Solving Graph Problems with Boolean Methods

Randal E. Bryant Carnegie Mellon University

http://www.cs.cmu.edu/~bryant

The Graph Coloring Problem

Color the regions of a planar graph

- Use only 4 colors
- No two adjacent regions can have the same color

Example: Color the states of a U.S. map

The MacGregor Graph

Scientific American, April 1975

- Said to be proof that some planar graphs could not be colored with just 4 colors
- An April-fool's joke, but still difficult to solve by hand

Boolean SAT Solvers

What They Do

- Express problem as a set of constraints
- Search for solution that satisfies all constraints

Encoding Graph Coloring with SAT

- Encode each region with two 0/1-valued variables:
 - 00 Blue
 - 01 Green
 - 10 Red
 - 11 Yellow
- For each adjacent region, require at least one of the corresponding variables to have opposite values

Encoding Coloring Constraints

- Encode region *i* with variables a_i, b_i
- For adjacent regions *i* and *j*, want: $a_i \neq a_i \lor b_i \neq b_i$
- Clausal form (and of or's):

$$c = 0 \Rightarrow a_i \neq a_j$$

$$(c \lor a_i \lor a_j) \land (c \lor \neg a_i \lor \neg a_j) \land (\neg c \lor b_i \lor b_j) \land (\neg c \lor \neg b_i \lor \neg b_j)$$

$$c = 1 \Rightarrow b_i \neq b_j$$

The ZChaff SAT Solver

- From Princeton University
- Algorithm by Davis Putnam Logemann & Loveland
- With many refinements

Based on backtracking search

- Try assigning values to variables
- When hit contradiction
 - Create new constraint encoding conflict
 - Backtrack by undoing some of the most recent assignments
 - Resume search with new variable assignments

Visualizing the Search Process

- Black: Neither variable assigned value
- Single color: Both variables assigned, giving unique color.
- Blended colors: One variable assigned, the other unassigned, indicating two possible colors
- YouTube: <u>http://www.youtube.com/watch?v=0gt503wK7AI</u>

The Final Result

Another Solution

 Minimum use of greeen (7 times)

Try It Yourself

Color the rest of the map using 3 colors

Minimum Colorings of US Map

Only need to use green twice

Odd Cycles

Can this be colored with just 3 colors?

Odd Cycles in US Map

Overlapping Odd Cycles

Breaking Odd Cycles

Viewing Maps as Graphs

Coloring a Graph

The Macgregor Graph

110 nodes 324 edges

The Four Color Theorem

Can color any planar graph with just 4 colors.

History

- Conjectured in 1852
- 1890: it was shown that 5 colors would suffice
- 1976: Appel & Haken claimed they had proof

Proof of Four Color Theorem

Proof Method

- Appel & Haaken showed there were 1,936 graphs that covered all possibilies
- Wrote computer program to check all of them

Reaction

- Many mathematicians didn't like this kind of proof
- Program has been rewritten and rechecked multiple times, and so the proof is generally accepted.

Coloring Other Graph Types

Sphere: same as plane

■ Plane \rightarrow sphere

• Reduce exterior edges to points

• Sphere \rightarrow plane

• Cut hole and stretch out flat

Coloring A Torus

Torus: An Infinite Wallpaper Pattern

Sudoku as a Graph Coloring Problem

			4			
		2				
4	2					
				2		
					2	

3	9	6	7	4	1	2	5	8
8	5	7	2	3	9	1	4	6
1	2	4	5	8	6	7	9	3
5	7	1	6	2	3	9	8	4
6	8	3	4	9	7	5	1	2
9	4	2	1	5	8	3	6	7
2	3	9	8	1	4	6	7	5
4	6	5	9	7	2	8	3	1
7	1	8	3	6	5	4	2	9

Adding Colors

3	9	6	7	4	1	2	5	8
8	5	7	2	3	9	1	4	6
1	2	4	5	8	6	7	9	3
5		1	6	2	3	9	8	4
6	8	3	4	9	7	5	1	2
9	4	2	1	5	8	3	6	7
2	3	9	8	1	4	6		5
4	6	5	9	7	2	8	3	1
7	1	8	3	6	5	4	2	9

Taking Away Numbers

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

4 X 4 Sudoku

Column constraints

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

4 X 4 Sudoku

Row constraints

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

4 X 4 Sudoku

Block constraints

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

4 X 4 Sudoku 16 nodes All constraints 56 edges

9 x 9 Sudoku: 81 nodes, 810 edges

Visualizing Solution Process

Visualizing Solution Process

Solving A Sudoku Puzzle

Touring the US

Touring the US

Weighted US Graph

Shortest driving distances between capitol cities

- Staying within source and destination states
- Computed by Don Knuth using Mapquest

A Capitol Tour

Limiting Node Degree

A Spanning Tree

The Shortest Capitol Tour

A Traveling Salesman Path

11,698 miles (18,826 km) total

The Longest Capitol Tour

18,040 miles (29,033 km) total

Two Interesting Capitol Tours

Two Interesting Capitol Tours

3 time changes **19 time changes**

Touring MacGregor

A Hamiltonian Cycle

Lessons Learned

Graph Coloring

- Maps are a kind of graph
- Sudoku is a graph coloring problem

Hamiltonian Paths

- Find a path in graph that goes through every node once
- Considered a difficult problem

Boolean Methods

- Can encode wide variety of graph problems
- Can find solution using SAT solver
- In worst case, has exponential performance
 - But gets solution for many interesting problems