Solving Graph Problems with Boolean Methods

Randal E. Bryant Carnegie Mellon University

http://www.cs.cmu.edu/~bryant

The Graph Coloring Problem

Color the regions of a planar graph
■ Use only 4 colors

- No two adjacent regions can have the same color

Example: Color the states of a U.S. map

The MacGregor Graph

Scientific American, April 1975

- Said to be proof that some planar graphs could not be colored with just 4 colors
■ An April-fool's joke, but still difficult to solve by hand

Boolean SAT Solvers

What They Do

■ Express problem as a set of constraints
■ Search for solution that satisfies all constraints
Encoding Graph Coloring with SAT

- Encode each region with two 0/1-valued variables:
- 00 Blue
- 01 Green
- 10 Red
- 11 Yellow

■ For each adjacent region, require at least one of the corresponding variables to have opposite values

Encoding Coloring Constraints

■ Encode region i with variables a_{i}, b_{i}
■ For adjacent regions i and j, want:

$$
\mathrm{a}_{i} \neq \mathrm{a}_{j} \vee \mathrm{~b}_{i} \neq \mathrm{b}_{j}
$$

- Clausal form (and of or's):

The ZChaff SAT Solver

■ From Princeton University

- Algorithm by Davis Putnam Logemann \& Loveland
- With many refinements

Based on backtracking search

- Try assigning values to variables

■ When hit contradiction

- Create new constraint encoding conflict
- Backtrack by undoing some of the most recent assignments
- Resume search with new variable assignments

Visualizing the Search Process

■ Black: Neither variable assigned value
■ Single color: Both variables assigned, giving unique color.
■ Blended colors: One variable assigned, the other unassigned, indicating two possible colors
■ YouTube: http://www.youtube.com/watch?v=0gt503wK7AI

The Final Result

Another Solution

- Minimum use of greeen (7 times)

Try It Yourself

Color the rest of the map using 3 colors

Minimum Colorings of US Map

Only need to use green twice

Odd Cycles

Can this be colored with just 3 colors?

Odd Cycles in US Map

Overlapping Odd Cycles

Breaking Odd Cycles

Viewing Maps as Graphs

Coloring a Graph

The Macgregor Graph

The Four Color Theorem

■ Can color any planar graph with just 4 colors.
History
■ Conjectured in 1852

- 1890: it was shown that 5 colors would suffice

■ 1976: Appel \& Haken claimed they had proof

Proof of Four Color Theorem

Proof Method
■ Appel \& Haaken showed there were 1,936 graphs that covered all possibities
■ Wrote computer program to check all of them
Reaction
■ Many mathematicians didn't like this kind of proof
■ Program has been rewritten and rechecked multiple times, and so the proof is generally accepted.

Coloring Other Graph Types

Sphere: same as plane

■ Plane \rightarrow sphere

- Reduce exterior edges to points

■ Sphere \rightarrow plane

- Cut hole and stretch out flat

Coloring A Torus

Torus

- 7 colors necessary
- 7 regions, each with 6 neighbors
- Also sufficient

Torus: An Infinite Wallpaper Pattern

Sudoku as a Graph Coloring Problem

				$\mathbf{4}$				
			$\mathbf{2}$					
	$\mathbf{4}$	$\mathbf{2}$						
					2			

3	9	6	7	4	1	2	5	8
8	5	7	2	3	9	1	4	6
1	2	4	5	8	6	7	9	3
5	7	1	6	2	3	9	8	4
6	8	3	4	9	7	5	1	2
9	4	2	1	5	8	3	6	7
2	3	9	8	1	4	6	7	5
4	6	5	9	7	2	8	3	1
7	1	8	3	6	5	4	2	9

Adding Colors

3	9	6	7	4	1	2	5	8
8	5	7	2	3	9	1	4	6
1	2	4	5	8	6	7	9	3
5	7	1	6	2	3	9	8	4
6	8	3	4	9	7	5	1	2
9	4	2	1	5	8	3	6	7
2	3	9	8	1	4	6	7	5
4	6	5	9	7	2	8	3	1
7	1	8	3	6	5	4	2	9

Taking Away Numbers

3	9	6	7	4	1	2	5	8
8	5	7	2	3	9	1	4	6
1	2	4	5	8	6	7	9	3
5	7	1	6	2	3	9	8	4
6	8	3	4	9	7	5	1	2
9	4	2	1	5	8	3	6	7
2	3	9	8	1	4	6	7	5
4	6	5	9	7	2	8	3	1
7	1	8	3	6	5	4	2	9

Graph Structure of Sudoku

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

4 X 4 Sudoku

Column constraints

Graph Structure of Sudoku

4 X 4 Sudoku

Row constraints

Graph Structure of Sudoku

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

4 X 4 Sudoku

Block constraints

Graph Structure of Sudoku

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

4 X 4 Sudoku
16 nodes

All constraints 56 edges
9×9 Sudoku: 81 nodes, 810 edges

Visualizing Solution Process

Visualizing Solution Process

Solving A Sudoku Puzzle

Touring the US

Touring the US

Weighted US Graph

■ Shortest driving distances between capitol cities

- Staying within source and destination states
- Computed by Don Knuth using Mapquest

A Capitol Tour

Limiting Node Degree

A Spanning Tree

The Shortest Capitol Tour

11,698 miles ($18,826 \mathrm{~km}$) total

The Longest Capitol Tour

18,040 miles (29,033 km) total

Two Interesting Capitol Tours

Two Interesting Capitol Tours

Touring MacGregor

A Hamiltonian Cycle

Lessons Learned

Graph Coloring

■ Maps are a kind of graph

- Sudoku is a graph coloring problem

Hamiltonian Paths

- Find a path in graph that goes through every node once
- Considered a difficult problem

Boolean Methods

- Can encode wide variety of graph problems

■ Can find solution using SAT solver

- In worst case, has exponential performance
- But gets solution for many interesting problems

