
Space-Efficient Scheduling of Nested Parallelism

GIRIJA J. NARLIKAR and GUY E. BLELLOCH

Carnegie Mellon University

Many of today’s high-level parallel languages support dynamic, fine-grained parallelism. These
languages allow the user to expose all the parallelism in the program, which is typically of a much
higher degree than the number of processors. Hence an efficient scheduling algorithm is required
to assign computations to processors at runtime. Besides having low overheads and good load
balancing, it is important for the scheduling algorithm to minimize the space usage of the parallel
program. This article presents an on-line scheduling algorithm that is provably space efficient
and time efficient for nested-parallel languages. For a computation with depth D and serial space
requirement S1, the algorithm generates a schedule that requires at most S1 +O(K ·D · p) space
(including scheduler space) on p processors. Here, K is a user-adjustable runtime parameter
specifying the net amount of memory that a thread may allocate before it is preempted by the
scheduler. Adjusting the value of K provides a trade-off between the running time and the mem-
ory requirement of a parallel computation. To allow the scheduler to scale with the number of

processors, we also parallelize the scheduler and analyze the space and time bounds of the compu-
tation to include scheduling costs. In addition to showing that the scheduling algorithm is space
and time efficient in theory, we demonstrate that it is effective in practice. We have implemented
a runtime system that uses our algorithm to schedule lightweight parallel threads. The results
of executing parallel programs on this system show that our scheduling algorithm significantly
reduces memory usage compared to previous techniques, without compromising performance.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming; D.3.4 [Programming Languages]: Processors—Run-time envi-
ronments; F.2.0 [Nonnumerical Algorithms and Problems]: Analysis Of Algorithms and
Problem Complexity

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Dynamic scheduling, multithreading, nested parallelism,
parallel language implementation, space efficiency

1. INTRODUCTION

Many of today’s high-level parallel programming languages provide constructs to
express dynamic, fine-grained parallelism. Such languages include data-parallel
languages such as Nesl [Blelloch et al. 1994] and HPF [HPF Forum 1993], as well
as control-parallel languages such as ID [Arvind et al. 1989], Cilk [Blumofe et al.

Authors’ address: CMU Computer Science Department, 5000 Forbes Avenue, Pittsburgh, PA
15213; email: {narlikar, blelloch}@cs.cmu.edu.
This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant
DABT63-96-C-0071.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0100-0138 $05.00

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999, Pages 138–173.

Space-Efficient Scheduling of Nested Parallelism · 139

1995], CC++ [Chandy and Kesselman 1992], Sisal [Feo et al. 1990], Multilisp [Hal-
stead 1985], Proteus [Mills et al. 1990], and C or C++ with lightweight thread
libraries [Powell et al. 1991; Bershad et al. 1988; Mueller 1993]. These languages
allow the user to expose all the parallelism in the program, which is typically of a
much higher degree than the number of processors. The language implementation
is responsible for scheduling this parallelism onto the processors. If the scheduling
is done at runtime, then the performance of the high-level code relies heavily on the
scheduling algorithm, which should have low scheduling overheads and good load
balancing.

Several systems providing dynamic parallelism have been implemented with effi-
cient runtime schedulers [Blumofe and Leiserson 1994; Chandra et al. 1994; Chase
et al. 1989; Freeh et al. 1994; Goldstein et al. 1995; Hseih et al. 1993; Hummel
and Schonberg 1991; Nikhil 1994; Rinard et al. 1993; Rogers et al. 1995], result-
ing in good parallel performance. However, in addition to good time performance,
the memory requirements of the parallel computation must be taken into considera-
tion. In an attempt to expose a sufficient degree of parallelism to keep all processors
busy, schedulers often create many more parallel threads than necessary, leading
to excessive memory usage [Culler and Arvind 1988; Halstead 1985; Rugguero and
Sargeant 1987]. Further, the order in which the threads are scheduled can greatly
affect the total size of the live data at any instance during the parallel execution,
and unless the threads are scheduled carefully, the parallel execution of a program
may require much more memory than its serial execution. Because the price of the
memory is a significant portion of the price of a parallel computer, and parallel
computers are typically used to run big problem sizes, reducing memory usage is
often as important as reducing running time. Many researchers have addressed
this problem in the past. Early attempts to reduce the memory usage of parallel
computations were based on heuristics that limit the parallelism [Burton and Sleep
1981; Culler and Arvind 1988; Halstead 1985; Rugguero and Sargeant 1987] and are
not guaranteed to be space efficient in general. These were followed by scheduling
techniques that provide proven space bounds for parallel programs [Blumofe and
Leiserson 1993; 1994; Burton 1988; Burton and Simpson 1994]. If S1 is the space
required by the serial execution, these techniques generate schedules for a multi-
threaded computation on p processors that require no more than p ·S1 space. These
ideas are used in the implementation of the Cilk programming language [Blumofe
et al. 1995].

A recent scheduling algorithm improved these space bounds from a multiplicative
factor on the number of processors to an additive factor [Blelloch et al. 1995]. The
algorithm generates a schedule that uses only S1 + O(D · p) space, where D is
the depth of the parallel computation (i.e., the length of the longest sequence of
dependencies or the critical path in the computation). This bound is asymptotically
lower than the previous bound of p · S1 when D = o(S1), which is true for parallel
computations that have a sufficient degree of parallelism. For example, a simple
algorithm to multiply two n× n matrices has depth D = Θ(logn) and serial space
S1 = Θ(n2), giving space bounds of O(n2 + p logn) instead of O(n2p) on previous
systems.1 The low space bound of S1 + O(D · p) is achieved by ensuring that

1More recent work provides a stronger upper bound than p · S1 for space requirements of regular

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

140 · G. J. Narlikar and G. E. Blelloch

the parallel execution follows an order that is as close as possible to the serial
execution. However, the algorithm has scheduling overheads that are too high for
it to be practical. Since it is synchronous, threads need to be rescheduled after
every instruction to guarantee the space bounds. Moreover, it ignores the issue of
locality—a thread may be moved from processor to processor at every timestep.

In this article we present and analyze an asynchronous scheduling algorithm
called AsyncDF. This algorithm is a variant of the synchronous scheduling algo-
rithm proposed in previous work [Blelloch et al. 1995] and overcomes the above-
mentioned problems. We also provide experimental results that demonstrate that
the AsyncDF algorithm does achieve good performance both in terms of memory
and time. The main goal in the design of the algorithm was to allow threads to
execute nonpreemptively and asynchronously, allowing for better locality and lower
scheduling overhead. This is achieved by allocating a pool of a constant K units of
memory to each thread when it starts up, and allowing a thread to execute non-
preemptively on the same processor until it runs out of memory from that pool
(and reaches an instruction that requires more memory), or until it suspends. In
practice, instead of preallocating a pool of K units of memory for each thread, we
can assign it a counter that keeps track of its net memory allocation. We call this
runtime, user-defined constant K the memory threshold for the scheduler. When an
executing thread suspends or is preempted on a memory allocation, the processor
accesses a new thread in a nonblocking manner from a work queue; the threads in
the work queue are prioritized according to their depth-first, sequential execution
order. The algorithm also delays threads performing large block allocations by
effectively lowering their priority. Although the nonpreemptive and asynchronous
nature of the AsyncDF algorithm results in an execution order that differs from
the order generated by the previous algorithm [Blelloch et al. 1995], we show that
it maintains an asymptotic space bound of S1 + O(K · D · p). Since K is typi-
cally fixed to be a small, constant amount of memory, the space bound reduces to
S1 +O(D · p), as before. This bound includes the space required by the scheduling
data structures.

The scheduler in the AsyncDF algorithm is serialized, and it may become a
bottleneck for a large number of processors. Therefore, to allow the scheduler to
scale with the number of processors, this article also presents a parallelized version
of the scheduler. We analyze both the space and time requirements of a parallel
computation including the overheads of this parallelized scheduler. Using the par-
allelized scheduler, we show that a computation with W work (i.e., total number
of operations), D depth, and a serial space requirement of S1 can be executed on
p processors using S1 +O(K ·D · p · log p) space. The additional log p factor arises
because the parallelized scheduler creates more ready threads to keep the processors
busy while the scheduler executes; this creation of additional parallelism is required
to make the execution time efficient. When the total space allocated in the com-
putation is O(W) (e.g., when every allocated element is touched at least once), we
show that the total time required for the parallel execution is O(W/p +D · log p).

We have built a runtime system that uses the AsyncDF algorithm to schedule
parallel threads on the SGI Power Challenge. To test its effectiveness in reduc-

divide-and-conquer algorithms in Cilk [Blumofe et al. 1996].

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 141

M
em

or
y

(M
B

)

30

40

50

60

0

5

10

15

20

100 1000 10000 100000 1e+06

T
im

e
(s

ec
)

Memory Threshold K (Bytes)

Time
Mem

Fig. 1. The variation of running time and memory usage with the memory threshold K (in
bytes) for multiplying two 1024× 1024 matrices using blocked recursive matrix multiplication on
8 processors. K=500–2000 bytes results in both good performance and low memory usage.

ing memory usage, we have executed a number of parallel programs on it, and
compared their space and time requirements with previous scheduling techniques.
The experimental results show, that, compared to previous techniques, our system
significantly reduces the maximum amount of live data at any time during the ex-
ecution of the programs. In addition, good single-processor performance and high
parallel speedups indicate that the scheduling overheads in our system are low, that
is, memory requirements can be effectively reduced without compromising perfor-
mance.

A bigger value of the memory threshold K leads to a lower running time in
practice because it allows threads to run longer without preemption and reduces
scheduling costs. However, a large K also results in a larger space bound. The
memory threshold parameter K therefore provides a trade-off between the running
time and the memory requirement of a parallel computation. For example, Figure 1
experimentally demonstrates this trade-off for a parallel benchmark running on our
runtime system. Section 7 describes the runtime system and the benchmark in
detail. For all the benchmarks used in our experiments, a value of K = 1000 bytes
yields good performance in both space and time.

The AsyncDF scheduling algorithm assumes a shared-memory programming
model and applies to languages providing nested parallelism. These include nested
data-parallel languages, and control-parallel languages with a fork-join style of par-
allelism. Threads in our model are allowed to allocate memory from the shared
heap or on their private stacks.

1.1 An Example

The following pseudocode illustrates the main ideas behind our scheduling algo-
rithm, and how they result in lower memory usage compared to previous scheduling
techniques.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

142 · G. J. Narlikar and G. E. Blelloch

In parallel for i = 1 to n
Temporary B[n]
In parallel for j = 1 to n

F(B,i,j)
Free B

This code has two levels of parallelism: the i-loop at the outer level and the j-
loop at the inner level. In general, the number of iterations in each loop may not
be known at compile time. Space for an array B is allocated at the start of each
i-iteration, and is freed at the end of the iteration. Assuming that F(B,i,j) does
not allocate any space, the serial execution requires O(n) space, since the space for
array B is reused for each i-iteration.

Now consider the parallel implementation of this function on p processors, where
p < n. Previous scheduling systems [Blumofe and Leiserson 1993; Burton 1988;
Burton and Simpson 1994; Chow and W. L. Harrison 1990; Goldstein et al. 1995;
Hummel and Schonberg 1991; Halstead 1985; Rugguero and Sargeant 1987], which
include both heuristic-based and provably space-efficient techniques, would schedule
the outer level of parallelism first. This results in all the p processors executing
one i-iteration each, and hence the total space allocated is O(p ·n). Our AsyncDF
scheduling algorithm also starts by scheduling the outer parallelism, but stalls big
allocations of space. Moreover, it prioritizes operations by their serial execution
order. As a result, the processors suspend the execution of their respective i-
iterations before they allocate O(n) space each, and execute j-iterations belonging
to the first i-iteration instead. Thus, if each i-iteration has sufficient parallelism
to keep the processors busy, our technique schedules iterations of a single i-loop
at a time. In general, our scheduler allows this parallel computation to run in just
O(n+D · p) space,2 where D is the depth of the function F.

As a related example, consider n users of a parallel machine, each running parallel
code. Each user program allocates a large block of space as it starts and deallocates
the block when it finishes. In this case the outer parallelism is across the users, while
the inner parallelism is within each user’s program. A scheduler that schedules the
outer parallelism would schedule p user programs to run simultaneously, requiring
a total memory equal to the sum over the memory requirements of p programs. On
the other hand, the AsyncDF scheduling algorithm would schedule one program at
a time, as long as there is sufficient parallelism within each program to keep the
processors busy. In this case, the total memory required is just the maximum over
the memory requirement of each user’s program.

A potential problem with the AsyncDF algorithm is, that, because it often pref-
erentially schedules inner parallelism (which is finer grained), it can cause large
scheduling overheads and poor locality compared to algorithms that schedule outer
parallelism. We overcome this problem by grouping the fine-grained iterations of
innermost loops into chunks. Our experimental results demonstrate that this ap-
proach is sufficient to yield good performance in time and space (see Section 7). In
the experimental results reported in this article we have blocked the iterations into
chunks by hand, but in Section 8 we discuss some ongoing work on automatically

2The additional O(D · p) memory is required due to the O(D · p) instructions that may execute
“out of order” with respect to the serial execution order for this code.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 143

ready

executing

suspended

scheduled

reactivated
suspends

terminates

(deleted)

Threads in the system

created

preempted

Fig. 2. The state transition diagram for threads. Thread in the system are either executing, ready,
or suspended.

chunking the iterations. In general there is a trade-off between memory use and
scheduling efficiency.

1.2 Outline of the Article

We begin by defining the multithreaded programming model that our scheduling al-
gorithm implements in Section 2. Section 3 describes how any parallel computation
in this model can be represented as a directed acyclic graph—this representation is
used in the proofs throughout the article. Section 4 presents our online scheduling
algorithm; the space and time bounds for schedules generated by it are proved in
Section 5. In Section 6 we describe a parallelized scheduler and analyze the space
and time requirements to include scheduling overheads. The implementation of our
runtime system and the results of executing parallel programs on it are described
in Section 7. Finally, we summarize and describe future work in Section 8.

2. MODEL OF PARALLELISM

Our scheduling algorithm is applicable to languages that support nested parallelism,
which include data-parallel languages (with nested parallel loops and nested parallel
function calls), control-parallel languages (with fork-join constructs), and any mix
of the two. The algorithm assumes a shared-memory programming model, in which
parallel programs can be described in terms of threads. Threads may be either
executing, ready to execute, or suspended. A thread is said to be scheduled when
a processor begins executing its instructions, that is, when the thread moves from
the ready state to the executing state. When the executing thread subsequently
suspends or preempts itself, it gives up the processor and leaves the executing state.
A thread may suspend on a synchronization with one or more of its child threads.
When a thread preempts itself due to a memory allocation (as explained below)
it remains in the ready state. A thread that suspends must be reactivated (made
ready) before it can be scheduled again. An executing thread that terminates is
removed from the system. Figure 2 shows the state transition diagram for threads.

Each thread can be viewed as a sequence of actions; an action is a unit of compu-
tation that must be executed serially, and takes exactly one timestep (clock cycle)
to be executed on a processor. A single action may allocate or deallocate space.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

144 · G. J. Narlikar and G. E. Blelloch

Since instructions do not necessarily complete in a single timestep, one machine
instruction may translate to a series of multiple actions. The work of a parallel
computation is the total number of actions executed in it, that is, the number of
timesteps required to execute it serially (ignoring scheduling overheads). The depth
of a parallel computation is the length of the critical path, or the time required
to execute the computation on an infinite number of processors (again, ignoring
scheduling overheads). The space requirement of an execution is the maximum of
the total memory allocated across all processors at any time during the execution,
that is, the high-water mark of total memory allocation.

The computation starts with one initial thread. On encountering a parallel loop
(or fork), a thread forks one child thread for each iteration and suspends itself.3

Each child thread may, in turn, fork more threads. We assume that the child threads
do not communicate with each other. The last child thread to terminate reactivates
the suspended parent thread. We call the last action of a thread its synchronization
point. A thread may fork any number of child threads, and this number need not
be known at compile time. We assume the program is deterministic and does not
include speculative computation.

To maintain our space bounds, we impose an additional restriction on the threads.
Every time a ready thread is scheduled, it may perform a memory allocation from
a global pool of memory only in its first action. The memory allocated becomes its
private pool of memory, and may be subsequently used for a variety of purposes,
such as, for dynamically allocated heap data or activation records on its stack.
When the thread runs out of its private pool and reaches an action that needs to
allocate more memory, the thread must preempt itself by giving up its processor
and moving from the executing state back to the ready state. The next time the
thread is scheduled, the first of its actions to execute may once again allocate a
pool of memory from the global pool, and so on. The reason threads are preempted
just before they allocate more space is to allow ready threads which have a higher
priority (an earlier order in the serial execution) to get scheduled instead. The
thread-scheduling policy is transparent to the programmer.

3. REPRESENTING THE COMPUTATION AS A DAG

To formally define and analyze the space and time requirements of a parallel com-
putation, we view the computation as a precedence graph, that is, a directed acyclic
graph or DAG. Each node in the DAG corresponds to an action. The edges of the
DAG express the dependencies between the actions. We will refer to the amount
of memory allocated from the global pool by the action corresponding to a node v
as m(v). If the action performs a deallocation, m(v) is negative; we assume that
a single action does not perform both an allocation and a deallocation. The DAG
unfolds dynamically and can be viewed as a trace of the execution.

For the nested parallelism model described in Section 2, the dynamically un-
folding DAG has a series-parallel structure. A series-parallel DAG [Blelloch et al.
1995] can be defined inductively: the DAG G0 consisting of a single node (which
is both its source and sink) and no edges is a series-parallel DAG. If G1 and G2

3As discussed later, the implementation actually forks the threads lazily so that the space for a
thread is allocated only when it is started.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 145

Fig. 3. A portion of a program DAG and the threads that perform its computation. Each node
corresponds to a single action; the edges express dependencies between actions. The threads are
shown as outlines around the nodes. Dashed lines mark points in a thread where it gets suspended
or preempted and is subsequently scheduled again. Only the initial node of each newly scheduled
thread may allocate memory, that is, may allocate space from the global pool to be used as the
local pool. Such nodes are shown in bold. Any node may deallocate memory.

are series-parallel DAGs, then the graph obtained by adding to G1 ∪ G2 a di-
rected edge from the sink node of G1 to the source node of G2 is a series-parallel
DAG. If G1, . . . , Gn, for n ≥ 1, are series-parallel DAGs, then the DAG obtained by
adding to G1 ∪ . . . ∪ Gn a new source node u, with edges from u to the source nodes
of G1, . . . , Gn, and a new sink node v, with edges from the sink nodes of G1, . . . , Gn
to v is also a series-parallel DAG.

The total number of nodes in the DAG corresponds to the total work of the
computation, and the longest path in the DAG corresponds to the depth. A thread
that performs w actions (units of computation) is represented as a sequence of
w nodes in the DAG. When a thread forks child threads, edges from its current
node to the initial nodes of the child threads are revealed. Similar dependency
edges are revealed at the synchronization point. Because we do not restrict the
number of threads that can be forked, a node may have an arbitrary in-degree
and out-degree. For example, Figure 3 shows a small portion of a DAG. Only the
first node of a newly scheduled thread may allocate space; a thread must preempt
itself on reaching a subsequent node that performs an allocation. The points where
threads are suspended or preempted, and subsequently scheduled again, are marked
as dashed lines.

Definitions. In a DAG G = (V,E), for every edge (u, v) ∈ E, we call u a parent
of v, and v a child of u. For our space and time analysis we assume that the
clocks (timesteps) of the processors are synchronized. Therefore, although we are
modeling asynchronous parallel computations, the schedules are represented as sets
of nodes executed in discrete timesteps. With this assumption, any execution of
the computation on p processors that takes T timesteps can be represented by a
p-schedule sp = V1, V2, . . . , VT , where Vi is the set of nodes executed at timestep i.
Since each processor can execute at most one node in each timestep, each set Vi

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

146 · G. J. Narlikar and G. E. Blelloch

1

2

3

4

5

6

7

8

9

10

11

Fig. 4. The 1DF-schedule for a program DAG. Each node is labeled with the order in which it
is executed. A node cannot be executed until all the nodes that have edges into it have been
executed. Serial executions of computations on most systems execute nodes in this order.

contains at most p nodes. A serial execution of a computation can be represented
by a 1-schedule s1 = V1, V2, . . . , VT , where each set Vi consists of at most one node.
Every schedule must obey the dependency edges, that is, a node may appear in
a set Vi only if all its parent nodes appear in previous sets. We say a node v is
ready at timestep i, if all the parents of v have been executed, but v has not been
executed.

We define the space requirement of a parallel (or serial) execution as the high
water mark of total memory allocated across all the processors. Therefore, space
required by a parallel execution represented as sp = V1, V2, . . . , VT is defined as

Sp = n + maxj=1,...,T

(∑j
i=1

∑
v∈Vim(v)

)
, where n is the space required to store

the input. We use the term S1 to refer to the space requirement of a serial execution.

1DF-schedule. Several different serial schedules (with different space requirements)
may exist for a single DAG. However, serial implementations of most languages exe-
cute nodes according to a unique, left-to-right, depth-first schedule or 1DF-schedule
of the DAG. The first step of a 1DF-schedule executes the root node; at every sub-
sequent step, the leftmost ready child of the most recently executed node with a
ready child is executed (when children are placed from left to right in program text
order). The order in which the nodes are executed in a 1DF-schedule determines
their 1DF-numbers. For example, Figure 4 shows the 1DF-numbering of a sim-
ple program DAG. For the class of nested parallel computations, the most natural
serial execution follows a 1DF-schedule. Therefore, in the rest of this article, we
refer to the 1DF-schedule as the serial schedule s1, and its space requirement as the
serial space requirement S1. In practice, due to effects such as caching, the exact
size of the DAG for a given computation can depend on the particular schedule.
For example, the number of clock cycles (actions) required for a given instruction
can vary based on the location of its data in the memory hierarchy, which may be
affected by the scheduling order. For deterministic programs, however, the value
of S1 is independent of the schedule (or execution), since the number or size of
allocations is not affected by such timing effects.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 147

Processors

Qout

Q in

R

decreasing thread
priorities

Fig. 5. The movement of threads between the processors and the scheduling queues. Qin and Qout
are FIFOs, whereas R allows insertions and deletions of intermediate threads. Every executing,
suspended, or ready thread has an entry in R. Threads in R are stored from left to right in
increasing order of the 1DF-numbers of their leading nodes (the first nodes to be executed when
the thread gets scheduled).

4. THE ASYNCDF SCHEDULING ALGORITHM

The key idea behind our scheduling algorithm is to schedule threads in an order
that is sufficiently close to a 1DF-numbering (serial ordering) of their nodes. Since
we must schedule multiple threads simultaneously to keep all the processors busy,
some threads get scheduled earlier than they would be in the serial execution. These
are the threads that cause the parallel execution to require more memory; however,
we can limit the number of such threads by following an order of execution dictated
by the 1DF-numbers.

We first describe the data structures used in the system, followed by a description
of the AsyncDF algorithm. We assume for now that every time a thread is sched-
uled, the number of bytes it allocates from the global pool is at most a constant K
(the user-adjustable memory threshold), and that it preempts itself when it reaches
an action requiring more memory. This assumption is valid if no single action in
a thread needs to allocate more than K memory; we will explain how to handle
allocations larger than K later in this section.

Runtime Data Structures. The central data structure, R, is a priority queue con-
taining ready threads (threads that are ready to be executed), suspended threads,
and stubs that act as place-holders for threads that are currently being executed.
Threads in R are stored from left to right in increasing order of the 1DF-numbers
of their leading nodes (the first nodes to be executed when the thread is next sched-
uled). The lower the 1DF-number of the leading node of a thread, the higher is the
thread’s priority. Maintaining threads in this order requires R to support opera-
tions such as inserting or deleting from the middle of the queue. Implementing fast,
concurrent operations on such a queue is difficult; instead, we introduce two addi-
tional queues called Qin and Qout. These queues are simple FIFOs that support
efficient concurrent inserts and deletes. They act as input and output buffers to
store threads that are to be inserted or that have been removed, respectively, from
R (see Figure 5); processors can perform fast, nonblocking accesses to these queues.
In this section we use a serial algorithm to move threads between the buffers and
R; Section 6 describes how this can be done in parallel.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

148 · G. J. Narlikar and G. E. Blelloch

begin worker
while (there exist threads in the system)
τ := remove-thread(Qout);
if (τ is a scheduling thread) then scheduler()
else

execute the actions associated with τ ;
if (τ terminates) or (τ suspends) or (τ preempts itself)
then insert-thread(τ , Qin);

end worker

begin scheduler
acquire scheduler-lock;

insert a scheduling thread into Qout;
T := remove-all-threads(Qin);
for each thread τ in T

insert τ into R in its original position;
if τ has terminated

if τ is the last among its siblings to synchronize,
reactivate τ ’s parent;

delete τ from R;
select the leftmost p ready threads from R:

if there are less than p ready threads, select them all;
fork child threads in place if needed;

insert these selected threads into Qout;
release scheduler-lock;

end scheduler

Fig. 6. The AsyncDF scheduling algorithm. When the scheduler forks (creates) child threads, it
inserts them into R in the immediate left of their parent thread. This maintains the invariant
that the threads in R are always in the order of increasing 1DF-numbers of their leading nodes.
Therefore, at every scheduling step, the p ready threads whose leading nodes have the smallest
1DF-numbers are moved to Qout. Child threads are forked only when they are to be added to
Qout, that is, when they are among the leftmost p ready threads in R.

Algorithm Description. The pseudocode for the AsyncDF scheduling algorithm is
given in Figure 6. The processors normally act as workers, when they take threads
from Qout, execute them until they preempt themselves, suspend or terminate,
and then return them to Qin. Every time a ready thread is picked from Qout and
scheduled on a worker processor, it may allocate space from a global pool in its first
action. The thread must preempt itself before any subsequent action that requires
more space. A thread that performs a fork must suspend itself; it is reactivated
when the last of its forked child threads terminates. A child thread terminates upon
reaching the synchronization point.

In addition to acting as workers, the processors take turns in acting as the sched-
uler. For this purpose, we introduce special scheduling threads into the system.
Whenever the thread taken from Qout by a processor turns out to be a scheduling
thread, it assumes the role of the scheduling processor and executes the scheduler
procedure. We call each execution of the scheduler procedure a scheduling step.
Only one processor can be executing a scheduling step at a time due to the sched-
uler lock. The algorithm begins with a scheduling thread and the first (root) thread
of the program on Qout.

A processor that executes a scheduling step starts by putting a new scheduling
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 149

thread on Qout. Next, it moves all the threads from Qin to R. Each thread has a
pointer to a stub that marks its original position relative to the other threads inR; it
is inserted back in that position. All threads that were preempted due to a memory
allocation are returned to R in the ready state. The scheduler then compacts R by
removing threads that have terminated. These are child threads that have reached
their synchronization point and the root thread at the end of the entire computation.
If a thread is the last among its siblings to reach its synchronization point, its
suspended parent thread is reactivated. If a thread performs a fork, its child threads
are inserted to its immediate left, and the forking thread suspends. The child
threads are placed inR in order of the 1DF-numbers of their leading nodes. Finally,
the scheduler moves the leftmost p ready threads from R to Qout, leaving behind
stubs to mark their positions in R. If R contains less than p ready threads, the
scheduler moves them all to Qout. The scheduling thread then completes, and the
processor resumes the task of a worker.

This scheduling algorithm ensures that the total number of threads in Qin and
Qout is at most 3p (see Lemma 5.1.4). Further, to limit the number of threads in R,
we lazily create the child threads of a forking thread: a child thread is not explicitly
created until it is to be moved to Qout, that is, when it is among the leftmost p
threads represented in R. Until then, the parent thread implicitly represents the
child thread. A single parent may represent several child threads. This optimization
ensures that a thread does not have an entry in R until it has been scheduled at
least once before, or is in (or about to be inserted into) Qout. If a thread τ is ready
to fork child threads, all its child threads will be forked (created) and scheduled
before any other threads in R to the right of τ can be scheduled.

Handling Large Allocations of Space. We had assumed earlier in this section that
every time a thread is scheduled, it allocates at most K bytes for its use from a
global pool of memory, where K is the constant memory threshold. This does not
allow any single action within a thread to allocate more than K bytes. We now show
how such allocations are handled, similar to the technique suggested in previous
work [Blelloch et al. 1995]. The key idea is to delay the big allocations, so that
if threads with lower 1DF-numbers become ready, they will be executed instead.
Consider a thread with a node that allocates m units of space in the original DAG,
and m > K. We transform the DAG by inserting a fork of m/K parallel threads
before the memory allocation (see Figure 7). These new child threads perform
a unit of work (a no-op), but do not allocate any space; they simply consist of
dummy nodes. However, we treat the dummy nodes as if they allocate space, and
the original thread is suspended at the fork. It is reactivated when all the dummy
threads have been executed, and may now proceed with the allocation of m space.
This transformation of the DAG increases its depth by at most a constant factor. If
Sa is the total space allocated in the program (not counting the deallocations), the
number of nodes in the transformed DAG is at most W+Sa/K. The transformation
takes place at runtime, and the on-line AsyncDF algorithm generates a schedule for
this transformed DAG. This ensures that the space requirement of the generated
schedule does not exceed our space bounds, as proved in Section 5.

We state the following lemma regarding the order of the nodes in R maintained
by the AsyncDF algorithm.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

150 · G. J. Narlikar and G. E. Blelloch

(a) (b)

. . .

threads

0

0 m K

0

m
0 0

m

Fig. 7. A transformation of the DAG to handle a large allocation of space at a node without
violating the space bound. Each node is labeled with the amount of memory its action allocates.
When a thread needs to allocate m space (m > K), we insert m/K parallel child threads before
the allocation. K is the constant memory threshold. Each child thread consists of a dummy node
that does not allocate any space. After these child threads complete execution, the original thread
performs the allocation and continues with its execution.

Lemma 4.1. The AsyncDF scheduling algorithm always maintains the threads
in R in an increasing order of the 1DF-numbers of their leading nodes.

Proof. This lemma can be proved by induction. When the execution begins,
R contains just the root thread, and therefore it is ordered by the 1DF-numbers.
Assume that at the start of some scheduling step, the threads in R are in increasing
order of the 1DF-numbers of their leading nodes. For a thread that forks, inserting
its child threads before it in the order of their 1DF-numbers maintains the ordering
by 1DF-numbers. A thread that preempts itself due to a memory allocation is re-
turned to its original position in the ready state. Its new leading node has the same
1DF-number as its previous leading node, relative to leading nodes of other threads.
Deleting threads from R does not affect their ordering. Therefore the ordering of
threads in R by 1DF-numbers is preserved after every operation performed by the
scheduler.

Lemma 4.1 implies that when the scheduler moves the leftmost p threads from R
to Qout, their leading nodes are the nodes with the lowest 1DF-numbers. We will
use this fact to prove the space bounds of the schedule generated by our scheduling
algorithm.

5. THEORETICAL RESULTS

In this section, we prove that a parallel computation with depth D and work W ,
which requires S1 space to execute on one processor, is executed by the AsyncDF
scheduling algorithm on p processors using S1 +O(D · p) space (including scheduler
space). In Section 6 we describe the implementation of a parallelized scheduler and
analyze both the space and time bounds including scheduler overheads.

Recall that we defined a single action as the work done by a thread in one
timestep (clock cycle). Since the granularity of a clock-cycle is somewhat arbitrary,
especially considering highly pipelined processors with multiple functional units,
this would seem to make the exact value of the depth D somewhat arbitrary. For
asymptotic bounds this is not problematic, since the granularity will only make
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 151

constant factor differences. In Appendix A, however, we modify the space bound
to be independent of the granularity of actions, making it possible to bound the
space requirement within tighter constant factors.

Timing Assumptions. As explained in Section 3, the timesteps are synchronized
across all the processors. At the start of each timestep, we assume that a worker
processor is either busy executing a thread or is accessing the queues Qout or Qin.
An idle processor always busy waits for threads to appear in Qout. We assume
a constant-time, atomic fetch-and-add operation in our system. This allows all
worker processors to access Qin and Qout in constant time [Narlikar 1999]. Thus,
at any timestep, if Qout has n threads, and pi processors are idle, then min(n, pi)
of the pi idle processors are guaranteed to succeed in picking a thread from Qout
within a constant number of timesteps. We do not need to limit the duration of
each scheduling step to prove the space bound; we simply assume that it takes at
least one timestep to execute.

5.1 Space Bound

To prove the space bound, we partition the nodes of the computation DAG into
heavy and light nodes. Every time a ready thread is scheduled, we call the node
representing its first action (i.e., the thread’s leading node) a heavy node, and all
other nodes light nodes. Thus, heavy nodes may allocate space, while light nodes
allocate no space (but may deallocate space). The space requirement is analyzed
by bounding the number of heavy nodes that execute out of order with respect
to the 1DF-schedule. When a thread is moved from R to Qout by a scheduling
processor, we will say its leading heavy node has been inserted into Qout. A heavy
node may get executed several timesteps after it becomes ready and after it is put
into Qout. However, a light node is executed in the timestep it becomes ready,
because a processor executes consecutive light nodes nonpreemptively.

Let sp = V1, . . . , VT be the parallel schedule of the DAG generated by the
AsyncDF algorithm. Here Vi is the set of nodes that are executed at timestep
i. Let s1 be the 1DF-schedule for the same DAG. A prefix of sp is the set

⋃ j
i=1 Vi,

that is, the set of all nodes executed during the first j timesteps of sp, for any
1 ≤ j ≤ T . Consider an arbitrary prefix, σp, of sp. Let σ1 be the largest prefix of
s1 containing only nodes in σp, that is, σ1 does not contain any nodes that are not
part of σp. Then σ1 is the corresponding serial prefix of σp. We call the nodes in
σp − σ1 the premature nodes, because they have been executed out of order with
respect to s1. All other nodes in σp (i.e., all nodes in the set σ1) are called nonpre-
mature. For example, Figure 8 shows a simple DAG with a parallel prefix σp for
some arbitrary p-schedule, and its corresponding serial prefix σ1.

The parallel execution has higher memory requirements because of the space
allocated by the actions associated with the premature nodes. Hence we need to
bound the space overhead of the premature nodes in σp. To get this bound, we
need to consider only the heavy premature nodes, since the light nodes do not
allocate any space. We will assume for now that the actions corresponding to all
heavy nodes allocate at most K space each, where K is the user-specified memory
threshold of the scheduler. Later we will relax this assumption to cover bigger
allocations. We first prove the following bound on the number of heavy nodes that

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

152 · G. J. Narlikar and G. E. Blelloch

a

b

c e

f

g

h

i

j

k

l

m

n

d

a

b

c e

f

g

h

i

j

k

l

m

n

d

1

p

O

O

(a) (b)

Fig. 8. (a) A simple program DAG in which the heavy nodes (a, b, c, e, g, h, k, and n) are shown as
bold. The 1DF-schedule for this DAG is s1 = [a, b, c, d, e, f, g, h, i, j, k, l,m, n]. For p = 2, a possible
parallel schedule is sp = [{a}, {b, h}, {c, i}, {d, j}, {e, k}, {f, l}, {g,m}, {n}]. In this schedule, once
a heavy node is executed, the processor continues to execute the subsequent light nodes of the
thread. (b) shows a prefix σp = {a, b, h, c, i, d, j, e, k} of sp (after the first 5 timesteps), and the
corresponding prefix σ1 of s1, where σ1 = {a, b, c, d, e}. Thus, the premature nodes in σp (i.e.,
the nodes in σp−σ1) are h, i, j, and k, shown shaded in (a). Of these, the heavy premature nodes
are h and k.

get executed prematurely in any prefix of the parallel schedule.

Lemma 5.1.1. Let G be a directed acyclic graph (DAG) of W nodes and depth
D. Let s1 be the 1DF-schedule for G, and let sp be a parallel schedule for G executed
by the AsyncDF algorithm on p processors. Then the number of heavy premature
nodes in any prefix of sp with respect to the corresponding prefix of s1 is at most
O(D · p).

Proof. Consider an arbitrary prefix σp of sp, and let σ1 be the corresponding
prefix of s1. Let v be the last nonpremature node to be executed in the prefix σp;
if there are two or more such nodes, pick any one of them. Let P be a path in the
DAG from the root to v constructed such that, for every edge (u, u′) along P , u is
the last parent (or any one of the last parents) of u′ to be executed. (For example,
for the σp shown in Figure 8, the path P is (a, b, e).) Since v is nonpremature, all
the nodes in P are nonpremature.

Let ui be the node on the path P at depth i; then u1 is the root, and uδ is the node
v, where δ is the depth of v. Let ti be the timestep in which ui is executed; let tδ+1

be the last timestep in σp. For i = 1, . . . , δ, let Ii be the interval {ti + 1, . . . , ti+1}.
Consider any interval Ii for i = 1, . . . , δ − 1. We now show that at most O(p)

heavy premature nodes can be executed in this interval. At the end of timestep ti,
ui has been executed. If ui+1 is a light node, it gets executed in the next timestep
(which, by definition, is timestep ti+1), and at most another (p−1) heavy premature
nodes can be executed in the same timestep, that is, in interval Ii.

Consider the case when ui+1 is a heavy node. After timestep ti, Qout may contain
p nodes. Further, because access to Qin requires constant time, the thread τ that
contains ui must be inserted into Qin within a constant number of timesteps after
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 153

ti. During these timesteps, a constant number of scheduling steps may be executed,
adding another O(p) threads into Qout. Thus, because Qout is a FIFO, a total of
O(p) heavy nodes may be picked from Qout and executed before ui+1; all of these
heavy nodes may be premature. However, once the thread τ is inserted into Qin, the
next scheduling step must find it in Qin; since ui is the last parent of ui+1 to execute,
this scheduling step makes ui+1 available for scheduling. Thus, this scheduling step
or any subsequent scheduling step must put ui+1 on Qout before it puts any more
premature nodes, because ui+1 has a lower 1DF-number. When ui+1 is picked from
Qout and executed by a worker processor, another p − 1 heavy premature nodes
may get executed by the remaining worker processors in the same timestep, which,
by definition, is timestep ti+1. Thus, a total of O(p) heavy premature nodes may
be executed in interval Ii. Similarly, since v = uδ is the last nonpremature node
in σp, at most O(p) heavy premature nodes get executed in the last interval Iδ.
Because δ ≤ D, σp contains a total of O(D · p) heavy premature nodes.

We have shown that any prefix of sp has at most O(D ·p) heavy premature nodes.
Since we have assumed that the action associated with each heavy node allocates
at most K space, we can prove the following lemma.

Lemma 5.1.2. Let G be a program DAG with depth D, in which every heavy node
allocates at most K space. If the serial execution of the DAG requires S1 space,
then the AsyncDF scheduling algorithm results in an execution on p processors that
requires at most S1 +O(K ·D · p)space.

Proof. Consider any parallel prefix σp of the parallel schedule generated by
algorithm AsyncDF; let σ1 be the corresponding serial prefix. The net memory
allocation of the nodes in σ1 is at most S1, because σ1 is a prefix of the serial
schedule. Further, according to Lemma 5.1.1, the set σp − σ1 has O(D · p) heavy
nodes, each of which may allocate at most K space. Therefore, the net space
allocated by all the nodes in σp is at most S1 +O(K ·D ·p). Since this bound holds
for any arbitrary prefix of the parallel execution, the entire parallel execution also
uses at most S1 +O(K ·D · p) space.

Handling Allocations Bigger than the Memory Threshold K. We described how to
transform the program DAG to handle allocations bigger than K bytes in Section 4.
Consider any heavy premature node v that allocates m > K space. The m/K
dummy nodes inserted before it would have been executed before it. Being dummy
nodes, they do not actually allocate any space, but are entitled to allocate a total
of m space (K units each) according to our scheduling technique. Hence v can
allocate these m units without exceeding the space bound in Lemma 5.1.2. With
this transformation, a parallel computation withW work andD depth that allocates
a total of Sa units of memory results in a DAG with at most W +Sa/K nodes and
O(D) depth. Therefore, using Lemma 5.1.2, we can state the following lemma.

Lemma 5.1.3. A computation of depth D and work W , which requires S1 space
to execute on one processor, is executed on p processors by the AsyncDF algorithm
using S1 +O(K ·D · p) space.

Finally, we bound the space required by the scheduler to store the three queues.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

154 · G. J. Narlikar and G. E. Blelloch

Lemma 5.1.4. The space required by the scheduler is O(D · p).

Proof. When a processor starts executing a scheduling step, it first empties Qin.
At this time, there can be at most p− 1 threads running on the other processors,
and Qout can have another p threads in it. The scheduler adds at most another p
threads (plus one scheduling thread) to Qout, and no more threads are added toQout
until the next scheduling step. Since all the threads executing on the processors
can end up in Qin, Qin and Qout can have a total of at most 3p threads at any
time. Finally, we bound the number of threads in R. We will call a thread that has
been created but not yet deleted from the system a live thread; R has one entry
for each live thread. At any stage during the execution, the number of live threads
is at most the number of premature nodes executed, plus the maximum number
of threads in Qout (which is 2p+ 1), plus the maximum number of live threads in
the 1DF-schedule. Any step of the 1DF-schedule can have at most D live threads,
because it executes threads in a depth-first manner. Since the number of premature
nodes is at most O(D · p), R has at most O(D · p+D+ 2p+ 1) = O(D · p) threads.
Because each thread requires a small, constant c units of memory to store its state,4

the total space required by the three scheduling queues is O(c ·D · p) = O(D · p).

Using Lemmas 5.1.3 and 5.1.4, we can now state the following bound on the total
space requirement of the parallel computation.

Theorem 5.1.5. A computation of depth D and work W , which requires S1

space to execute on one processor, is executed on p processors by the AsyncDF
algorithm using S1 +O(K ·D · p) space (including scheduler space).

In practice, K is set to a small, constant amount of memory throughout the exe-
cution of the program (see Section 7), reducing the space bound to S1 +O(D · p).

5.2 Time Bound

Finally, we bound the time required to execute the parallel schedule generated by
the scheduling algorithm for a special case; Section 6 analyzes the time bound in
the general case. In this special case, we assume that the worker processors never
have to wait for the scheduler to add ready threads to Qout. Thus, when there are
r ready threads in the system, and n processors are idle, Qout has at least min(r, n)
ready threads. Then min(r, n) of the idle processors are guaranteed to pick ready
threads from Qout within a constant number of timesteps. We can show that the
time required for such an execution is within a constant factor of the time required
to execute a greedy schedule. A greedy schedule is one in which at every timestep, if
n nodes are ready, min(n, p) of them get executed. Previous results have shown that
greedy schedules for DAGs with W nodes and D depth require at most W/p + D
timesteps to execute [Blumofe and Leiserson 1993]. Our transformed DAG has
W + Sa/K nodes and O(D) depth. Therefore, we can show that our scheduler
requires O(W/p + Sa/pK + D) timesteps to execute on p processors. When the

4Recall that a thread allocates stack and heap data from the global pool of memory that is assigned
to it every time it is scheduled; the data are hence accounted for in the space bound proved in
Lemma 5.1.3 Therefore, the thread’s state here refers simply to its register contents.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 155

allocated space Sa is O(W), the number of timesteps required is O(W/p+D). For
a more in-depth analysis of the running time that includes the cost of a parallelized
scheduler in the general case, see Section 6.

6. A PARALLELIZED SCHEDULER

The time bound in Section 5 was proved for the special case when the scheduler
procedure never becomes a bottleneck in making ready threads available to the
worker processors. However, recall that the scheduler in the AsyncDF algorithm
is a serial scheduler, that is, only one processor can be executing the scheduler
procedure at a given time. Further, the time required for this procedure to execute
may increase with the number of processors, causing idle worker processors to
wait longer for ready threads to appear Qout. Thus, the scheduler may indeed
become a bottleneck on a large number of processors. Therefore, the scheduler
must be parallelized to scale with the number of processors. In this section, we
describe a parallel implementation of the scheduler and analyze its space and time
costs. We prove that a computation with W work and D depth can be executed in
O(W/p+Sa/p+D · log p) time and S1 +O(D ·p · log p) space on p processors; these
bounds include the overheads of the parallelized scheduler. The additional log p
term in the time bound arises due to the parallel prefix operations executed by the
scheduler. The log p term in the space bound is due to the additional number of
ready threads created to keep worker processors busy while the scheduler executes.

We give only a theoretical description of a parallelized scheduler in this article;
the experimental results presented in Section 7 have been obtained using the serial
scheduler from Figure 6. As our results on up to 16 processors demonstrate, the
serial scheduler provides good performance on this moderate number of processors.

6.1 Parallel Implementation of a Lazy Scheduler

Instead of using scheduler threads to periodically (and serially) execute the sched-
uler procedure as shown in Figure 6, we devote a constant fraction αp of the pro-
cessors (0 < α < 1) to it. The remaining (1 − α)p processors always execute as
workers. To amortize the cost of the scheduler, we place a larger number of threads
(up to p log p instead of p) into Qout. As in Section 5, we assume that a thread can
be inserted or removed from Qin or Qout by any processor in constant time. The
data structure R is implemented as an array of threads, stored in decreasing order
of priorities from left to right.

As described in Section 4, threads are forked lazily; when a thread reaches a
fork, it is simply marked as a seed thread. At a later time, when its child threads
are to be scheduled, they are placed to the immediate left of the seed in order of
their 1DF-numbers. Similarly, we perform all deletions lazily: every thread that
terminates is simply marked inR as a dead thread, to be deleted in some subsequent
timestep.

The synchronization (join) between child threads of a forking thread is imple-
mented using a fetch-and-decrement operation on a synchronization counter asso-
ciated with the fork. Each child that reaches the synchronization point decrements
the counter by one and checks its value. If the counter has nonzero value, it simply
mark itself as dead. The last child thread to reach the synchronization point (the
one that decrements the counter to zero) marks itself as ready in R, and subse-

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

156 · G. J. Narlikar and G. E. Blelloch

quently continues as the parent. Thus, when all the child threads have been created,
the seed that originally represented the parent thread can be deleted.

We will refer to all the threads that have an entry in R but are not dead as
live threads. For every ready (or seed) thread τ that has an entry in R, we use
a nonnegative integer c(τ) to describe its state: c(τ) equals the number of ready
threads τ represents. Then for every seed τ , c(τ) is the number of child threads
still to be created from it. For every other ready thread in R, c(τ) = 1, because it
represents itself.

The scheduler procedure from Figure 6 can now be replaced by a while loop that
runs until the entire computation has been executed. Each iteration of this loop,
which we call a scheduling iteration, is executed in parallel by only the αp scheduler
processors. Therefore, it need not be protected by a scheduler lock as in Figure 6.
Let r be the total number of ready threads represented in R after threads from Qin
are moved to R at the beginning of the iteration. Let qo = min(r, p log p− |Qout|)
be the number of threads the scheduling iteration will move to Qout. The scheduling
iteration of a lazy scheduler is defined as follows.

(1) Collect all the threads from Qin and move them to R, that is, update their
states in R.

(2) Delete all the dead threads up to the leftmost (qo + 1) ready or seed threads.

(3) Perform a prefix-sums computation on the c(τ) values of the leftmost qo ready
or seed threads to find the set C of the leftmost qo ready threads represented
by these threads. For every thread in C that is represented implicitly by a seed,
create an entry for the thread in R, marking it as a ready thread. Mark the
seeds for which all child threads have been created as dead.

(4) Move the threads in the set C from R to Qout, leaving stubs in R to mark their
positions.

Consider a thread τ that is the last child thread to reach the synchronization point
in a fork, but was not the rightmost thread among its siblings. Some of τ ’s siblings,
which have terminated, may be represented as dead threads to its right. Since τ
now represents the parent thread after the synchronization point, it has a higher
1DF-number than these dead siblings to its immediate right. Thus, due to lazy
deletions, dead threads may be out of order in R. However, the scheduler deletes
all dead threads up to the first (qo + 1) ready or seed threads, that is, all dead
threads to the immediate right of any ready thread (or seed representing a ready
thread) before it is scheduled. Therefore, no descendents of a thread may be created
until all dead threads out of order with respect to the thread are deleted. Thus, a
thread may be out of order with only the dead threads to its immediate right.

We say a thread is active when it is either in Qout or Qin, or when it is being exe-
cuted on a processor. Once a scheduling iteration empties Qin, at most p log p+(1−
α)p threads are active. The iteration creates at most another p log p active threads
before it ends, and no more threads are made active until the next scheduling step.
Therefore at most 2p log p + (1 − α)p threads can be active at any timestep, and
each has one entry in R. We now prove the following bound on the time required
to execute a scheduling iteration.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 157

Lemma 6.1.1. For any 0 < α < 1, a scheduling iteration that deletes n dead
threads runs in O(n

αp + log p
α) time on αp processors.

Proof. Let qo ≤ p log p be the number of threads the scheduling iteration
must move to Qout. At the beginning of the scheduling iteration, Qin contains
at most 2p log p + (1 − α)p threads. Since each of these threads has a pointer to
its stub in R, αp processors can move the threads to R in O(log p

α) time. Let τ
be the (qo + 1)th ready or seed thread in R (starting from the left end). The
scheduler needs to delete all dead threads to the left of τ . In the worst case, all
the stubs are also to the left of τ in R. However, the number of stubs in R is at
most 2p log p + (1 − α)p. Because there are n dead threads to the left of τ , they
can be deleted from n+ 2p log p+ (1−α)p threads in O(n

αp + log p
α) timesteps on αp

processors. After the deletions, the leftmost qo ≤ p log p ready threads are among
the first 3p log p + (1 − α)p threads in R; therefore the prefix-sums computation
will require O(log p

α) time. Finally, qo new child threads can be created and added
in order to the left end of R in O(log p

α) time. Note that all deletions and additions
are at the left end of R, which are simple operations in an array.5 Thus, the entire
scheduling iteration runs in O(n

αp + log p
α) time.

6.2 Space and Time Bounds Using the Parallelized Scheduler

We now state the space and time bounds of a parallel computation, including
scheduling overheads. The bounds assume that a constant fraction α of the p
processors (for any 0 < α < 1) are dedicated to the task of scheduling. The
detailed proofs are given in Appendix B.

Theorem 6.2.1. Let S1 be the space required by a 1DF-schedule for a compu-
tation with work W and depth D, and let Sa be the total space allocated in the
computation. The parallelized scheduler with a memory threshold of K units, gen-
erates a schedule on p processors that requires S1 + O(K · D · p · log p) space and
O(W/p+ Sa/pK +D · log p) time to execute.

These time and space bounds include scheduling overheads. The time bound is
derived by counting the total number of timesteps during which the worker proces-
sors may be either idle or busy executing actions. The space bound is proved using
an approach similar to that used in Section 5. When the total space allocated
Sa = O(W), the time bound reduces to O(W/p + D · log p). As with the serial
scheduler, when the memory threshold K is set to a constant, the asymptotic space
bound reduces to S1 + O(D · p · log p).

7. EXPERIMENTAL RESULTS

We have built a runtime system that uses the AsyncDF algorithm to schedule
parallel threads, and have run several experiments to analyze both the time and the
memory required by parallel computations. In this section we briefly describe the
implementation of the system and the benchmarks used to evaluate its performance,
followed by the experimental results.

5The additions and deletions must skip over the stubs to the left of τ , which can add at most
a log p

α
delay.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

158 · G. J. Narlikar and G. E. Blelloch

7.1 Implementation

The runtime system has been implemented on a 16-processor SGI Power Challenge,
which has a shared-memory architecture with processors and memory connected via
a fast shared-bus interconnect. We implemented the serial version of the scheduler
presented in Figure 6, because the number of processors on this architecture is
not very large. The set of ready threads R is implemented as a simple, singly-
linked list. Qin and Qout, which are accessed by the scheduler and the workers,
are required to support concurrent enqueue and dequeue operations. They are
implemented using variants of previous lock-free algorithms based on atomic fetch-
and-Φ primitives [Mellor-Crummey 1987].

The parallel programs executed using this system have been explicitly hand-
coded in the continuation-passing style, similar to the code generated by the Cilk
preprocessor6 [Blumofe et al. 1995]. Each continuation points to a C function
representing the next computation of a thread, and a structure containing all its
arguments. These continuations are created dynamically and moved between the
queues. A worker processor takes a continuation off Qout, and simply applies the
function pointed to by the continuation, to its arguments. The high-level program
is broken into such functions at points where it executes a parallel fork, a recursive
call, or a memory allocation.

For nested parallel loops, we group iterations of the innermost loop into equally
sized chunks, provided it does not contain calls to any recursive functions.7 Schedul-
ing a chunk at a time improves performance by reducing scheduling overheads and
providing good locality, especially for fine-grained iterations.

Instead of preallocating a pool of memory for a thread every time it is scheduled,
we use a memory counter to keep track of a thread’s net memory allocation. The
memory counter is initialized to the value of the memory threshold K when the
thread is scheduled. The counter is appropriately decremented (incremented) when
the thread allocates (deallocates) space. When the thread reaches a memory allo-
cation that requires more memory than the current value of the counter, the thread
is preempted, and the counter is reset to K units. Instead of explicitly creating
dummy threads to delay an allocation of m bytes (m > K) in a thread, the thread
is inserted into R with a delay counter initialized to the value m/K. The delay
counter is appropriately decremented by the scheduling thread; each decrement by
1 represents the creation and scheduling of one dummy thread. The original thread
is ready to execute once the value of the delay counter is reduced to zero. Unless
stated otherwise, all the experiments described in this section were performed using
K = 1000 bytes.

7.2 Benchmark Programs

We implemented five parallel programs on our runtime system. We briefly describe
the implementation of these programs, along with the problem sizes we used in our
experiments.

6We expect a preprocessor-generated version on our system to have similar efficiency as the
straightforward hand-coded version.
7It should be possible to automate such coarsening with compiler support.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 159

(1) Blocked recursive matrix multiply (Rec MM). This program multiplies two
dense n × n matrices using a simple recursive divide-and-conquer method, and
performs O(n3) work. The recursion stops when the blocks are down to the size of
64× 64, after which the standard row-column matrix multiply is executed serially.
This algorithm significantly outperforms the row-column matrix multiply for large
matrices (e.g., by a factor of over 4 for 1024 × 1024 matrices) because its use of
blocks results in better cache locality. At each step, the eight recursive calls are
made in parallel. Each recursive call needs to allocate temporary storage, which
is deallocated before returning from the call. The results reported are for the
multiplication of two 1024× 1024 matrices of double-precision floats.

(2) Strassen’s matrix multiply (Str MM). The DAG for this algorithm is very
similar to that of the blocked recursive matrix multiply, but performs only O(n2.807)
work and makes seven recursive calls at each step [Strassen 1969]. Once again, a
simple serial matrix multiply is used at the leaves of the recursion tree. The sizes
of matrices multiplied were the same as for the previous program.

(3) Fast multipole method (FMM). This is an n-body algorithm that calculates
the forces between n bodies using O(n) work [Greengard 1987]. We have imple-
mented the most time-consuming phases of the algorithm, which are a bottom-up
traversal of the octree followed by a top-down traversal. In the top-down traversal,
for each level of the octree, the forces on the cells in that level due to their neigh-
boring cells are calculated in parallel. For each cell, the forces over all its neighbors
are also calculated in parallel, for which temporary storage needs to be allocated.
This storage is freed when the forces over the neighbors have been added to get
the resulting force on that cell. With two levels of parallelism, the structure of this
code looks very similar to the pseudocode described in Section 1. We executed the
FMM on a uniform octree with 4 levels (83 leaves), using 5 multipole terms for
force calculation.

(4) Sparse matrix-vector multiplication (Sparse MV). This multiplies an m× n
sparse matrix with an n × 1 dense vector. The dot product of each row of the
matrix with the vector is calculated to get the corresponding element of the resulting
vector. There are two levels of parallelism: over each row of the matrix and over the
elements of each row multiplied with the corresponding elements of the vector to
calculate the dot product. For our experiments, we usedm = 20 and n = 1, 500, 000,
and 30% of the elements were nonzeroes. (Using a large value of n provides sufficient
parallelism within a row, but using large values of m leads to a very large size of
the input matrix, making the amount of dynamic memory allocated in the program
negligible in comparison.)

(5) ID3. The ID3 algorithm [Quinlan 1986] builds a decision tree from a set
of training examples in a top-down manner, using a recursive divide-and-conquer
strategy. At the root node, the attribute that best classifies the training data is
picked, and recursive calls are made to build subtrees, with each subtree using only
the training examples with a particular value of that attribute. Each recursive call
is made in parallel, and the computation of picking the best attribute at a node,
which involves counting the number of examples in each class for different values
for each attribute, is also parallelized. Temporary space is allocated to store the
subset of training examples used to build each subtree and is freed once the subtree

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

160 · G. J. Narlikar and G. E. Blelloch

0

2

4

6

8

10

12

14

1 4 8 12 16

S
pe

ed
up

Processors

Speedup curves

FMM
FMM (Cilk)

Rec MM
Rec MM (Cilk)

Str MM
Str MM (Cilk)

ID3
ID3 (Cilk)

Sparse MV
Sparse MV (Cilk)

Fig. 9. The speedups achieved on up to 16 R10000 processors of a Power Challenge machine,
using a value of K=1000 bytes. The speedup on p processors is the time taken for the serial C
version of the program divided by the time for our runtime system to run it on p processors. For
each application, the solid line represents the speedup using our system, while the dashed line
represents the speedup using the Cilk system. All programs were compiled using gcc -O2 -mips2.

is built. We built a tree from 4 million test examples, each with 4 multivalued
attributes.

7.3 Time Performance

Figure 9 shows the speedups for the above programs for up to 16 processors. The
speedup for each program is with respect to its efficient serial C version, which
does not use our runtime system. Since the serial C program runs faster than
our runtime system on a single processor, the speedup shown for one processor
is less than 1. However, for all the programs, it is close to 1, implying that the
overheads in our system are low. The timings on our system include the delay
introduced before large allocations, in the form of m/K dummy nodes (K = 1000
bytes) for an allocation of m bytes. Figure 9 also shows the speedups for the same
programs running on an existing space-efficient system, Cilk [Blumofe et al. 1995],
version 5.0. To make a fair comparison, we have chunked innermost iterations of
the Cilk programs in the same manner as we did for our programs. The timings
show that the performance on our system is comparable with that on Cilk. The
memory-intensive programs such as sparse matrix-vector multiply do not scale well
on either system beyond 12 processors; their performance is probably affected by
bus contention as the number of processors increases.

Figure 10 shows the breakdown of the running time for one of the programs,
blocked recursive matrix multiplication. The results show that the percentage of
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 161

1 3 5 7 9 11 13 15

Number of processors (p)

0

10

20

30

40
p

x
ti

m
e

(s
ec

) Idle time

Queue access

Scheduling

Work overhead

Serial work

Fig. 10. The total processor time (the running time multiplied by the number of processors p)
for blocked recursive matrix multiplication. “Serial work” is the time taken by a single processor
executing the equivalent serial C program. For ideal speedups, all the other components would be
zero. The other components are overheads of the parallel execution and the runtime system. “Idle
time” is the total time spent waiting for threads to appear in Qout; “queue access” is the total
time spent by the worker processors inserting threads into Qin and removing them from the Qout.
“Scheduling” is the total time spent as the scheduler, and “work overhead” includes overheads
of creating continuations, building structures to hold arguments, executing dummy nodes, and
(de)allocating memory from a shared pool of memory, as well as the effects of cache misses and
bus contention.

time spent by workers waiting for threads to appear in Qout increases as the number
of processors increases (because we use a serial scheduler). A parallel implementa-
tion of the scheduler, such as the one described in Section 6, will be more efficient
on a larger number of processors.

7.4 Space Performance

Figure 11 shows the memory usage for each application. Here we compare three
implementations for each program—one in Cilk and the other two using our schedul-
ing system. Of the two implementations on our system, one uses dummy nodes to
delay large allocations, while the other does not. For the programs we have im-
plemented, the version without the delay results in approximately the same space
requirements as would result from scheduling the outermost level of parallelism.
For example, in Strassen’s matrix multiplication, our algorithm without the delay
would allocate temporary space required for p branches at the top level of the re-
cursion tree before reverting to the execution of the subtree under the first branch.
On the other hand, scheduling the outer parallelism would allocate space for the p
branches at the top level, with each processor executing a subtree serially. Hence
we use our algorithm without the delay to estimate the memory requirements of
previous techniques [Chow and W. L. Harrison 1990; Hummel and Schonberg 1991],
which schedule the outer parallelism with higher priority. Cilk uses less memory
than this estimate due to its use of randomization: an idle processor steals the
topmost thread (representing the outermost parallelism) from the private queue of
a randomly picked processor; this thread may not represent the outermost paral-
lelism in the entire computation. A number of previous techniques [Burton 1988;
Burton and Simpson 1994; Goldstein et al. 1995; Halbherr et al. 1994; Mohr
et al. 1991; Nikhil 1994; Vandevoorde and Roberts 1988] use a strategy similar to
that of Cilk. Our results show that when big allocations are delayed with dummy

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

162 · G. J. Narlikar and G. E. Blelloch

0

10

20

30

40

50

60

1 4 8 12 16

M
em

or
y

(M
B

)

Processors

Recursive Matrix Multiply

No delay
Cilk

Our system
Input size

0

10

20

30

40

50

60

70

80

90

1 4 8 12 16

M
em

or
y

(M
B

)

Processors

Strassen’s Matrix Multiply

No delay
Cilk

Our system
Input size

0

1

2

3

4

5

1 4 8 12 16

M
em

or
y

(M
B

)

Processors

Fast Multiploe Method

No delay
Cilk

Our system
Input size

0

20

40

60

80

100

120

140

160

180

1 4 8 12 16

M
em

or
y

(M
B

)

Processors

Sparse Matrix-Vector Multiply

No delay
Cilk

Our system
Input size

0

50

100

150

200

1 4 8 12 16

M
em

or
y

(M
B

)

Processors

ID3 Decision Tree Building

No delay
Cilk

Our system
Input size

Fig. 11. The memory requirements of the parallel programs. For p = 1 the memory usage shown
is for the serial C version. We compare the memory usage of each program when the big memory
allocations are delayed by inserting dummy threads (using K = 1000), with when they are allowed
to proceed without any delay (as an approximation of previous schedulers), as well as with the
memory usage on Cilk.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 163

nodes, our algorithm results in a significantly lower memory usage, particularly as
the number of processors increases. A notable exception is the ID3 benchmark, for
which our scheduler results in a similar space requirement as that of Cilk. This
is because the value of K (1000 bytes) is too large to sufficiently delay the large
allocations of space until higher-priority threads become ready. Note that we have
not compared our scheduler to naive scheduling techniques, such as breadth-first
schedules resulting from the use of FIFO queues, which have much higher memory
requirements.

Space-Time Trade-off. The number of dummy nodes introduced before a large
allocation and the frequency of thread preemptions depend on the value of the
memory threshold K. Adjusting the value of K provides a trade-off between the
memory usage and running time of a parallel computation. For example, Figure 1
shows how the running time and memory usage for blocked recursive matrix mul-
tiplication are affected by K. For very small K, many dummy nodes are inserted,
and threads are preempted often; this results in a high running time. However, the
execution order (and therefore the space requirement) of the parallel schedule is
close to that of the serial schedule, leading to a low memory requirement. For very
large K, very few dummy nodes are inserted, and threads are allowed to execute
longer without being preempted; this leads to a high memory requirement and low
running time. For all the programs we implemented, the trade-off curves looked
similar; however, they may vary for other parallel programs. A default value of
K = 1000 bytes resulted in a good balance between space and time performance
for all our programs, although in practice it might be useful to allow users to tune
the parameter for their needs.

8. SUMMARY AND DISCUSSION

We have presented an asynchronous scheduling algorithm, AsyncDF, for languages
that support nested parallelism, and have shown that it is space efficient and time
efficient in both theory and practice. The space bound presented in this article is
significantly lower than space bounds on existing space-efficient systems for pro-
grams with a sufficient amount of parallelism (D � S1). Most parallel programs,
including all programs in NC [Cook 1985], fall in this category. This article ana-
lyzes the AsyncDF algorithm with both a serial and a parallel scheduler. We have
built a low-overhead runtime system that schedules parallel threads using the al-
gorithm. The results demonstrate that our approach is more effective in reducing
space usage than previous scheduling techniques, and at the same time yields good
parallel performance. A more detailed specification of the theoretical framework
on which the scheduling algorithm is based can be found elsewhere [Narlikar and
Blelloch 1996].

We have added our scheduling technique to a native, lightweight implementation
of POSIX standard threads [IEEE 1985] or Pthreads on Solaris [Powell et al. 1991].
The results indicate that the new scheduler, unlike the existing FIFO scheduler, al-
lows irregular and dynamic parallel programs written with a very large number of
Pthreads to execute efficiently [Narlikar and Blelloch 1998]. We are currently work-
ing on methods to further improve the scheduling algorithm, particularly to provide
better support for fine-grained threads. At present, fine-grained iterations of inner-

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

164 · G. J. Narlikar and G. E. Blelloch

most loops are statically grouped into fixed-size chunks. A dynamic, decreasing-size
chunking scheme [Hummel et al. 1992; Kuck 1987; Tzen and Ni 1993] can be used
instead. We are working on an algorithm to automatically coarsen the computa-
tions at runtime by allowing the execution order to differ to a limited extent from
the 1DF-numbers, and by using ordered, per-processor queues. Preliminary results
indicate that this algorithm also results in reduced scheduling contention, because
the processors access separate queues for a majority of the time.

APPENDIX

A. TIGHTER BOUND ON THE SPACE REQUIREMENT

In Section 5 we showed that algorithm AsyncDF executes a parallel computation
with depth D and serial space requirement S1 on p processors using S1 +O(p ·D)
space. In particular, when actions that allocate space are represented by heavy
nodes, and each heavy node allocates at most K space (the value of the memory
threshold), we showed that any prefix of the parallel computation has O(p · D)
heavy premature nodes. Here D is the maximum number of actions along any path
in the program DAG. Therefore, the value of D and the number of premature nodes
(and hence the space bound) depends on the definition of an action; recall that an
action is a “unit” of work that may allocate or deallocate space, and requires a
timestep to be executed. An action may be as small as a fraction of a machine
instruction, or as large as several machine instructions, depending on the definition
of a timestep. In this section, we give a more precise space bound by specifying
the bound in terms of a ratio of the depth D, and the number of actions between
consecutive heavy nodes. Being a ratio of two values specified in terms of actions,
it is no longer dependent on the granularity of an action.

Recall that heavy nodes may allocate K space and use it for subsequent actions,
until the thread runs out of space and needs to perform another allocation. Thus,
threads typically have heavy nodes followed by a large number of light nodes, and
the number of allocations (heavy nodes) along any path may be much smaller than
the depth of the computation. We define the granularity g of the computation to be
the minimum number of actions (nodes) between two consecutive heavy nodes on
any path in the program DAG, that is, the minimum number of actions executed
nonpreemptively by a thread every time it is scheduled. Note that the granularity
of a computation depends on the value of the memory threshold K. In this section,
we prove that the number of heavy premature nodes is O(p · D/g), and therefore
the parallel space requirement is S1 +O(p ·D/g).

Lemma A.1. Let G be a DAG with W nodes, depth D, and granularity g, in
which every node allocates at most K space. Let s1 be the 1DF-schedule for G, and
sp the parallel schedule for G executed by the AsyncDF algorithm on p processors.
Then the number of heavy premature nodes in any prefix of sp with respect to the
corresponding prefix of s1 is O(p ·D/g).

Proof. The proof is similar to the proof for Lemma 5.1.1. Consider an arbitrary
prefix σp of sp, and let σ1 be the corresponding prefix of s1. As with Lemma 5.1.1,
we pick a path P from the root to the last nonpremature node v to be executed
in σp, such that for every edge (u, u′) along the path, u is the last parent of u′ to
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 165

be executed. Let ui be the ith heavy node along P ; let δ be the number of heavy
nodes on P . Let ti be the timestep in which ui gets executed; let tδ+1 be the last
timestep in σp. For i = 1, . . . , δ, let Ii be the interval {ti + 1, . . . , ti+1}.

Consider any Interval Ii, for i = 1, . . . , δ − 1. Let li be the number of nodes
between ui and ui+1. Since all these nodes are light nodes, they get executed
at timesteps ti + 1, . . . , ti + li. During these timesteps, the other p − 1 worker
processors may execute heavy nodes; however, for each heavy node, they must
execute at least (g − 1) light nodes. Therefore, each of these worker processors
may execute at most dli/ge heavy premature nodes during the first li timesteps of
interval Ii. At the end of timestep ti + li, there may be at most p nodes in Qout.
Before the thread τ containing ui is inserted into Qin, at most another O(p) heavy
premature nodes may be added to Qout. Further, (p − 1) heavy premature nodes
may execute along with ui+1. Hence O(p) < c · p heavy premature nodes (for some
constant c) may be executed before or with ui+1 after timestep ti + li. Thus, a
total of ((p− 1) · dli/ge+ c · p) heavy premature nodes get executed in the interval
Ii. Similarly, we can bound the number of heavy premature nodes executed in the
last interval Iδ to ((p− 1) · dlδ/ge+ c · p).

Because there are δ ≤ D/g such intervals, and since
∑δ
i=1 li ≤ D, the total

number of heavy premature nodes executed over all the δ intervals is at most

δ∑
i=1

(
(p− 1) ·

⌈
li
g

⌉
+ c · p

)
≤

δ∑
i=1

(p · (li/g + 1) + c · p)

≤ (c+ 1)p ·D/g + p/g ·
δ∑
i=1

li

= O(p ·D/g).

Similarly, we can prove that the scheduling queues require O(p · D/g) space;
therefore, the computation requires a total of S1 +O(p ·D/g) space to execute on
p processors.

Now consider a computation in which individual nodes allocate greater than K
space. Let g1 be the original granularity of the DAG (by simply treating the nodes
that perform large allocations as heavy nodes). Now the granularity of this DAG
may change when we add dummy nodes before large allocations. Let g2 be the
number of actions associated with the creation and execution of each of the dummy
threads that we add to the DAG. Then the granularity of the transformed DAG is
g = min(g1, g2). The space bound using the parallelized scheduler can be similarly
modified to S1 +O(D · p · log p/g).

Besides making the space bound independent of the definition of an action, this
modified bound is significantly lower than the original bound for programs with high
granularity g, that is, programs that perform a large number of actions between
allocations, forks, or synchronizations.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

166 · G. J. Narlikar and G. E. Blelloch

B. PROOFS FOR THE SPACE AND TIME BOUNDS USING THE PARALLELIZED
SCHEDULER

In this section, we prove the space and time bounds for a parallel computation
executed using the parallelized scheduler, as stated in Section 6 (Theorem 6.2.1).
These bounds include the space and time overheads of the scheduler. We first define
a class of DAGs that are more general than the DAGs used to represent parallel
computations so far. This class of DAGs will be used to represent the computation
that is executed by using the parallelized scheduler.

Latency-Weighted DAGs. We extend the definition of a program DAG by allowing
nonnegative weights on the edges; we call this new DAG a latency-weighted DAG.
Let G = (V,E) be a latency-weighted DAG representing a parallel computation.
Each edge (u, v) ∈ E has a nonnegative weight l(u, v) which represents the latency
between the actions of the nodes u and v. The latency-weighted length of a path
in G is the sum of the total number of nodes in the path plus the sum of the
latencies on the edges along the path. We define latency-weighted depth Dl of G
to be the maximum over the latency-weighted lengths of all paths in G. Since all
latencies are nonnegative, Dl ≥ D. The program DAG described in Section 3 is a
special case of a latency-weighted DAG, in which the latencies on all the edges are
zero. We will use nonzero latencies to model the delays caused by the parallelized
scheduler.

Let te(v) be the timestep in which a node v ∈ V gets executed. Then v becomes
ready at a timestep i ≤ te(v) such that i = max(u,v)∈E(te(u) + l(u, v) + 1). Thus,
a p-schedule V1, V2, . . . , VT for a latency-weighted DAG must obey the latencies on
the edges, that is, ∀(u, v) ∈ E, u ∈ Vj , and v ∈ Vi ⇒ i > j + l(u, v). We can now
bound the time required to execute a greedy schedule for latency-weighted DAGs;
our proof uses an approach similar to that used by Blumofe and Leiserson [1993]
for DAGs without latencies.

Lemma B.1. Given a latency-weighted computation graph G with W nodes and
latency-weighted depth Dl, any greedy p-schedule of G will require at most W/p+Dl

timesteps.

Proof. We transform G into a DAG G′ without latencies by replacing each
edge (u, v) with a chain of l(u, v) dummy nodes. The dummy nodes do not represent
real work, but require a timestep to be executed. Any dummy node that becomes
ready at the end of timestep t−1 is automatically executed in timestep t. Therefore,
replacing each edge (u, v) with l(u, v) dummy nodes imposes the required condition
that v becomes ready l(u, v) timesteps after u is executed. The depth of G′ is Dl.

Consider any greedy p-schedule sp = (V1, . . . , VT) of G. sp can be converted to
a schedule s′p = (V ′1 , . . . , V

′
T) of G′ by adding (executing) dummy nodes as soon as

they become ready. Thus, for i = 1, . . . , T , V ′i may contain at most p real nodes,
and an arbitrary number of dummy nodes, because dummy nodes do not require
processors to be executed. A real node in s′p becomes ready at the same timestep
as it does in sp, since dummy nodes now represent the latencies on the edges.
Therefore, s′p is also a “greedy” p-schedule for G′, that is, at a timestep when n
real nodes are ready, min(n, p) of them get executed, and all dummy nodes ready
in that timestep get executed.
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 167

We now prove that any greedy p-schedule s′p of G′ will require at most W/p+Dl

timesteps to execute. Let G′i denote the subgraph of G′ containing nodes that have
not yet been executed at the beginning of timestep i; then G′1 = G′. Let ni be the
number of real nodes (not including dummy nodes) executed in timestep i. Since
s′p is a p-schedule, ni ≤ p. If ni = p, there can be at most W/p such timesteps,
because there are W real nodes in the graph. If ni < p, consider the set of nodes
Ri that are ready at the beginning of timestep i, that is, the set of root nodes in G′i.
Since this is a greedy schedule, there are less than p real nodes in Ri. Hence all the
real nodes in Ri get executed in timestep i. In addition, all the dummy nodes in Ri
get executed in this step, because they are ready, and do not require processors.
Since all the nodes in Ri have been executed, the depth of G′i+1 is one less than the
depth of G′i. Because Dl is the depth of G′1, there are at most Dl such timesteps.
Thus, s′p (and hence sp) can require at most W/p+Dl timesteps to execute.

With the parallelized scheduler, we consider a thread (or its leading heavy node
v) to become ready when all the parents of v have been executed and the scheduler
has made v available for scheduling. Since this may require a scheduling iteration
after the parents of v have been executed and inserted into Qin, the cost of this
iteration imposes latencies on edges into v, resulting in a latency-weighted DAG. We
now characterize the latency-weighted DAG generated by the parallelized scheduler.
The constant-time accesses to the queues Qout andQin are represented as additional
actions in this DAG, while the cost of the scheduling iterations are represented by
the latency-weighted edges. As with the serial scheduler in Section 5, we assume
for now that every action allocates at most K space (where K is the user-specified,
constant memory threshold), and we deal with larger allocations later.

Lemma B.2. Consider a parallel computation with work W and depth D, in
which every action allocates at most K space. Using the parallelized scheduler with
αp processors acting as schedulers, the remaining (1−α)p worker processors execute
a latency-weighted DAG with O(W) work, O(D) depth, and a latency-weighted
depth of O(Wαp + D·log p

α). Further, after the last parent of a node in the DAG is
executed, at most one iteration may complete before the node becomes ready.

Proof. Let G be the resulting DAG executed by the worker processors. Each
thread is executed nonpreemptively as long as it does not terminate or suspend,
and does not need to allocate more than a net of K units of memory. Each time
a thread is scheduled and then preempted or suspended, a processor performs two
constant-time accesses to the queues Qout and Qin. As shown in Figure 12, we
represent these accesses as a series of a constant number of actions (nodes) added
to the thread; these nodes are added both before a heavy node (to model the delay
while accessing Qout) and after the series of light nodes that follow the heavy node
(to model the delay while accessing Qin). We will now consider the first of these
added nodes to be the heavy node, instead of the real heavy node that allocates
space; this gives us a conservative bound on the space requirement of the parallel
computation, because we are assuming that the memory allocation has moved to an
earlier time. A thread executes at least one action from the original computation
every time it is scheduled. Since the original computation has W nodes, the total
work performed by the worker processors is O(W), that is, the resulting DAG has

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

168 · G. J. Narlikar and G. E. Blelloch

allocation allocation

}
latency 1

2

l

llatency

}

(heavy)

(heavy) overhead to
access Q out

overhead to
access Q in

(a) (b)

Fig. 12. (a) A portion of the original computation DAG and (b) the corresponding portion of
the DAG as executed by the parallelized scheduler. This portion is the sequence of nodes in a
thread executed nonpreemptively on a processor, and therefore consists of a heavy node followed
by a series of light nodes. The DAG executed by the parallelized scheduler has latencies l1 and
l2 imposed by scheduling iterations (shown as bold edges here), while the additional gray nodes
represent the constant delay to access Qin and Qout. We consider the first of these gray nodes to
be a heavy node, instead of the original heavy node that performs the real allocation.

O(W) work; similarly, its depth is O(D).
Next, we show that at most one scheduling iteration begins or completes after a

node is executed and before its child becomes ready. Consider any thread τ in G,
and let v be a node in the thread. Let t be the timestep in which the last parent u
of v is completed. If v is a light node, it is executed in the next timestep. Else, the
thread containing u is placed in Qin at timestep t. (Recall that we have already
added nodes such as u to represent the access overhead for Qin.) In the worst case,
a scheduling iteration may be in progress. However, the next scheduling iteration
must find u in Qin; this scheduling iteration moves u to R and makes v ready to
be scheduled before the iteration completes.

Finally, we show that G has a latency-weighted depth of O(Wαp+D·log p
α). Consider

any path in G. Let l be its length. For any edge e = (u, v) along the path, if u is
the last parent of v, we just showed that v becomes ready by the end of at most two
scheduling iterations after u is executed. Therefore the latency l(u, v) is at most
the duration of these two scheduling iterations. Let n and n′ be the number of
dead threads deleted by these two scheduling iterations, respectively. Then, using
Lemma 6.1.1, l(u, v) = O(n

αp + n′

αp + log p
α). Because each thread is deleted by the

scheduler at most once, a total of O(W) deletions take place. Since any path in G
has O(D) edges, the latency weighted depth of the path is O(D) plus the sum of
the latencies on O(D) edges, which is O(Wαp + D·log p

α).

The schedule generated by the parallelized scheduler for the latency-weighted DAG
is a (1− α)p-schedule, because it is executed on (1− α)p worker processors.

B.1 Time bound

We can now bound the total running time of the resulting schedule.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 169

Lemma B.3. Consider a parallel computation with depth D and work W . For
any 0 < α < 1, when αp of the processors are dedicated to execute as schedulers,
while the remaining act as worker processors, the parallel computation is executed
in O(W

α(1−α)p + D·log p
α) time.

Proof. Let G be the DAG executed by the parallelized scheduler for this com-
putation. We will show that the generated schedule sp of G is a greedy schedule,
with O(W/p) additional timesteps in which the worker processors may be idle. Con-
sider any scheduling iteration. Let ti be the timestep at which the ith scheduling
iteration ends. After threads are inserted into Qout by the ith scheduling iteration,
there are two possibilities:

(1) |Qout| < p log p. This implies that all the ready threads are in Qout, and
no threads become ready until the end of the next scheduling iteration. Therefore,
at every timestep j such that ti < j ≤ ti+1, if mj processors become idle and rj
threads are ready, min(mj , rj) threads are scheduled on the processors. (Recall that
we have already added nodes to the DAG G to model the overheads of accessing
Qin and Qout.)

(2) |Qout| = p log p. Since (1− α)p worker processors will require at least log p
(1−α)

timesteps to execute p log p actions, none of the worker processors will be idle for
the first log p

(1−α) steps after ti. However, if the (i+ 1)th scheduling iteration, which is
currently executing, has to delete ni+1 dead threads, it may execute for O(ni+1

αp +
log p
α) timesteps (using Lemma 6.1.1). Thus, in the worst case, the processors will

be busy for log p
(1−α) steps and then remain idle for another O(ni+1

αp + log p
α) steps,

until the next scheduling iteration ends. We call such timesteps idling timesteps.
Of the O(ni+1

αp + log p
α) idling steps, Θ(log p

α) steps are within a factor of c(1−α)
α of

the preceding log p
(1−α) steps when all worker processors were busy (for some constant

c); therefore, they can add up to O(Wp ·
(1−α)
α) = O(Wαp). In addition, because

each thread is deleted only once, at most W threads can be deleted. Therefore, if
the (i + 1)th scheduling iteration results in an additional O(ni+1

αp) idle steps, they
add up to O(Wαp) idle steps over all the scheduling iterations. Therefore, a total
of O(Wαp) idling steps can result due to the scheduler.

All timesteps besides the idling steps caused by the scheduler obey the conditions
required to make it a greedy (1−α)p-schedule, and therefore add up to O(W

(1−α)p +
W
αp + D log p

α) (using Lemmas B.1 and B.2). Along with the additional O(Wαp) idling
steps, the schedule requires a total of O(W

α(1−α)p + D·log p
α) timesteps.

Because α is a constant, that is, a constant fraction of the processors are dedicated
to the task of scheduling, the running time reduces to O(W/p+ D log p); here p is
the total number of processors, including both the schedulers and the workers.

B.2 Space bound

We now show that the total space requirement of the parallel schedule exceeds the
serial schedule by O(D · p · log p). We first bound the number of premature nodes
that may exist in any prefix of the parallel schedule, and then bound the space
required to store threads in the three scheduling queues.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

170 · G. J. Narlikar and G. E. Blelloch

For a parallel computation with depth D, the parallelized scheduler executes a
DAG of depth O(D) (using Lemma B.2). Therefore, using an approach similar
to that of Lemma 5.1.1, we can prove the following bound for the parallelized
scheduler.

Lemma B.4. For a parallel computation with depth D executing on p proces-
sors, the number of premature nodes in any prefix of the schedule generated by the
parallelized scheduler is O(D · p · log p).

Lemma B.5. The total space required for storing threads in Qin, Qout, and R
while executing a parallel computation of depth D on p processors is O(D ·p · log p).

Proof. Qout may hold at most p log p threads at any time. Similarly, Qin may
hold at most 2p · log p+ (1− α)p threads, which is the maximum number of ac-
tive threads. Each thread can be represented using a constant amount of space.
Therefore the space required for Qin and Qout is O(p · log p).

We now bound the space required for R. Recall that R consists of live threads
and dead threads. Consider any prefix σp of the parallel schedule sp. σp may have
at most O(D ·p · log p) heavy premature nodes (using Lemma B.4). We call a thread
a premature thread if at least one of its heavy nodes that was scheduled or put on
Qout is premature. The number of live threads is at most the number of premature
threads, plus the number of stubs (which is O(p · log p)), plus the number of live
threads that are not premature (which is bounded by the maximum number of live
threads in the serial schedule). A 1DF-schedule may have at most D live threads
at any timestep. Therefore, the total number of live threads at any timestep is at
most O(D · p · log p).

The scheduler performs lazy deletions of dead threads; therefore, the number of
dead threads in R must also be counted. Let λi be the ith scheduling iteration
that schedules at least one thread. Consider any such iteration λi. Recall that this
iteration must delete at least all the dead threads up to the second ready or seed
thread in R. We will show that after scheduling iteration λi performs deletions, all
remaining dead threads in R must be premature. Let τ1 and τ2 be the first two
ready (or seed) threads in R. Since the scheduler deletes all dead threads up to τ2,
there can be no more dead threads to the immediate right of τ1 that may have a
lower 1DF-number than τ1, that is, τ1 now has a lower 1DF-number number than all
the dead threads in R. Because all the remaining dead threads have been executed
before the ready thread τ1 (or the ready threads represented by τ1), they must be
premature. Therefore, all dead threads in R at the end of scheduling iteration λi
must be premature, and are therefore O(D ·p · log p) in number (using Lemma B.4).
The scheduling iterations between λi and λi+1 do not schedule any threads, and
therefore do not create any new entries in R. They may, however, mark existing
live threads as dead. Thus, the number of dead threads in R may increase, but
the total number of threads in R remains the same. Scheduling iteration λi+1

must delete all dead threads up to the second ready thread in R. Therefore, before
it creates any new threads, the iteration reduces the number of dead threads back
to O(D ·p · log p). Thus, at any time, the total space required for R is O(D ·p · log p).

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 171

Since every premature node may allocate at most K space, we can now state the
following space bound using Lemmas B.4 and B.5.

Lemma B.6. A parallel computation with work W and depth D, in which every
node allocates at most K space, and which requires S1 space to execute on one
processor, can be executed on p processors in S1 +O(K ·D ·p · logp) space (including
scheduler space) using the parallelized scheduler.

As in Section 5, allocations larger than K units are handled by delaying the
allocation with parallel dummy threads. If Sa is the total space allocated, the
number of dummy nodes added is at most Sa/K, and the depth is increased by a
constant factor. Therefore, using the parallelized scheduler, the final time bound of
O(W/p+Sa/pK +D · log p) and the space bound of S1 +O(K ·D · p · log p) follow,
as stated in Theorem 6.2.1. These bounds include the scheduler overheads.

ACKNOWLEDGMENTS

Access to the SGI Power Challenge was provided by the the National Center for
Supercomputing Applications (NCSA), whose staff was extremely helpful when
dealing with all our requests

REFERENCES

Arvind, Nikhil, R. S., and Pingali, K. 1989. I-structures: Data structures for parallel computing.
ACM Trans. on Programm. Lang. Syst. 11, 4 (Oct.), 598–632.

Bershad, B. N., Lazowska, E., and Levy, H. 1988. PRESTO : A system for object-oriented
parallel programming. Soft. Pract. and Exper. 18, 8 (Aug.), 713–732.

Blelloch, G. E., Chatterjee, S., Hardwick, J. C., Sipelstein, J., and Zagha, M. 1994.
Implementation of a portable nested data-parallel language. Journal of Parallel and Distributed
Computing 21, 1 (April), 4–14.

Blelloch, G. E., Gibbons, P. B., and Matias, Y. 1995. Provably efficient scheduling for lan-
guages with fine-grained parallelism. In Proc. Symposium on Parallel Algorithms and Archi-
tectures, Santa Barbara, pp. 420–430.

Blumofe, R. D., Frigo, M., Joerg, C. F., Leiserson, C. E., and Randall, K. H. 1996. An
Analysis of Dag-Consistent Distributed Shared-Memory Algorithms. In Proc. Symp. on Parallel
Algorithms and Architectures, pp. 297–308.

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and Zhou,

Y. 1995. Cilk: An efficient multithreaded runtime system. In Proc. Symposium on Principles
and Practice of Parallel Programming, pp. 207–216.

Blumofe, R. D. and Leiserson, C. E. 1993. Space-efficient scheduling of multithreaded compu-
tations. In Proc. 25th ACM Symp. on Theory of Computing, pp. 362–371.

Blumofe, R. D. and Leiserson, C. E. 1994. Scheduling multithreaded computations by work
stealing. In Proc. 35th IEEE Symp. on Foundations of Computer Science, pp. 356–368.

Burton, F. W. 1988. Storage management in virtual tree machines. IEEE Trans. on Comput-
ers 37, 3, 321–328.

Burton, F. W. and Simpson, D. J. 1994. Space efficient execution of deterministic parallel

programs. Manuscript.

Burton, F. W. and Sleep, M. R. 1981. Executing functional programs on a virtual tree of
processors. In Conference on Functional Programming Languages and Computer Architecture.

Chandra, R., Gupta, A., and Hennessy, J. 1994. COOL: An object-based language for parallel
programming. IEEE Computer 27, 8 (Aug.), 13–26.

Chandy, K. M. and Kesselman, C. 1992. Compositional c++: compositional parallel program-
ming. In Proc. 5th. Intl. Wkshp. on Languages and Compilers for Parallel Computing, New
Haven, CT, pp. 124–144.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

172 · G. J. Narlikar and G. E. Blelloch

Chase, J. S., Amador, F. G., and Lazowska, E. D. 1989. The amber system: Parallel program-
ming on a network of multiprocessors. In Proc. Symposium on Operating Systems Principles.

Chow, J. H. and W. L. Harrison 1990. Switch-stacks: A scheme for microtasking nested parallel
loops. In Proc. Supercomputing, New York, NY.

Cook, S. A. 1985. A taxonomy of problems with fast parallel algorithms. Information and
Control 64, 2–22.

Culler, D. E. and Arvind 1988. Resource requirements of dataflow programs. In Proc. Intl.
Symposium on Computer Architecture.

Feo, J. T., Cann, D. C., and Oldehoeft, R. R. 1990. A report on the Sisal language project.
Journal of Parallel and Distributed Computing 10, 4 (Dec.), 349–366.

Freeh, V. W., Lowenthal, D. K., and Andrews, G. R. 1994. Distributed filaments: efficient
fine-grain parallelism on a cluster of workstations. In 1st Symposium on Operating Systems
Design and Implementation, Monterey, CA, pp. 201–212.

Goldstein, S. C., Culler, D. E., and Schauser, K. E. 1995. Enabling primitives for compiling
parallel languages. In 3rd Workshop on Languages, Compilers, and Run-Time Systems for
Scalable Computers, Rochester, NY.

Greengard, L. 1987. The rapid evaluation of potential fields in particle systems. The MIT Press.

Halbherr, M., Zhou, Y., and Joerg, C. F. 1994. Parallel programming based on continuation-
passing thread. In Proc. 2nd International Workshop on Massive Parallelism: Hardware, Soft-
ware and Applications, Capri, Italy.

Halstead, R. H. 1985. Multilisp: A language for concurrent symbolic computation. ACM Trans.
on Programming Languages and Systems 7, 4, 501–538.

HPF Forum 1993. High Performance Fortran language specification, Version 1.0.

Hseih, W. E., Wang, P., and Weihl, W. E. 1993. Computation migration: enhancing locality
for distributed memory parallel systems. In Proc. Symposium on Principles and Practice of
Parallel Programming, San Francisco, California.

Hummel, S. F. and Schonberg, E. 1991. Low-overhead scheduling of nested parallelsim. IBM
Journal of Research and Development 35, 5-6, 743–65.

Hummel, S. F., Schonberg, E., and Flynn, L. E. 1992. Factoring: a method for scheduling
parallel loops. Commun. ACM 35, 8 (Aug.), 90–101.

IEEE 1985. Threads extension for portable operating systems (draft 6).

Kuck, C. D. P. D. 1987. Guided self-scheduling: a practical scheduling scheme for parallel
supercomputers. IEEE Trans. on Computers C-36, 12 (Dec.), 1425–39.

Mellor-Crummey, J. M. 1987. Concurrent queues: Practical Fetch-and-Φ algorithms. Technical
Report 229 (Nov.), University of Rochester.

Mills, P. H., Nyland, L. S., Prins, J. F., Reif, J. H., and Wagner, R. A. 1990. Prototyping
parallel and distributed programs in Proteus. Technical Report UNC-CH TR90-041, Computer
Science Department, University of North Carolina.

Mohr, E., Kranz, D., and Halstead, R. 1991. Lazy task creation: A technique for increasing
the granularity of parallel programs. IEEE Trans. on Parallel and Distributed Systems 2, 3
(July), 264–280.

Mueller, F. 1993. A library implementation of POSIX threads under unix. In Proc. Winter
1993 USENIX Technical Conference and Exhibition, San Diego, CA, USA, pp. 29–41.

Narlikar, G. J. 1999. Space-efficient multithreading. School of Computer Science, Carnegie
Mellon University. Ph.D. thesis, to appear.

Narlikar, G. J. and Blelloch, G. E. 1996. A framework for space and time efficient scheduling
of parallelism. Technical Report CMU-CS-96-197, Computer Science Department, Carnegie
Mellon University.

Narlikar, G. J. and Blelloch, G. E. 1998. Pthreads for dynamic and irregular parallelism. In
Proc. SC98: High Performance Networking and Computing, Orlando, FL. IEEE.

Nikhil, R. S. 1994. Cid: A parallel, shared-memory c for distributed memory machines. In Proc.
7th. Ann. Wkshp. on Languages and Compilers for Parallel Computing, pp. 376–390.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

Space-Efficient Scheduling of Nested Parallelism · 173

Powell, M. L., Kleiman, S. R., Barton, S., Shah, D., Stein, D., and Weeks, M. 1991. SunOS
multi-thread architecture. In USENIX Association (Ed.), Proc. Winter 1991 USENIX Con-
ference: Dallas, TX, USA, pp. 65–80.

Quinlan, J. R. 1986. Induction of decision trees. Machine learning 1, 1, 81–106.

Rinard, M. C., Scales, D. J., and Lam, M. S. 1993. Jade: A high-level, machine-independent
language for parallel programming. IEEE Computer 26, 6 (June), 28–38.

Rogers, A., Carlisle, M., Reppy, J., and Hendren, L. 1995. Supporting dynamic data struc-
tures on distributed memory machines. ACM Trans. on Programm. Lang. Syst. 17, 2 (March),
233–263.

Rugguero, C. A. and Sargeant, J. 1987. Control of parallelism in the manchester dataflow
machine. In Functional Programming Languages and Computer Architecture, Volume 174 of
Lecture Notes in Computer Science, pp. 1–15. Springer-Verlag.

Strassen, V. 1969. Gaussian elimination is not optimal. Numerische Mathematik 13, 354–356.

Tzen, T. H. and Ni, L. M. 1993. Trapezoid self-scheduling: a practical scheduling scheme for
parallel compilers. IEEE Trans. on Parallel and Distributed Systems 4, 1 (Jan.), 87–98.

Vandevoorde, M. T. and Roberts, E. S. 1988. WorkCrews: an abstraction for controlling
parallelism. International Journal of Parallel Programming 17, 4 (Aug.), 347–366.

Received May 1998; accepted November 1998

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 1, January 1999.

	Introduction
	An Example
	Outline of the Article

	Model of parallelism
	Representing the computation as a DAG
	The {sl AsyncDF}{} scheduling algorithm
	Theoretical results
	Space Bound
	Time Bound

	A parallelized scheduler
	Parallel Implementation of a Lazy Scheduler
	Space and Time Bounds Using the Parallelized Scheduler

	Experimental results
	Implementation
	Benchmark Programs
	Time Performance
	Space Performance

	Summary and discussion
	Tighter bound on the space requirement
	Proofs for the Space and Time Bounds Using the Parallelized Scheduler
	Time bound
	Space bound

	Acknowledgments
	References

