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The Graph Coloring Problem

Color the regions of a planar graph
m Use only 4 colors
= No two adjacent regions can have the same color

Example: Color the states of a U.S. map



The MacGregor Graph

Scientific American, T

April 1975 -

m Said to be proof that |

some planar graphs
could not be colored

with just 4 colors

m An April-fool’s joke, but

still difficult to solve by

hand |I




Boolean SAT Solvers

What They Do

m Express problem as a set of constraints
m Search for solution that satisfies all constraints

Encoding Graph Coloring with SAT

m Encode each region with two 0/1-valued variables:

e 00 Blue
e 01 Green
e 10 Red

e 11

m For each adjacent region, require at least one of
the corresponding variables to have opposite
values



Encoding Coloring Constraints

a;, b, aj,

= Encode region i with variables a;, b,

m For adjacent regions | and |, want:

m Clausal form (and of or’s):
c=0=>a %3

(cvava)a(cv—av—a)|Al(=Cvbvb)A(=Cv b v-b)

c=19b#b



The ZChaff SAT Solver

m From Princeton University
m Algorithm by Davis Putnam Logemann & Loveland
= With many refinements

Based on backtracking search
m Try assigning values to variables

m When hit contradiction
® Create new constraint encoding conflict
® Backtrack by undoing some of the most recent assignments
® Resume search with new variable assignments



Visualizing the Search Process

-"------

m Black: Neither variable assigned value

m Single color: Both variables assigned, giving
unique color.

m Blended colors: One variable assigned, the other
unassigned, indicating two possible colors

m YouTube: http://www.youtube.com/watch?v=0qt503wK7Al










Another Solution

m Minimum use of greeen
(7 times)




Try It Yourself
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Minimum Colorings of US Map
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Only need to use green twice



Odd Cycles

Can this be colored with
just 3 colors?



Odd Cycles in US Map
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Breaking Odd Cycles




Viewing Maps as Graphs




Coloring a Graph




The Macgregor Graph
.’:2’2:’.

110 nodes

324 edges .’..’.
.0.0’0.0.0’0.0.




The Four Color Theorem

m Can color any planar graph with just 4 colors.

History
m Conjectured in 1852
m 1890: it was shown that 5 colors would suffice
m 1976: Appel & Haken claimed they had proof




Proof of Four Color Theorem

Proof Method

m Appel & Haaken showed there were 1,936
graphs that covered all possibities

= Wrote computer program to check all of them

Reaction

m Many mathematicians didn’t like this kind of
proof

m Program has been rewritten and rechecked
multiple times, and so the proof is generally
accepted.



Coloring Other Graph Types
Sphere: same as plane

= Plane = sphere
® Reduce exterior edges to points

m Sphere - plane

® Cut hole and stretch out flat



Coloring A Torus

Torus

m 7/ colors

necessary
® 7/ regions, each with
6 neighbors

m Also sufficient

=




Torus: An Infinite Wallpaper
Pattern
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Sudoku as a Graph Coloring

Problem
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Adding Colors
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Taking Away Numbers




Graph Structure of Sudoku
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Graph Structure of Sudoku

4 X 4 Sudoku

«—e_9o
«—e_9o
«—e_9o
«—e_9o

Row constraints




Graph Structure of Sudoku
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4 X 4 Sudoku Block constraints




Graph Structure of Sudoku
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4 X 4 Sudoku All constraints
16 nodes 56 edges

9 x 9 Sudoku: 81 nodes, 810 edges



Visualizing Solution Process
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Visualizing Solution Process
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Solving A Sudoku Puzzle
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Touring the US




Touring the US




Weighted US Graph
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m Shortest driving distances between capitol cities
® Staying within source and destination states
® Computed by Don Knuth using Mapquest



A Capitol Tour

[

A Hamiltonian Path

15,136 miles (24,359 km) total
68,656,026 possible tours



Limiting Node Degree




A Spanning Tree
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The Shortest Capitol Tour
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11,698 miles (18,826 km) total

A Traveling Salesman Path



The Longest Capitol Tour

Q |

18,040 miles (29,033 km) total




Two Interesting Capitol Tours
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Two Interesting Capitol Tours

3 time changes 19 time changes




Touring MacGregor
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Lessons Learned

Graph Coloring
m Maps are a kind of graph
= Sudoku is a graph coloring problem

Hamiltonian Paths

m Find a path in graph that goes through every node
once

m Considered a difficult problem

Boolean Methods
m Can encode wide variety of graph problems
m Can find solution using SAT solver

m In worst case, has exponential performance
® But gets solution for many interesting problems



