
of work reected in the distance from the bottom line. Fi-
nally, the solid and dashed curves represent the rooms and
locks versions of the benchmark with synchronization and
additional work. The vertical axis represents the total work
performed, which is calculated as the product of wall-clock
time and number of processors. In all cases perfect speedup
corresponds to the at thinly-spaced dotted line.
The rooms synchronization has good performance, intro-

ducing an overhead approximately equal to basic stack trans-
fer time (without synchronization or additional work). The
overhead is mostly independent of the number of processors,
indicating that the speedup achieved is (after including the
overhead) linear. Additionally the magnitude of the over-
head is also independent of the amount of additional work
introduced.
In contrast, at few processors, the locks version has almost

no overhead. However, as the number of processors increase,
the contention in acquiring locks increases, causing a rapid
performance degradation. The point at which this transi-
tion occurs varies from immediately to 10 processors and 20
processors for the three wait times, respectively. This trend
is expected as the introduction of additional work between
popping and pushing means that the processors spend less
time locking the push and pop code.
Given that we simulate the fetch-and-add with a compare-

and-swap, which sequentializes the fetch-and-add, one might
wonder why the room version scales so well. Recall, how-
ever, that we need only execute the fetch-and-add a small
constant number of times per room access: once when en-
tering, once when leaving and twice in each of the push
and pop codes. This compares with the 500 elements that
have to be copied o� the stack during a pop, and from 0
to 1000 that need to be copied back onto it during a push.
The proportion of instructions spent in code that might be
sequentialized is therefore small. Asymptotically our code
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Figure 5: Total work (elapsed time in seconds � num-
ber of processors) vs. number of processors, for 40%
additional wait time, 100% additional wait time, and
600% additional wait time.

would eventually cause the work to increase linearly with the
number of processors, but the slope would be much less than
that of the locked version. This is a subtle and crucial point
about room synchronization and a reason why our heavy use
of fetch-and-adds does not preclude good performance even
on machines that do not support a parallel fetch-and-add.

5. RELATED WORK AND DISCUSSION
Synchronization. There is a long history of synchro-

nization models and synchronization constructs for parallel
and distributed computation. At the one end of the spec-
trum, there are synchronous models such as the PRAM,
in which the processors execute in lock-step and there is
no charge for synchronization. Shared data structure de-
sign is simpli�ed by not having to deal with issues of asyn-
chrony. Bulk-synchronous models such as the BSP [23] or
the QSM [7] seek to retain the simplicity of synchronous
models, while permitting the processors to run asynchro-
nously between barrier synchronizations (typically) among
all the processors. Algorithms designed for these models
are necessarily blocking (due to the barrier synchroniza-
tions). For the loosely synchronous applications considered
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in this paper, there are signi�cant overheads in implement-
ing shared data structures using barrier synchronizations,
because all the processors must coordinate/wait even if they
are not currently accessing the data structure. To reduce the
number of barriers, coordination primitives such as parallel
pre�x or fetch-and-add are still needed to enable processors
to make parallel updates to the data structure. In loosely
synchronous applications having multiple classes of opera-
tions that must be separated (e.g., the push class and the
pop class) and unpredictable arrival times for operation re-
quests, it is desirable to have exibility in selecting which
class is permitted during the next phase. The application
would be forced to implement this exibility, and reason
about fairness and other issues, whereas this exibility is
already encapsulated in room synchronizations.
At the other end of the synchronization models spectrum

are the fully asynchronous models, in which processors can
be arbitrarily delayed or even fail, and shared data struc-
tures are designed to tolerate such delays and failures. Wait-
free data structures [10] have the property that any user's
request (e.g., a push or pop request) will complete in a
bounded number of steps, regardless of the delays or fail-
ures at other processors. Because of the large overheads in
wait-free data structures, there has been considerable work
on non-blocking (or lock-free) data structures [10], which
only require that some user's request will complete in a
bounded number of steps (although any particular user can
be delayed inde�nitely). Examples of non-blocking data
structures work includes [1, 2, 9, 10, 11, 17, 18, 24, 25].
Most of these implementations still fully sequentialize ac-
cess to the data structure. Moreover, they often require un-
bounded memory9, or the use of atomic operations on two
or more words of memory (such as a double compare-and-
swap or transactional memory [12, 20]). Such operations are
signi�cantly more di�cult to implement in hardware than
single word atomic operations. Thus, wait-free and non-
blocking data structures are essential in contexts where the
primary goal is making progress in highly-asynchronous en-
vironments, but there is a signi�cant cost to providing their
guarantees.
Room synchronizations are designed for asynchronous set-

tings more concerned with fast parallel access (and bounded
memory) than with providing non-blocking properties. In
other words, settings somewhat in between those suitable
for bulk-synchronous models and those suitable for fully
asynchronous models. In the experimental results in this
paper, as well as experiments with our parallel garbage col-
lector, we have obtained good performance with room syn-
chronizations on the Sun UltraEnterprise 10000, a 64 proces-
sor shared-memory machine, indicating that room synchro-
nizations are suitable for that machine. We expect similar
performance on other shared-memory machines such as the
SGI Power Challenge and the Compaq servers.
We note that our experiments are run in an environment

in which each process is mapped to one processor. This

9In such algorithms, memory can never be reused, because a
delayed processor may still have a pointer to the old memory
location. A discussion of this problem for a lock-free queue
algorithm is in [24]. A compare-and-swap is used to insert
or delete from the queue, so a delayed processor should fail
in its compare-and-swap because the queue has changed in
the meantime. However, if the memory is reused, then the
compare-and-swap may succeed when it should fail.

means that it is unlikely that a process will be swapped
out (context switched) by the operating system while inside
a room. There are a couple potential mechanisms to deal
with the case where the operating system could swap out
a process while inside a room. First, the interrupt for a
context switch might be delayed until the exitRoom. This
can be achieved on most processors by temporarily disabling
certain kinds of interrupts while inside a room. A second
potential solution is to have special interrupt handler code
that restores the state of the process to a point in which
it is safe to exit the room, and then exit the room before
submitting to the context switch.

Locks and other constructs. Traditional implementa-
tions of shared data structures use locks. Often locks are
distinguished as either shared or exclusive. A shared lock
permits other users to also be granted shared locks to the
data structure, but forbids the granting of an exclusive lock.
An exclusive lock forbids the granting of any other locks.
Room synchronization can be viewed as providing a lock
that is shared among those requesting the same room, but
exclusive to the shared locks for other rooms. This greater
sharing implies greater concurrency.
The closest algorithms to any of ours is an algorithm by

Gottlieb, Lubachevsky and Rudolph for parallel queues [8].
Like ours, the algorithm works with unpredictable arrival
times or requests, is based on the fetch-and-add operation,
and can fully parallelize access. Also like ours, it is not
non-blocking. It, however, has some important disadvan-
tages compared to ours. Firstly, it is not linearizable|the
following can occur on two processors:

P1 P2
enqueue(v1) enqueue(v2)

v1 <- dequeue()
EMPTY <- dequeue()

Secondly, the algorithms requires a lock (or counter) for ev-
ery element of the queue. This both requires extra mem-
ory, and requires manipulating this lock for every insert and
delete. In our solution it is easy to batch the inserts or
deletes, as was done in our experiments. Thirdly, the tech-
nique does not appear to generalize to other data structures
such as stacks. The technique does have one advantage,
which is that the blocking is at a �ner grain|at each loca-
tion rather than across the data structure.
Gottlieb, Lubachevsky and Rudolph [8] also provide jus-

ti�cation for why a parallel fetch-and-add operation can be
implemented e�ciently in hardware, and indeed, the Ultra-
computer they subsequently built provided a parallel fetch-
and-add. In addition to queues they showed how the fetch-
and-add could be used for various other operations includ-
ing a solution to the readers-writers problem, which allows
a shared lock for the readers of a data structure, but an
exclusive lock for the writers. Room synchronization can
be viewed as extracting from these algorithms (and other
previous algorithms using fetch-and-add) a synchronization
construct useful for many problems.
In our earlier work on garbage collection we briey de-

scribed another weaker version of the room synchroniza-
tions [3]. That version had a couple important disadvan-
tages over the version described in this paper. Firstly, it did
not guarantee properties P5{P10, unless you assumed cer-
tain properties of the exact time taken by each instruction.
In particular one process could be starved for an arbitrary
amount of time if other processes kept going through the
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room very quickly (fast enough that the process missed do-
ing a check of a ag for the brief time the room is open).
This could even be true if all processors are running at the
same rate. Secondly, the room synchronizations required
that each processor once entering the �rst room had to also
go through the second room. Thirdly, it only considered
synchronization with two rooms. Finally, the conditions on
what constitutes a room synchronization were not formal-
ized. In our new implementation of the garbage collector [5],
we use the implementation discussed in this paper.
As an abstraction, room synchronization is distinct from

all previous abstractions known to us. It di�ers from mu-
tual exclusion by introducing rooms that are mutually exclu-
sive to each other, but allowing concurrent access to a given
room. In more general abstractions, such as the resource
allocation abstraction [16] of which the dining philosophers
problem is a well-known speci�c instance, each user conicts
with a subset of the other users, and only nonconicting sets
of users can proceed in parallel. It is not clear how one would
emulate rooms using this formalization.
Finally, there have been a number of papers describing

techniques for reducing the contention in accessing shared
data structures (e.g., [8, 19, 21]). These techniques are com-
plementary to room synchronization, and perhaps can be
exploited in the implementation of rooms by increasing the
concurrency.

6. CONCLUSIONS
We presented a class of synchronizations called room syn-

chronizations, that are likely to be useful in a context that
lies between highly synchronous models such as the PRAM
or BSP model, and highly asynchronous models where it is
assumed processors can stall, fail, or become disconnected.
In particular room synchronizations can handle requests that
come in at arbitrary times, and from arbitrary subsets of the
processors. They, however, are blocking and hence if a pro-
cessor fails in certain critical regions of the code, the other
processors can become blocked.
Based on room synchronizations we presented simple and

e�cient implementations of shared stacks and queues. To
the best of our knowledge these are the �rst implemen-
tations of stacks and queues that are linearizable, handle
asynchronous requests, and allow for constant-time access
(assuming a constant-time fetch-and-add).
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