Generating Extended Resolution Proofs with a BDD-Based SAT Solver

Randal E. Bryant and Marijn J. H. Heule

Carnegie
 Mellon
 University

TACAS, 2021

Boolean Satisfiability Solvers

SAT Solvers Useful \& Powerful

- Formal verification
- Security verification
- Optimization

Boolean Satisfiability Solvers

SAT Solvers Useful \& Powerfu

- Formal verification
- Security verification
- Optimization

Can We Trust Them?

- No!
- Complex software with lots of optimizations

Proof Generating Solvers

Proof Generating Solvers

Proof Generating Solvers

Unsatisfiability Proof

- Step-by-step proof in some logical framework

Proof Checker

- Simple program
- May be formally verified

Background

2006 Sinz, Biere generate proofs with BDD-based SAT solver (conjunctions only)

2006 Jussila, Sinz, Biere allow limited use of existential quantification

2021 Bryant and Heule allow arbitrary existential quantification

Basics

Clauses

- $\neg u \vee v \vee w$ Disjunction of literals
- \perp Empty clause (False)

Resolution Principle

$$
\frac{\neg u \vee v \vee w \quad \neg w \vee x \vee \neg z}{(\neg u \vee v) \vee(x \vee \neg z)}
$$

- Generalization of implication
- See https://en.wikipedia.org/wiki/Resolution_(logic)

Clausal Proof

\(\left.\begin{array}{cccc}Step \& Clause \& Antecedents \& Formula

1 \& \neg v \vee w \& \& v \rightarrow w

2 \& \neg v \vee \neg w \& \& v \rightarrow \neg w

3 \& v \& v

4 \& \neg v \& 1,2 \& \neg v

5 \& \perp \& 3,4 \& v \wedge \neg v\end{array}\right\}\)| |
| :--- |
| Derived |
| clauses |

- Prove conjunction of input clauses unsatisfiable
- Add derived clauses
- Provides list of antecedent clauses that resolve to new clause
- Finish with empty clause
- Proof is series of inferences leading to contradiction

Extended Resolution (ER)

Can introduce extension variables

- Variable e that has not yet occurred in proof
- Must add defining clauses
- Encode constraint of form $e \leftrightarrow F$
- Boolean formula F over input and earlier extension variables

Extension variable e becomes shorthand for formula F

- Repeated use can yield exponentially smaller proof

Extended Resolution Example

Example: Prove following set of constraints unsatisfiable

Constraint	Clauses
$u \wedge v \rightarrow w$	$\neg u \vee \neg v \vee w$
$u \wedge v \rightarrow \neg w$	$\neg u \vee \neg v \vee \neg w$
$u \wedge v$	u
	v

- Strategy: Introduce extension variable e such that $e \leftrightarrow u \wedge v$

Constraint	Clauses
$u \wedge v \rightarrow e$	$e \vee \neg u \vee \neg v$
$e \rightarrow u$	$\neg e \vee u$
$e \rightarrow v$	$\neg e \vee v$

Extended Resolution Proof

\(\left.\begin{array}{cccc}Step \& Clause \& Antecedents \& Formula

1 \& \neg u \vee \neg v \vee w \& \& u \wedge v \rightarrow w

2 \& \neg u \vee \neg v \vee \neg w \& \& u \wedge v \rightarrow \neg w

3 \& u \& u

4 \& v \& \& u \wedge v \rightarrow e

5 \& e \vee \neg u \vee \neg v \& \& e \rightarrow u

6 \& \neg e \vee u \& e \rightarrow v

7 \& \neg e \vee v \& \& e \wedge v \rightarrow w

8 \& \neg e \vee \neg v \vee w \& 1,6 \& e \rightarrow w

9 \& \neg e \vee w \& 7,8 \& e \wedge v \rightarrow \neg w

10 \& \neg e \vee \neg v \vee \neg w \& 2,6 \& e \rightarrow \neg w

11 \& \neg e \vee \neg w \& 7,10 \& v \rightarrow e

12 \& e \vee \neg v \& 3,5 \& e

13 \& e \& 4,12 \& \neg

14 \& \neg e \& 9,11 \& \neg e

15 \& \perp \& 13,14 \& e \wedge \neg e\end{array}\right\}\)| |
| :--- |
| |

Reduced, Ordered Binary Decision Diagrams (BDDs)

- Bryant, 1986

Representation

- Canonical representation of Boolean function
- Compact for many useful cases

Algorithms

- Apply ($f, g, o p$)
- op is Boolean operation (e.g., $\wedge, \vee)$
- BDD representation of f op g
- EQuant (f, X)
- X set of variables
- BDD representation of $\exists X f$

Apply Algorithm Recursion

Apply (u, v, \wedge)

Apply Algorithm Recursion

$\operatorname{Apply}\left(u_{1}, v_{1}, \wedge\right) \rightarrow$

$\operatorname{Apply}\left(u_{0}, v_{0}, \wedge\right) \rightarrow$

Apply Algorithm Recursion

Result

Generating ER Proofs

- Create extension variable for each node in BDD
- Notation: Same symbol for node and its extension variable

- Defining clauses encode constraint $u \leftrightarrow \operatorname{ITE}\left(x, u_{1}, u_{0}\right)$

Clause name	Formula	Clausal form
$\mathrm{HD}(u)$	$x \rightarrow\left(u \rightarrow u_{1}\right)$	$\neg x \vee \neg u \vee u_{1}$
$\mathrm{LD}(u)$	$\neg x \rightarrow\left(u \rightarrow u_{0}\right)$	$x \vee \neg u \vee u_{0}$
$\mathrm{HU}(u)$	$x \rightarrow\left(u_{1} \rightarrow u\right)$	$\neg x \vee \neg u_{1} \vee u$
$\mathrm{LU}(u)$	$\neg x \rightarrow\left(u_{0} \rightarrow u\right)$	$x \vee \neg u_{0} \vee u$

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

- When $\operatorname{Apply}(u, v, \wedge)$ returns w, also generate proof $u \wedge v \rightarrow w$
- Key Idea: Proof based on the underlying logic of the Apply algorithm

Proof Structure

- Assume recursive calls generate proofs
- $u_{1} \wedge v_{1} \rightarrow w_{1}$
- $u_{0} \wedge v_{0} \rightarrow w_{0}$
- Combine with defining clauses for nodes u, v, and w

Apply Proof Structure

Defining Clauses

Clause	Formula	Clause	Formula
$\mathrm{HD}(\mathrm{u})$	$x \rightarrow\left(u \rightarrow u_{1}\right)$	$\mathrm{LD}(\mathrm{u})$	$\neg x \rightarrow\left(u \rightarrow u_{0}\right)$
$\mathrm{HD}(\mathrm{v})$	$x \rightarrow\left(v \rightarrow v_{1}\right)$	$\mathrm{LD}(\mathrm{v})$	$\neg x \rightarrow\left(v \rightarrow v_{0}\right)$
$\mathrm{HU}(\mathrm{w})$	$x \rightarrow\left(w_{1} \rightarrow w\right)$	$\mathrm{LU}(\mathrm{w})$	$\neg x \rightarrow\left(w_{0} \rightarrow w\right)$

Resolution Steps

Quantification Operations

Operation EQuant (f, X)

- Abstract away details of satisfying (partial) solutions
- Not logically required for SAT solver
- But, critical for obtaining good performance

Proof Generation

- Do not attempt to follow recursive structure of algorithm
- Instead, follow with separate implication proof generation
- EQuant $(u, X) \rightarrow w$
- Generate proof $u \rightarrow w$
- Algorithm similar to proof-generating Apply operation

Overall Proof Task

Input Variables

Input Clauses

- Set of input clauses $C_{\text {I }}$ over the input variables

Completion

- Generate Proof $C_{I} \vdash \perp$

Structure of Overall Proof

Input Variables

- Generate BDD variable for each input variable

Input Clauses

- For each input clause $C \in C_{l}$, generate BDD representation u
- Using Apply with \vee operation
- Generate proof $C \vdash u$
- Sequence of resolution steps based on linear structure of BDD

Combine Top-Level BDDs

- Apply $(u, v, \wedge) \rightarrow w$
- Combine proofs $C_{l} \vdash u, C_{l} \vdash v$ and $u \wedge v \rightarrow w$ to get $C_{l} \vdash w$
- EQuant $(u, X) \rightarrow w$
- Combine proofs $C_{I} \vdash u$ and $u \rightarrow w$ to get $C_{I} \vdash w$

Completion

- When $\operatorname{Apply}(u, v, \wedge) \rightarrow 0$ have proof $C_{l} \vdash \perp$

Implementation

Package

- 2000 lines Python code (slow!)
- BDD package + proof generator
- https://github.com/rebryant/pgbdd-artifact

Benchmark Generators

- CNF file
- File specifying ordering of variables
- File specifying schedule:
- Defines sequence of conjunctions and quantifications

Mutilated Chessboard Problem

Definition

- $N \times N$ chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Mutilated Chessboard Problem

Definition

- $N \times N$ chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Mutilated Chessboard Problem

Definition

- $N \times N$ chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Mutilated Chessboard Problem

Definition

- $N \times N$ chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Solutions

- None
- More white squares than black
- Each tile covers one white and one black square

Proof

- All resolution proofs of exponential size

Encoding as SAT Problem

Boolean variable for each boundary between two squares

- $(N-1) \cdot N-2$ vertical boundaries $x_{i, j}$
- $(N-1) \cdot N-2$ horizontal boundaries $y_{i, j}$

Constraints

- For each square, exactly one of its boundary variables $=1$

Chess Proof Complexity: KISSAT

Mutilated Chessboard Clauses

- Winner of 2020 SAT competition
- Requires 12.6 hours for $N=22$.

Chess Proof Complexity: Earlier BDD-Based Approaches

Mutilated Chessboard Clauses

- Linear: No quantification (Sinz \& Biere, 2006)
- Bucket: Eliminate variables from top of BDD downward (Jussila, Sinz, \& Biere, 2006)

Column Scanning

Scanning

- Add tiles for each column from left to right

Observation

- When placing tiles in column, only need to know which squares are already occupied

Abstraction Via Quantification

Scanning "State"

- $X_{j}=$ Variables for boundaries between columns j and $j+1$.

Symbolic Computation of State Sets
State at column j-1 Column j transition

$$
\sigma_{j-1}\left(X_{j-1}\right)
$$

State at column j $\sigma_{j}\left(X_{j}\right)$

$$
\sigma_{j}\left(X_{j}\right)=\exists X_{j-1}\left[\sigma_{j-1}\left(X_{j-1}\right) \wedge \exists Y_{j} T_{j}\left(X_{j-1}, Y_{j}, X_{j}\right)\right]
$$

- Does not redefine underlying problem
- Way to order conjunctions and quantifications
- Requires quantification ordering to differ from BDD variable ordering

Representing State Sets

Configurations per Column

BDD Sizes per Column

- Number of configurations $\sim 2^{N}$
- BDD representation $\sim N^{2}$

Chess Proof Complexity: Column Scanning

Mutilated Chessboard Clauses

- Problem size $\sim N^{2}$
- Proof size $\sim N^{2.7}$

Observations

Key Insight

- Sinz, Biere, and Jussila
- Capture underlying logic of BDD algorithms as ER proofs

Our Contributions

- Handle arbitrary existential quantification
- Required for column scanning
- Demonstrate on key benchmarks
- Mutilated chessboard
- Complexity $O\left(N^{2.7}\right)$
- Pigeonhole principle
- Complexity $O\left(N^{3}\right)$
- Also based on column scanning

Further Work

Higher Performance Implementation

- Extend existing BDD package

More Automation

- Variable ordering
- Conjunction and quantification scheduling

Apply to Other Problems

- QBF
- Model checking
- Model counting

