
Surveying the field of computing

third edition

by Carl Burch

Copyright c1999 by Carl Burch
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author. Permission is granted to reproduce and
distribute the document provided it is unedited and in its entirety.

Contents

List of exercises . iv
Syllabus . v
1998 quiz . x
Acknowledgments . xii

First Unit: Foundations 1
1 Overview . 2

1.1 What is computer science? . 2
1.2 Outline . 3
1.3 What to expect . 4

2 Problems and algorithms . 5
2.1 Problems . 5
2.2 Solutions . 6
2.3 Undecidability (optional) .. 7

3 High-level procedure . 8
3.1 Pseudocode. 8
3.2 Flowcharts . 10

Second Unit:Programming 13
4 Programming overview . 15

4.1 The programming process . 15
4.2 A simple program . 16
4.3 Tips for writing programs .. 18

5 Variables . 20
5.1 Basic data types . 20
5.2 Declarations . 21
5.3 Assignments . 22
5.4 Expressions . 22
5.5 Input and output. 23

6 Control statements . 25
6.1 Conditional statements . 25
6.2 Iteration statements . 29
6.3 Extended example . 31

ii CONTENTS

7 Functions . 34
7.1 Function calls . 34
7.2 Function definitions . 35
7.3 Extended example . 36
7.4 Parameters and variables . 37

8 Complex data types . 39
8.1 Arrays . 39
8.2 Strings . 41
8.3 Structures . 42

9 Objects . 44
9.1 Object-oriented design . 44
9.2 Defining objects . 45
9.3 Additional object concepts . 46

Third Unit: Recursion 51
10 Recursion . 52

10.1 Definition . 52
10.2 Exponentiation. 53
10.3 Tower of Hanoi . 54

11 Playing games . 60
11.1 Game tree search . 61
11.2 Heuristics . 62
11.3 Alpha-beta search . 63

Fourth Unit: Internet 67
12 Networking fundamentals. 69

12.1 Representing data . 69
12.2 Division of labor . 71

13 Transporting packets . 73
13.1 Machine names . 73
13.2 Finding a route . 74

14 Putting packets together. 76
14.1 Connections . 76
14.2 Reliable delivery . 77

15 Using messages . 81
15.1 HTTP . 81
15.2 SMTP . 82

16 Cryptography . 83
16.1 Protocols . 83
16.2 Private-key cryptography . 85
16.3 Communicating an average . 87

Fifth Unit: Algorithms 89
17 Analyzing algorithm speed . 90

17.1 Comparing algorithms . 90

CONTENTSiii

17.2 Finding big-O bounds 91
18 Divide and conquer . 95

18.1 Sorting . 95
18.2 Multiplication . 97

19 Dynamic programming . 102
19.1 Fibonacci numbers. 102
19.2 Making change . 103
19.3 All-pairs shortest paths . 104

Sixth Unit: Appendices 107
A C++ syntax reference . 108
B Symbols . 111
C Mathematical concepts . 112

C.1 Logarithms . 112
C.2 Induction . 112
C.3 Geometric series . 113
C.4 Recurrences . 113
C.5 Graphs . 113
C.6 Mathematical notation . 115

D Exercise solutions . 116
Index . 123

List of exercises

1.1 Computer science definition. 3
2.1 TheSearch problem (Solution, 116) . 6
2.2 Algorithms forSquare-Root (Solution, 116). 7
3.1 Pseudocode forSquare-Root (Solution, 117). 10
3.2 Flowchart forSquare-Root (Solution, 118). 11
4.1 Compiling “hello, world” . 17
5.1 Classifying constants (Solution, 118). 21
5.2 Variable names (Solution, 118). 21
5.3 Expressions (arithmetic) (Solution, 118). 23
5.4 Program: Age (Solution, 118). 24
6.1 Expressions (logical) (Solution, 119). 28
6.2 Leap year condition (Solution, 119) .. 29
6.3 Conditional errors (Solution, 119) . .. 29
6.4 Program: Division (Solution, 119) . .. 29
6.5 Translating afor loop (Solution, 119) . 32
6.6 Loop errors (Solution, 119). 33
6.7 Program: Checkbook (decimals) 33
7.1 Program: Checkbook (rationals) 38
8.1 Removing duplicates (Solution, 120). 41
8.2 Program: Median finding (Solution, 120). 41
8.3 Program: Palindromes (Solution, 121). 42
8.4 Defining a library book (Solution, 121). 43
9.1 Checkbook (objects). 49
10.1 Program: Printing all subsets (Solution, 121). 59
10.2 Program: Printing some subsets . 59
11.1 Game tree proof . 65
16.1 Decrypting a substitution cipher (Solution, 122). 87
16.2 Voting using the total . 88
17.1 Ordering functions (Solution, 122) . .. 91
17.2 Big-O bounds for expressions (Solution, 122). 91
17.3 Big-O bounds forSquare-Root (Solution, 122) 93
C.1 Induction on cows . 113

Syllabus

Course overview

Our goal isto understand thescope, techniques, and contributions of the field of computer
science.

Topics

This is a survey course; we will move fairly rapidly through a series of topics. (Table 0.1 gives
an anticipated schedule.) The course is structured around four major areas, of which you should
have a fair understanding by the end of PGSS.

Programming fundamentals. You will be programming-literate by the end of the course.

Recursion. Between induction in Discrete Math and recursion in CS, you will have mastered
the use of constructive self-reference.

Internet. You will have learned the fundamentals of the Internet’s structure and operation.

Algorithms. You should appreciate the mathematical side to the study of algorithms, under-
standing especially the mathematical analysis of running time.

The course should be challenging, enlightening, and fun for everybody; please demand it!

For the inexperienced. . .

The CS core is particularly frustrating because a wide experience gap separates the students.
Many students have never attempted to understand computing before; a few have several com-
puter science courses behind them. No matter what, the beginners will be frustrated, and the
experienced students will be bored. Expect frustration.

But don’t be daunted: You are in the majority! The material is all targeted at you.
We will move very quickly. I encourage beginners especially to ask questions when they

don’t feel they completely understand the topic. It’s tempting to think that maybe if you sit back
you will begin to understand later. . . but this doesn’t work. Ask!

The assignments will have multiple levels and will indicate what the beginner should do.
As an overachieving student, you may find it hard not to go to the highest level; nonetheless, I
recommend that beginners avoid this.

Experience shows that some students grasp programming quickly while others do not. This
is naturally frustrating for those among the latter. If programming doesn’t seem to be clicking
for you, I advise you to stick with it nonetheless — you will be a better person for the struggle,
and the effort will pay off when you try again in a few years.

vi Syllabus

Session Material
1 Prologue
2
3
4
5 Programming
6
7
8 Recursion
9
10 Internet
11
12
13 Algorithms
14
15 Cryptography
16 TBA / Quiz
17 Evaluation / Epilogue

Table 0.1: Tentative schedule of topic coverage

For the experienced. . .

Everybodyshould find the CS core interesting and challenging! Unfortunately it is not pos-
sible within PGSS to have multiple sections of the CS core. But I still believe students who
have already studied computer science intensively can still learn a lot — at least if they allow
themselves.

This class employs three strategies for teaching experienced students without neglecting
those who have not seen much computer science before.

1. The assignments have multiple levels to which they may be completed. While the lower
levels are acceptable — nay, encouraged — for beginners, experienced programmers
should find the more advanced levels more interesting.

2. We will get programming behind us as quickly as possible, so that we can discuss material
experienced students are less likely to have seen.

3. During these programming lectures (Sessions 2–8 in Table 0.1), students who already
know how to program have the option of pursuing self-paced study. You can read more
about this at the end of this syllabus.

Learning resources

The CS core includes many facets intended to make this course challenging, enlightening, and
fun for everybody. Please take full advantage of them!

vii

CS staff

Without question, the greatest resource at your disposal is the CS staff. We are employed full-
time to help you learn about CS. Never hesitate to ask for help!

Carl Burch burch@andrew.cmu.edu CS core instructor
Kirk Yenerall ky0h@andrew.cmu.edu lab/CTW instructor
Matt Huenerfauth matt@udel.edu TA
Rob Liebscher liebsche@cse.psu.edu TA
Merrie Ringel Meredith_Ringel@brown.edu TA

Programming classwork

Each weekly assignment includes a programming portion. Additionally, students in self-paced
study will have more programming assignments to complete. You will find these assignments
are the most effective learning resource for this class. Take them very seriously!

Collaboration: Stronglyencouraged! On the weekly programming assignments, you may
work in groups of up to three.Collaborationtogether is essential; you maynot merely
cooperate by splitting the assignment between group members. Youmayget some help
from course staff and classmates, but the work must be primarily yours. List all collabo-
rators and helpers on what you hand in.

Help from staff: Encouraged! Feel free to buttonhole any of the course staff, any time, to talk
about assignments or class material. To make this easier for you, we frequently visit the
Baker Hall clusters to see if students can use our help. Sometimes this will be announced
(in class or on the Web page); other times we may just drop in.

Suggestion: Start early! Programming is notorious for almost always taking longer than ex-
pected. Also, starting early will avoid problems with computer and TA availability.

Submissions: Your group’s programming assignments must be submitted together electroni-
cally via the ‘Handin’ Web page. The electronic deadline is 2:30 pm Monday.

Solutions and evaluations:Soon after the deadline, we will post our solutions on the ‘Solu-
tions’ Web page. The course staff will evaluate your work; their evaluations will appear
on the ‘Grades’ Web page.

Cheating: Not encouraged! By not giving grades, PGSS removes the only incentive to cheat.
Any detected cheating cases will go straight to Dr Berget. Expulsion in such cases is
likely. It’s not worth it!

Written classwork

This class includes a weekly written assignment. Again, these are a vital learning resource for
the class that you should take very seriously!

Collaboration: Encouraged! Feel free to work with your classmates (or with course staff)
about the written assignments as you search for a solution. You must write up your
solution on your own, however, and you should not show your write-up to other students.
Be sure to list all collaborators and helpers (including course staff) on what you hand in.

viii Syllabus

Help from staff: Encouraged! Again, feel free to buttonhole any of the course staff, any time,
to talk about the written work. We will also be happy to look over your write-up and
indicate any significant shortcomings. (Donothave classmates look over them, however.)

Submissions: Your written assignment may be submitted electronically (via the ‘Handin’ Web
page) or on paper (via the dorm mail room’s CS box). The deadline is 2:30 pm Monday.

Quiz

At the end of PGSS, the course staff must evaluate your performance for the PGSS recommen-
dation letter. A drawback of emphasizing groupwork so much on assignments is that there is no
reliable individual evaluation mechanism. The final quiz at the end is meant to address this.

There will be a short, 15-minute quiz at the penultimate session of class. Let me tell you
three reasons why you shouldnot worry about this quiz.

� You may use both the textbook and any papers. (You cannot use computers, calculators,
people, and especially tangerines.)

� The quiz will primarily emphasize what has appeared on the assignments. You should
understand them already (after all, you completed them), but anyway it is a small amount
to study. The 1998 quiz appears in this book on page x.

� For the sake of argument, let’s say the material has simply not clicked. Then no doubt the
course staff has helped you many times. If, then, you perform poorly on the quiz, we will
remember your struggle, and our evaluation will emphasize this, not quiz performance.
(Of course, it’s even better if you will do well enough that we can emphasize both struggle
and success.)

Web page

The course Web page is a major component of course administration. Its address is (you might
as well memorize it now):http://www.cburch.com/ . This syllabus mentions much of
Web page elsewhere, but there are a few other useful parts.

Registration: Maintain your Web page account and password. This account is necessary for
submitting assignments, reading evaluations, and completing polls. You will receive a
registration ticket on the first day of class to allow you to create your account.

Polls: Answer questions about how you would get the most from the CS core experience.

Comment box: Submit anonymous comments to me about what would contribute to the CS
core experience. Comments about any aspect of the course are welcome at any time,
whether anonymous or not.

Web links: Links to other sites on the Web relevant to the material we cover in class.

Lectures

Questions: Asking questions during lecture isstrongly recommended at all times! It is very
easy to complacently sit back and become very lost, thinking you can get back on track
later; but in fact getting back on track is often impossible. Don’t let this happen! Ask
questions when you begin to feel even vaguely that you are falling behind.

ix

Notes: I personally believe that note-taking (as commonly performed) often detracts from stu-
dent understanding. If you find your own notes useful as a learning aid, go ahead. In case
you would like to have a copy of notes during class for reference or annotation, antici-
pated notes will be available on the ‘Lecture’ Web page by the evening before lecture in
time for you to print them out.

Textbook

We will cover the textbookSurveying the field of computing(third edition) fairly closely, at a
rate of roughly one chapter per lecture.

Self-paced track

The self-study option is for students with a fair amount of computer programming background
already (in any sophisticated programming language).

If you are eligible and select this option, instead of sitting in lecture studying the funda-
mentals of programming, you will be in the computer clusters (Baker 140) practicing. The CS
TAs will be there to answer questions and to monitor your work. (Mr Carl Burch, who will be
lecturing, regrets that he will be unable to attend.)

PGSS approves this option with certain restrictions:

1. The self-study option is availableonly to those who have significant programming back-
ground. More specifically, the student is expected to be somewhat comfortable at least
with loops and arrays in some programming language.

2. You must be either at lecture or in Baker 140 during the scheduled class time. If you are
in Baker 140, you must study CS. (You cannot defer self-study to other times.) The TAs
will monitor and take attendance.

3. During this time, you will complete and submit exercises listed on the Web page. (Except
for Programming Exercise 0, you maynot work on the weekly assignments during class
time.) Your submissions will be evaluated by the course staff and will count toward your
final evaluation.

4. The TAs are there to answer any questions you have. In addition, we will often be in the
cluster at other times to answer questions. And of course you should always feel free to
stop any course staff, any time, to get help.

The self-study programming assignments are divided into exercises and projects. The exercises
are to ensure that you learn what is taught in lecture; you must do these first. The projects give
you the opportunity to learn material that we will not cover elsewhere.

1998 quiz

Quiz questions

You may use your book and your notes; you may not use classmates.

1. Write a program to determine whether a number the user enters is a multiple of 7. A
sample run:

Test what number? 1245
Not multiple of 7

#include <iostream>
#include <string>

int main() {

}

2. Write a function to count the number of occurrences of the number9 in an array. For
example, if our parameter arrayarr is h5; 9; 3; 2; 9; 0i, the function should return2, since
9 occurs twice.

int countNines(const vector<int> &arr, int arr_len) {
int i;

for(i = 0; i < arr_len; i = i + 1) {

}

}

xi

3. Using big-O notation in terms ofn, what is the running time of the following function?
Explain your answer in one or two sentences.

public static int squareRootD(int n) {
int i = n;
while(i * i >= n) {

i = i - 1;
}
return i + 1;

}

Solutions

1.
#include <iostream>
#include <string>

int main() {
cout << "Test what number? ";
int num;
cin >> num; // read number from user
if(num % 7 == 0) { // test whether it is divisible by 7

cout << "Multiple of 7" << endl;
} else {

cout << "Not multiple of 7" << endl;
}

}

2.
int countNines(const vector<int> &arr, int arr_len) {

int i;
int count = 0; // this is the #9’s we have seen so far
for(i = 0 ; i < arr_len; i = i + 1) {

if(arr[i] == 9) {
count = count + 1; // we found another one

}
}
return count;

}

3. O(n). The program beginsi at n and subtracts 1 from it until it reaches
p
n. So the

computer goes through the loop approximatelyn � p
n times; the

p
n term grows more

slowly than then term, so we go through the loopO(n) times. Each iteration takes O(1)
time (Constant Rule), so by the Iteration Rule, the total time isO(n).

Acknowledgments

The Pennsylvania Governor’s School for the Sciences provided the occasion to put this book
together. I most especially want to recognize the 1997 PGSS class, who faithfully stuck with
me on the first iteration of this course, and the 1998 PGSS class, whose comments led to this
current edition. The suggestions and struggles of these students have shaped this course and
this book. I wish the students could benefit from what they taught me.

The author acknowledges Carnegie Mellon University and Charles and Cheri Burch for
providing the computing facilities on which this document was produced.

FIRST UNIT

Foundations

This begins the first unit of this text,Foundations. In this part, we learn about some of the
most fundamental aspects of computer science. We begin in Chapter 1 with an overview of
computer science and of this book. In Chapter 2 we look at the types of problems computer
science investigates and the solutions that it seeks. Finally, in Chapter 3, we examine at two
common ways for expressing procedure concisely, pseudocode and flowcharts.

Chapter 1

Overview

In this book we undertake to understand the discipline of computer science. Surveying this
vast field is a high goal, but it is nonetheless ours to pursue.

We are particularly interested in learning about the scope, techniques, and contributions of
computer science. Our approach is to look at a variety of different parts, so that you can draw
an educated picture about what computer science is about. To use the clich´e: We will see the
trees; you will draw the forest.

But before we attempt to examine these trees, we glance at the author’s vision of the for-
est. In this chapter we look at this outlook, and we see an outline describing how this book
approaches its goal of surveying the field of computing.

1.1 What is computer science?

“What is computer science?” is exactly the question this book attempts to answer. But let’s take
a crack at the question directly:Computer scienceis the field of inquiry that asks, “How can
we solve problems most effectively?”

Understanding how to solve problems effectively is vital to advancing technology, even
without computers. That computer science was not a separate field until computers became
usable in the 1950’s, therefore, is surprising.

You may object thatcomputerscience should be at least somewhat related to computers.
In fact, it is. Because computers can solve many problems automatically, they are important
problem-solving tools. But as computer scientists we are aware that computers are not fit for all
problems; our goal is to try to extend the domain of problems that can be approached automati-
cally (by computer).

As you might expect of a brilliant gem such as computer science, it has many facets. Each
is enough for a lifetime of study. In this book we will hit many of them, but for now let us spend
just a few seconds on each of a selection of some of the more prominent facets.

Computational complexity asks, “What is the inherent hardness of problems?” This leads
to deep mathematical questions. Computational complexity researchers look for lower
bounds on how quickly particular problems can be solved.

Algorithms researchers ask, “What are provably fast algorithms for problems?” This question
is the inverse of computational complexity’s — instead of asking whatcan’t be done for
a problem, it asks whatcanbe done.

1.2 Outline 3

Artificial intelligence (abbreviatedAI) asks, “How can we automatically behave ‘intelligently’?”
AI researchers attempt to find methods of emulating complex aspects of human behav-
ior. Learning, understanding, and planning are all difficult aspects that researchers are
examining.

Human–computer interaction (abbreviatedHCI) asks, “How can humans efficiently spec-
ify problems?” In many cases the biggest time sink in problem-solving is specifying
the problem itself. HCI researchers seek ways to improve computers’ interfaces so that
humans can use them more efficiently. They want to make computer use faster, more
pleasant, and more intuitive.

Programming languagesasks, “How can we best describe approaches to problems?” Re-
searchers seek better ways of specifying a method exactly, with mathematical rigor, in a
way that both humans and computers can understand the method quickly and easily.

Software systemsasks, “How can computers better help solve problems?” Software systems
researchers look for new ways to use computers’ capabilities. Some examples of current
software systems research include development of different programs to archive video, to
share files across a network, and to safely transfer money over the Internet.

Software engineering asks, “How can we develop complex systems better?” We want faster,
safer, simpler, more powerful software without spending too much more. Software engi-
neering researchers look for ways to alter the development process so that better software
is produced efficiently.

Hardware systems asks, “How can we develop better problem-solving machines?” Among
other things, researchers look for ways to build faster networks, to improve computer
reliability, and to use many processors in the same computer effectively.

These facets are widely different, touching a variety of the academic disciplines. Com-
puter scientists often collaborate with people from other university departments. Some of the
more common sources for collaboration are mathematics (computational complexity and algo-
rithms), the natural sciences (algorithms and AI), philosophy (AI and programming languages),
psychology (AI and HCI), sociology (HCI and software engineering), management (software
engineering), and electrical engineering (hardware systems). And of course computer scientists
work with each other, often across different parts of the field.

Exercise 1.1: We define computer science as the study of solving problems effectively. Do
you think this a reasonable definition? Is it general enough (covering all the facets)? Is it
specific enough (not hitting other fields)? Can you recommend an alternative definition?

1.2 Outline

All these questions that computer scientists ask can be overwhelming. The point is that com-
puter scientists ask a lot of neat questions. We can’t possibly cover all of the field in a few
hours, in a few years, or even a few lifetimes. We can only sample a selection.

This text is structured around fiveunits, each roughly corresponding to a major concept of
the course. Each unit contains two to six chapters; a chapter is meant to be a lesson conveying
a single topic, of a length reasonable for a single reading or a single lecture.

4 Overview

First Unit: Foundations We lay a foundation for learning about computer science, with a brief
introduction to the field and the problems it tries to solve.

Second Unit:Programming We examine how to write a program in a particular programming
language called C++. Our overall goal is this book is not to learn how to program. But
knowing how to program is crucial to a strong understanding of computer science (and it
is a useful skill anyway).

Third Unit: Recursion Once we understand programming fundamentals, we will be ready to
talk about more involved concepts.Recursion, the third unit, addresses a very useful
programming device called recursion, which requires a more abstract understanding of
programming. We will examine how it works and how we can use it for game-playing.
The game-playing chapter represents our first foray into “real” computer science.

Fourth Unit: Internet We concentrate on a major recent contribution of computer science to
the world at large: new approaches to information networks. In particular, we look at
many of the inherent problems, and we see details of how these are solved in the Internet.

Fifth Unit: Algorithms Finally, we look at mathematical aspects of algorithm design. We par-
ticularly concentrate on how to construct fast solutions for a problem.

After all this, we should have some idea of the breadth of computer science. We’re omitting
entire fascinating subdisciplines in this survey. We simply cannot cover everything. The above
outline carves out a huge chunk that is more than enough. What we have selected makes an
exciting and interesting journey.

1.3 What to expect

The first thing you should draw from this book is a much deeper understanding of computer
science. This is the book’s purpose. But there are other benefits you will also accrue along the
way: writing procedure, manipulating procedure, and handling complexity.

Through studying this material you should become better at writing procedure. This is most
obvious as we studyProgrammingandRecursion. Good programming involves communicating
a procedure well — so well, in fact, that even a computer can understand it. Programming is a
good way to learn how to think precisely about procedure.

Related to this, but slightly different, is manipulating procedure. Computer science treats
programs not only as solutions, but things to be considered and analyzed. We will be reasoning
closely about procedure inAlgorithms.�

Finally, through computer science you can learn to handle complexity better. Much of
computers and their software are terrifically complex instruments, and much of system design
involves handling complexity. The principal tool for attacking complexity isabstraction. This
is one of the big lessons ofInternet, one of the most complex human systems developed.

Thus this course not only teaches specific material, it also teaches new, useful ways of
thinking. We begin our journey with the first step, as we examine more closely what we mean
by problemwhen we define computer science as thestudy of solving problems effectively.

�A word about this reasoning: It often gets rather mathematical. If you ever get mired in proofs, don’t become too
discouraged. Most of the material is disjoint, so if you skip over a proof because it is giving you real difficulty, you
should be able to rejoin after it. The mathematics is meant to be accessible to those with a solid foundation in high
school algebra, but understanding mathematics well takes practice. Even very talented, mathematically-oriented
computer scientists are often confused.

Chapter 2

Problems and algorithms

If computer science is about solving problems effectively, we should be specific about our
terms. In this chapter we look more carefully at what we mean byproblemandsolution.

2.1 Problems

A problem instanceis a question whose exact answer is well-defined. “What is23 � 42?”, “Is
4097 prime?”, and “What’s the shortest way to Tulsa?” are problems. “What is the meaning of
life, the universe, and everything?” is not; there is no accepted way to prove an answer wrong.

Usually we want techniques to solve entire sets of problem instances. A computer that only
calculates23 � 42 is not very useful; but it is useful if it can calculatex � y for anyx andy. A
set of related problem instances we call aproblem.

A problem is specified by itsinputs. In the case of a computer that calculatesx�y, the inputs
would be the specific values ofx andy. In response to the inputs, the computer should produce
an answer, called itsoutput. We describe a problem by specifying the input and desired output.

Problem Multiplication:
Input: two numbersx andy.
Output: the product ofx andy.

Another problem isPrimality. (Recall thatn is prime if only 1 andn dividen exactly.)

Problem Primality:
Input: an integern that is greater than1.
Output: true if n is prime, andfalse if not.

You might think from these two examples that problems in computer science are typically
computational in nature. And it is true that in this book we will investigatePrimality (next
section) andMultiplication (Chapter 18). But the problems tackled by computer science span a
wide spectrum. Two more examples will suffice to demonstrate this.

One problem that interests computer scientists comes up in chess. As input, the computer
receives a current chess board. The desired output is a move that guarantees a win no matter
what the opponent does. Of course this is a very difficult problem for even moderately compli-
cated boards. We will visit game-playing problems like this in Chapter 11.

Another problem is theFire-Hydrant problem (more commonly known asDominating-
Set). In this problem we are given a map of houses as in Figure 2.1, with lines connecting

6 Problems and algorithms

a b c d e

f g h
� �@ @

H �

Figure 2.1: An exampleFire-Hydrant problem.

adjacent houses. We want to build as few fire hydrants as possible so that every house either has
a hydrant or is next to one that does. The output should be the set of houses at which to build
hydrants. In the example of Figure 2.1, the output might say to build hydrants at housesa and
d. (One hydrant is not enough for this map.)

These two problems are closer thanMultiplication andPrimality to the problems computer
scientists typically investigate. Neither is inherently very computational, but they are very in-
teresting from a computer science perspective.

Exercise 2.1:(Solution, 116) TheSearch problem is to determine whether a number occurs in
a list of numbers. Give a formal description of the inputs and outputs for this problem, similar
to those we gave forPrimality andMultiplication.

2.2 Solutions

As computer scientists we want techniques to solve problems automatically. Such an automatic
solution is called analgorithm if it eventually finds the correct output for any valid input.
That is, algorithms are recipes with two important properties: They always stop for any input
(termination), and they always output the correct answer (correctness).

You already know many algorithms. ForMultiplication, for example, you were taught an
algorithm in grade school. (But in Chapter 18 we’ll see an algorithm faster than the one you
probably know.)

To illustrate algorithms, let’s consider an algorithm forPrimality, which we callPrime-
Test-Exhaustive. In this algorithm, when we want to see ifn is prime, we try all the numbers
between2 andn � 1 to see if any of them divide the input exactly. If so, then we know the
number is not prime; otherwise, it is.

For example, say we want to know if7 is prime. We first try dividing7 by 2. After some
labor, we find that there is a remainder of1, so2 is not a divisor of7. Then we try3. Again,
there’s a remainder of1. Now we try4, which we find is not a divisor of7 either. We continue
to 5, then6. We now know that none of the possibilities are divisors, and so we outputfalse
— 7 is not prime.

Actually, we can make a much faster algorithm using a simple observation: Ifn is not prime,
then it must have a divisor ofn that is at most

p
n. This is because ifp � q = n, then eitherp

or q is at most
p
n — they can’t both be more than

p
n, because then their product would be

more thann. So to determine if a number is prime, we can stop once we pass
p
n. We call this

Primality algorithmPrime-Test-All.
Now if we’re usingPrime-Test-All for 7, we would test2 and stop. (Since3 >

p
7, there’s

no point in going farther.) This algorithm is much faster than before; ifn were1; 000; 003, then
Prime-Test-Exhaustive would try1; 000; 001 possible divisors. Now we try only999.

This simple example illustrates a theme that we develop much more extensively in this
book’s fifth unit,Algorithms: Often, with a little cleverness, we can find a faster algorithm.

2.3 Undecidability (optional)7

Exercise 2.2:(Solution, 116) InPrime-Test-All, we want to find the square root of a number
n. This suggests the following problem.

Problem Square-Root:
Input: an integern.
Output: the largest integerk so thatk2 � n.

Think of two significantly different algorithms for this problem. Describe each of them, and in
3–4 sentences compare what you think are their relative advantages and disadvantages.

(You may have seen complicated algorithms similar to long division for this type of prob-
lem. Feel free to think of simpler, more obvious ways to solve this problem.)

2.3 Undecidability (optional)

A natural question to ask is, is there an algorithm (perhaps very slow) for every problem? In
this section we will see that the answer is no. Problems that have no algorithm areundecidable.

Consider the following problem, which we will show does not have an algorithm.

Problem Halting:
Input: a programP and input to the programx.
Output: true if P ever stops given inputx, false otherwise.

This is not obviously unreasonable. For many programs, we can reason whether or not they will
stop. But, we will show, this is not true for all programs.

Say that we have an algorithmDoes-Halt for theHalting problem. By definition,Does-
Halt has the twin properties of correctness and termination. We will show that the existence of
such an algorithm leads to a contradiction.

In particular, consider the following program (which we callDoes-Not-Halt), which takes
a programP as input: First,Does-Not-Halt runsDoes-Halt to see ifP will halt when given
P as input. IfDoes-Halt returnstrue , thenDoes-Not-Halt enters a segment of code that
simply repeats itself without ever stopping. IfDoes-Halt returnsfalse , thenDoes-Not-Halt
immediately stops.

Now we ask the following, simple question: What willDoes-Not-Halt do if the inputP is
Does-Not-Halt itself? There are two possible behaviors: It either eventually stops, or it does
not.

If Does-Not-Halt never stops given the inputDoes-Not-Halt, then (becauseDoes-Halt, as
an algorithm, always terminates correctly)Does-Halt must outputfalse . So, if we see how
Does-Not-Halt behaves when given itself as input, it enters the second case and so immediately
stops. This is a contradiction, soDoes-Not-Halt cannot loop forever given itself.

If Does-Not-Halt does stop, thenDoes-Halt must outputtrue . But this means thatDoes-
Not-Halt never stops when given the input ofDoes-Not-Halt. This also is a contradiction.

So there is no correct answer for whatDoes-Not-Halt does when given the input ofDoes-
Not-Halt. Our contradiction is that neither of its two possible behaviors is possible! Our as-
sumption of the existence ofDoes-Halt must have been wrong.

This proof may sound like a trick; it’s not. It may also sound very abstract — but again,
it’s not; the proof has practical implications. A program which says whether a program will
eventually stop would be useful, since it could ensure that a computer never becomes stuck in a
useless loop. This proof says that no program can possibly achieve this correctly.

Chapter 3

High-level procedure

Writing programs is largely a process of describing algorithms in an exact, formal way. An
important step toward this is to look at how to describe algorithms less formally. This helps us
conceptualize algorithms, a crucial element of programming.

One way to describe an algorithm is with simple English text (or any other human language),
but this has two major disadvantages. English text buckles under the load of complicated algo-
rithms. And English is also often woefully ambiguous. Therefore, in this chapter we look at
two more systematic communication media for algorithms:pseudocodeandflowcharts.

3.1 Pseudocode

Pseudocodeis a formatted mixture of English and mathematics intended to communicate an
algorithm’s structure concisely and exactly. It isnot a definite, single way of writing an algo-
rithm.

Pseudocode has been around a long time, and you have certainly seen it before. Open any
book of recipes for a multitude of examples (or see Figure 3.1). Recipes tend to make poor
pseudocode, though, since they are often ambiguous. Exactly how thick a layer of butter should
be placed on that foil? When do I stop beating these eggs?

Prime-Test-Exhaustive

The simplest way to learn about pseudocode is to look at an example. RememberPrime-Test-
Exhaustive from Chapter 2? ThatPrimality algorithm takes a numbern and checks each
number between2 andn � 1 to see if that number is a divisor ofn. One way to write this in
pseudocode is as follows.

Algorithm Prime-Test-Exhaustive(n)
1. For each numberi between2 andn � 1, do the following:

a. Dividen by i.
b. If the remainder is0, then outputfalse and stop.

2. If none of these numbers dividen, then outputtrue and stop.

This book tends to use a slightly more systematic method that more closely resembles computer
programs.

3.1 Pseudocode9

Algorithm Gingerbread(foil ; butter ; brown sugar ;white sugar ;molasses; eggs;our ;
baking soda ; ginger; cinnamon; allspice)

1. In a large bowl, cream1 c butter , 13
4 c brown sugar , and11

4 white sugar .
2. Put2 tbspmolasses and6 eggs into bowl and beat.
3. Into another large bowl, sift6 c our , 2 tspbaking soda, 1 tbspginger , 1 tbspcinnamon,

and1 tbspallspice.
4. Combine contents of both bowls and kneed into a small ball ofdough .
5. Coverdough and place into refrigerator.
6. Wait at least30 minutes.
7. Repeat the following untildough is 1

4 inches thick:
a. Flour surface.
b. Roll dough .

8. Cutdough into pieces.
9. Line cookie sheets withfoil .
10. Applybutter andour to foil .
11. Using a spatula, gently liftdough and place it onfoil .
12. Preheat the oven to325�F.
13. Bake15–20 minutes or until slightly firm.
14. Let cool on racks until firm enough to handle.

Figure 3.1: An algorithm for theHungry problem.

Algorithm Prime-Test-Exhaustive(n)
for each i from 2 to n � 1, inclusive,do:

if i dividesn, then:
output false
stop

end of if
end of loop
output true

You can write pseudocode any way you want, as long as it is structured (note the use of inden-
tation) and precise.

Notice that our pseudocode sometimes skips over steps. For example, in our pseudocode for
Prime-Test-Exhaustive, we did not say exactly how to divide two numbers. This is because
division is built into computers, so that computers already “know” how to divide; thus we didn’t
need to explain this. As you learn to program, you will get a better feel for exactly what is built
into computers and what you need to explain. (For now, you can draw the line at what you would
explain to another person if you were trying to describe the crucial steps of the algorithm.)

Mode-Tally

Let’s look at another example, an algorithm for finding the mode of a list of scores. Themodeof
a list of numbers is the number that occurs most frequently. For example, if a group of students
take a test, and their scores areh3; 8; 7; 8; 2; 9; 8; 9i, the mode score is8, since8 occurs thrice
and all other scores occur less often.

10 High-level procedure

Problem Find-Mode:
Input: A list L of scores between0 and100.
Output: The score that occurs most frequently inL. (In the case of a tie, any of the

most-frequently-occurring is acceptable.)

There are many interesting ways to compute a mode. Here we consider just one of them,
calledMode-Tally. In this technique, we create101 empty tally boxes, labeled with the numbers
0 through100. Then we go through the list; for each scorex in the list, we find the tally box
with x as its label and add a tally mark to that box. Finally, we go through the tally boxes to see
which has the most marks, and return the label of this box.

How can this be expressed in pseudocode? One way is the following, almost identical to
the above English description.

Algorithm Mode-Tally(L)
Create101 empty tally boxes, labeled0 through100.
for each scorex in L, do:

Find the box labeledx.
Add a mark to it.

end of loop
Letmode be0.
LetmodeCount be the number of marks in the box labeled0.
for each numberx from 1 to 100, do:

Let xCount be the number of marks in the box labeledx.
if xCount > modeCount , then:

Letmode bex instead.
LetmodeCount bexCount instead.

end of if
end of do
output mode.

This example happens to be very explicit about how to find the maximum in the list, but this is
not really necessary, since this is so obvious to humans.

Mode-Tally is actually a fairly complex procedure. If you understand it, and if you can
write pseudocode for similarly complex procedures, then you are well on your way to learning
to program. The only thing left is learning how to translate pseudocode into a completely formal
language that a computer can understand. In any case, you will improve as you study the details
of programming later in this book.

Exercise 3.1:(Solution, 117) Write pseudocode describing eachSquare-Root algorithm you
made in Exercise 2.2.

3.2 Flowcharts

Flowcharts are another general way of describing procedure. Flowcharts use a graphical lan-
guage to emphasize how procedure flows through the algorithm.

Again, the best way to learn about flowcharts is to look at an example. Figure 3.2 gives
a flowchart for ourPrime-Test-All algorithm. Recall thatPrime-Test-All is like Prime-Test-
Exhaustive, except that it tests only numbers up to

p
n.

In this flowchart, you will notice three shapes. Ovals are reserved for the “START” and
“STOP” indicators, which indicate where to begin the algorithm and where to stop. Boxes are

3.2 Flowcharts11

Let i be 2.

Divide n .iby

Output true .Output false .

STOP

Add 1 to i .

Is n ?i >

no

yes

no

yes

START

Did it

exactly?
divide

Figure 3.2: A flowchart forPrime-Test-All.

meant for simple instructions, like “Add1 to i.” A box always has exactly one outgoing arrow.
Finally, diamonds are meant for questions, like “Isi >

p
n?”. Diamonds have two outgoing

arrows, one for each possible answer (yesandno).
We’ll see some more flowcharts as we look at programming. In practice, programmers

use flowcharts primarily for very-high-level diagrams relating components of a large software
system, not for low-level procedures likePrime-Test-All. For such procedures, pseudocode
is usually more convenient. Nonetheless, flowcharts are very useful to beginners as a way to
conceptualize procedure.

Exercise 3.2: (Solution, 118) Draw a flowchart for one of theSquare-Root algorithms you
made in Exercise 2.2.

12 High-level procedure

SECOND UNIT

Programming

We turn to learning the fundamentals of programming. This isn’t the place to try to learn
every single detail about a particular programming language. If we tried this, we would run
out of space and time to discuss other interesting bits of computer science. Instead we cover
the basic building blocks of programs. Understanding this much will enable us to write useful
programs and prepare us to understand computer science more completely.

The specific programming language we study is C++. There are many prominent program-
ming languages today, most very similar in approach. We could choose any of them, but C++
has the advantage of being widely used both in education and in industry.

C++ is a notoriously huge language, and we cannot hope to cover every detail in only a few
short chapters. We therefore study a subset of the language, illustrating the conceptual details of
programming and enabling you to write genuinely useful C++ programs. In order to maintain
compatibility with other introductory courses, this subset is largely a restriction of the College
Board’s C++ subset used in their AP Computer Science exams. (But this is not an AP course:
It includes only about half of the AP subset.)

Our introduction to C++ consists of six chapters. In each chapter, we’ll introduce a new
piece to the programming puzzle by describing the concept, illustrating it, and examining an
extended example program putting everything together.

Chapter 4 discusses the overall programming process and looks at a brief example program.

Chapter 5 examines how a program can manipulate data usingvariables.

14 Programming

Chapter 6 examines how a program can control the execution of instructions usingcontrol
statements.

Chapter 7 examines how larger tasks can be broken into more manageable subtasks using
functions.

Chapter 8 examines how to use conglomerations of data calledarraysandstructures.

Chapter 9 introduces the concepts ofobjectsandobject-oriented design.

By the end of these chapters, you should be able to write a wide variety of useful programs, and
you should have some idea of what programming is about.

Three appendices to this book supplement this material. Appendix A is a quick-reference
outlining C++ syntax. Appendix B lists common names for keyboard symbols. And Ap-
pendix D provides solutions for many of the exercises.

As you reach exercises, you should try them out. When it asks that you write a program,
preferably you will write it on a computer and test it yourself. But if that isn’t immediately
available, at least do it on paper. Then read the solutions in Appendix D: Often, the solutions
introduce new material; in all cases, you’re likely to learn from seeing alternative approaches to
the questions.

Chapter 4

Programming overview

In this chapter we look at programming at the broad, high-level view, starting with the pro-
gramming process, continuing with a simple C++ program, and ending with some programming
guidance. The details of programming we leave to following chapters.

4.1 The programming process

The pipeline from idea to action consists of three phases:programming,compiling, andexecut-
ing. Figure 4.1 illustrates the process.

In programming, you as the programmer translate your mental concept of how the com-
puter should behave to correspondingcodewritten in aprogramming languagesuch as C++,
Java, or Ada. A programming language is a compromise between what humans find most nat-
ural for expressing procedure and what computers can easily interpret in an efficient way. Im-
portant tools in the programming phase include pseudocode and flowcharts, as well as a good
editor for writing and editing code.

Computers, as built, cannot actually understand programming languages; they are built to
understand a much more primitive language calledmachine language. (Different types of
machines have different machine languages — the machine language for a PC is totally different
from the machine language for a Macintosh.) Incompiling, the computer runs a program to
translate the programmer-written code to machine language. This program is called acompiler,
and it is the primary programming tool for the compile phase.

In the final phase, the computerexecutesthe machine language that the compiler produced.
At this point the machine finally does the job that the programmer originally conceived. . . at
least if all the phases proceed flawlessly.

During these phases, errors crop up due to programmer errors. For all these errors, the
solution is for the programmer to discover where the code is wrong, to fix the code, and to
repeat the compile and execution phases.

Executing: A run-time error occurs during execution; one example of a common run-time
error is when the machine code instructs the computer to divide a number by zero. Often
such errorscrashthe program; that is, execution stops abruptly.

Compiling: A compile-time error is an error that prevents the compiler from interpreting the
program. If the code contains a mistyped name, for example, then this causes a compile-
time error. The result of a compile-time error is that the compiler refuses to compile the

16 Programming overview

mental concept

?
programming

code

?
compiling

machine language

?
executing

computer action

Figure 4.1: The programming process.

program, instead issuing a description of what is wrong with the program. This is the
easiest type of error to fix, since the compiler usually points directly to the problem.

Programming: A logic error arises when the programmer has written code that compiles and
executes without any problems, but the machine’s behavior does not correspond with the
original concept. For example, if the user indicates to the computer to save a file, but the
computer does nothing, this is probably due to a logic error.

4.2 A simple program

To get a feel for the programming process, let us look at a very simple program, a classic
program whose job is simply to say, “Hello, world.” (The line numbers are for reference in this
book; they are not part of the program.)

1 #include <iostream>
2 #include <string>
3
4 int main() {
5 // this program prints the words ‘‘hello, world’’ and exits
6 cout << "hello, world" << endl;
7 return 0;
8 }

To compile and run this program, create a file called “hello.cc ” containing the above pro-
gram. Then tell your compiler to compile and run it. If all goes well, the computer will print
the following to the screen before finishing.

hello, world

We now briefly examine this simple program, to get a general idea of what is happening.
Do notyet become concerned about learning the details or learning how to do this yourself; we
will examine this in following chapters.

4.3 Tips for writing programs17

Lines 1–2: Just mindlessly include these two lines in all your programs. It tells the compiler
that your program may be using keyboard input or screen output, and that your program
may be using character strings. (Theio in iostream stand forinputandoutput.)

Line 3: In C++, blank space (empty lines, tabs, and spaces) is not significant. The compiler
uses them only as a way of separating words. But when we write programs, we often use
blank space to structure ideas so that they are easier to understand. You see this with the
blank line separating lines 1 and 2 from the rest of the program, and with the indentation
used in later lines.

Line 4: This tells the computer that themainpart of the program is beginning.The main part
of the program will be contained in left and right braces (‘{ ’ and ‘} ’). Actually, this line
is declaring afunction, which we discuss in Chapter 7; for now, just think of this line as
being required in each program to tell the computer where execution is meant to begin.

Line 5: This is acomment. A comment begins with two slashes (‘/ ’) and continues to the end
of the line. The computer ignores all comments; they exist to help humans understand
what the program does.

Line 6: This line is the first functional part of the program. In this case, it says to print the
words “hello, world”, followed by an end-of-line (endl) to cout (this is what C++ calls
the screen). The double-quotes delimit astring, which is a sequence of characters that
the computer should treat as a single piece.

Line 7: A return statementsays to halt running the program.

Line 8: This closing brace (which corresponds to the opening brace in line 4) says that this is
the end of the definition of themain part of the program. In this case, we are defining
only this part of the program, so the file ends just after this brace. (In a longer program,
we might want to define more parts of the program after the closing brace.)

Exercise 4.1: Find a C++ compiler, and type the “hello, world” program.

a. Compile and run the program to see what happens. If things go well, this will demonstrate
how a working program works.

b. Insert a typo by removing a quotation mark from line 6. Compile this new program to see
what a compile-time error looks like.

c. Finally, insert a run-time error by replacing line 6 with the following fragment.

int x = 0;
cout << "300 / 0 = " << (300 / x) << endl;

If this compiles successfully, when you run the program, the computer should attempt to
divide300 by 0, causing a run-time error.

18 Programming overview

4.3 Tips for writing programs

Experienced programmers follow some guidelines to make their jobs easier. Their collected
wisdom can be helpful to you, too, as you begin to develop programs.

Design the program on paper first. Even for small programs, take the time to decide how to
best accomplish the task. Pseudocode descriptions, as we saw in Chapter 3, are useful,
especially for beginners.

As you think about how to approach the problem, criteria to consider include:

Will the program be correct? In many systems (transportation and military applica-
tions, for example) absolute correctness is the primary consideration. Simple ap-
proaches tend to be easier to verify and test.

Will the program take too much time? Time is not always an issue, especially as com-
puter speed increases, but sometimes it is. Often it is best to try the simplest method,
even if you think it may be too slow; then, if your suspicions prove correct, you can
write the faster but more complicated program. We will study the analysis of pro-
gram speed later in this book (Chapter 17).

Will the program use too much memory? Sometimes, but rarely, memory is a limita-
tion.

Is the approach easy to understand and program?Usually this is the most important
consideration, especially for small programs. It makes little sense to spend hours
writing a program if it will save only seconds the few times it is executed.

Start simple. Although the preliminary, on-paper design should consider how to extend the
program, as you begin developing code it is good to begin with a small piece and to get it
right before extending it.

Make your program readable. That programs be understandable is important. This is not
only important so that graders can understand your assignment. It is actually more im-
portant in the workplace, where programmers often need to modify a program written by
others. Readability makes a program easier to fix or enhance. A program is not worth
much if it is so unreadable that a programmer must spend hours studying it to learn how
to tweak a small piece.

The following are some rules for writing readable code.

Convey structure using blank space.In C++, blank space is not significant. All the
examples in this book, however, are indented in a particular way. (Other indenta-
tion styles are also good, as long as they are consistent and convey structure.) We
also use blank lines to separate distinct ideas. These uses of blank space make a
program’s structure easier to see.

Use meaningful names.When you name things in the program, the name should de-
scribe their purpose. For example, the namen is very poor; it means almost nothing.
A more descriptive name, liketo_test , would be better.

Include comments to structure and annotate your code.For beginners a frequent ques-
tion is how many comments are necessary. Generally, line-by-line description is
unnecessary. The author offers the following loose guideline: Use blank lines to
break each function into paragraphs of5–10 lines, and include a comment at the
beginning of each paragraph describing its purpose.

4.3 Tips for writing programs19

Break large problems into subtasks.By breaking the problem into pieces, you aid your code’s
readability and make error-finding easier. (C++ helps you express subtasks throughfunc-
tions; we study these in Chapter 7.)

Beginning programmers often find it difficult to decide at what point to break something
into subtasks. If you find yourself wanting to duplicate a segment of code, likely the
duplicated code should really be part of a separate function. Another general, rough rule
is that you should consider breaking your pieces so that no piece has more than about40
lines.

Test the program thoroughly. After you finish writing the program, or after you finish an in-
termediate step, you should test the program to find any errors. You should understand
the program well enough and test the program thoroughly enough that you are confident
that it will always work.

For all but the most simple programs, you will not always be able to try all cases, but
you should be able to hit many of them. Try simple cases first, since understanding the
program’s behavior in these cases is easiest. (With a program involving numbers, the
simple cases may include0, 1, and�1.) After that, try extreme cases. (If the program
should work for numbers up to1000, try 1000.) Try any special cases, and then if it still
works, try some common cases.

Chapter 5

Variables

A variable reserves a place in the computer’s memory to hold some information. They’re
calledvariablesbecause a program can vary them from time to time. Think of a variable as a
named box that holds a value.

64
aVariable

The picture illustrates a variable namedaVariable which currently holds the number 64.
Variables hold information about how things are going. For example, a word processor

could have a variable for each open window, a variable for the current font choice, a variable
for the clipboard contents, and many more.

Much of a program involves manipulating variables and updating their values. In this chap-
ter we learn about creating new variables indeclarations, changing their values inassignments,
and accessing variables inexpressions.

First, though, we’ll see several different types of data that our boxes can hold.

5.1 Basic data types

There are severalbasic data typesthat C++ recognizes. (We call thembasic to distinguish
them from the more complex types we study in Chapter 8.) Let’s look at each of them.

int An integer is a number with no fractional part, like0, 42, or�5. This turns out to be the
most useful single type. You can refer to specific integers in C++ exactly as you would
expect: “42”, for example.

double This is the C++ way of saying “real number.” Examples ofdouble s are “-2 ”,
“3.14 ”, and “22.1e-3 ” (which stands for the number22:1� 10�3 — the ‘e’ stands

5.2 Declarations21

for exponent). It’s occasionally important to remember that, because computers only
allocate so much room for storing adouble , the representation cannot be exact for
all numbers (for example,2=3 is actually something like0:666666666666667). This
sometimes causes around-off error .

char A character is a single letter, digit, space, or punctuation mark. To express a character in
C++, enclose it in single quotes: “’C’ ”, for example, is the letter ‘C’. (A few characters
require a backslash before them — “’\’’ ”, for example, represents the single-quote
character, and “’\\’ ” represents ‘\ ’.)

string A string is a sequence of characters. A C++ program encloses a string in double-
quotes (‘" ’): We saw the"hello, world" string in Chapter 4 already. (Technically,
string is not a basic data type, but you can think of it as one.)

Exercise 5.1:(Solution, 118) What is the type of each of the following constants?

a. "3.4" c. 45.0 e. -1e10
b. 0 d. "a"

5.2 Declarations

A variable declaration tells the computer to create a new box. Associated with this box is the
ability to hold data of a certain type (anint , double , or whatever).

htypeOfVariablei hvariableToDefinei;

This creates a new variable of the specified type. For example, if our program includes the
statement

int aVariable;

then we get a variable namedaVariable for holding integers, which we can use and change
as we please in the future.
A detail
worth
remembering

Name your variables with care. It is much easier to program and it is
much easier to understand a program when variable names indicate the
variables’ purpose.
In C++, variable names can contain letters (upper-case or lower-case),
digits, and underscores (‘’). The name can have as many of these as you
like, but it must not begin with a digit. Letter case is significant. (Square
andsquare are different names, for example.)

Exercise 5.2:(Solution, 118) Which of the following are valid variable names? For those that
are well-named, what type would be best for them?

a. name c. letter e. #students g. r2d2
b. num points d. char f. temperature h. 2i

22 Variables

5.3 Assignments

When a variable is created using a declaration, it doesn’t have a defined value yet. (You cannot
accurately predict its initial value; it may be something completely useless, like1597.) So the
program needs to give it a value for the variable to be useful.

To change the contents of a variable’s box, we use anassignment statement. An assign-
ment statement in C++ looks something like this.

hvariableToChangei = hvalueToGiveIti;

Say we want C++ to change the value ofaVariable to the number64. Then we would
use the C++ statement

aVariable = 64;

When the machine executes the machine language corresponding to this statement, it will re-
place whatever is in the box corresponding toaVariable with the number64.

C++ also allows the declaration and assignment statements to be combined.

htypeOfVariablei hvariableToDefinei = hvalueToGiveIti;

So instead of the above two lines, we could combine them into one:

int aVariable = 64;

A detail
worth
remembering

Don’t let the equal sign ‘=’ confuse you: We are not discussing algebraic
equality here. The assignment statement actuallychangesthe value of
the variable mentioned. The statement “k = k + 1 ”, for example, is
entirely reasonable (even if it is algebraic nonsense): It replaces the value
in thek box with something1 more than it was previously. For example,
if the k box was holding the value1, after the statement it would hold the
value2 (which is1 + 1) instead.

5.4 Expressions

An expressionis anything that can be evaluated to a value. They can turn up in many situa-
tions; one common place is on the right-hand side of an assignment. Using an expression as a
statement itself is also sometimes useful.

A constant value (like “64” or “ ’c’ ”) is the simplest expression; its value is the fixed value
itself. A variable name (like “aVariable ”) makes another expression; its value is the value
currently in the variable’s box.

But we can also combine expressions usingoperators. C++ recognizes a number of differ-
ent operators, some of which we’ll introduce later. The most familiar operators are the arith-
metic operators.

(� � �) parentheses
- negation (as in “-x ”)
* multiplication
/ division
% remainder
+ addition
- subtraction (as in “5-x ”)

5.5 Input and output23

C++ observes the order of operations when evaluating expressions.
A detail
worth
remembering

The division operator/ often causes problems when applied to two items
the compiler understands to be integers. In this case, the machine will
performinteger division — which means that any remainder will be ig-
nored. So in C++, the value of “3 / 2 ” is 1, not1:5 as you might hope.
A decimal point (as in “3.0 / 2 ”) makes the C++ compiler understand
a number as adouble instead.

Let’s look at some examples of expressions. Say we already have an integer variable named
k whose value is2.

expression value
-k �2

9 / k 4
9.0 / k 4:5

9 + k * (k + 1) 15
30 % 4 2 (the remainder of30� 4)

A detail
worth
remembering

Often beginners expect the caret (‘ˆ ’) to do something useful (like expo-
nentiation). It doesn’t. In C++, the value of “3ˆ5 ” is 6, not243. Explain-
ing what the caret means takes longer than it’s worth. It’s rarely useful
anyway, so just don’t use it.

Exercise 5.3: (Solution, 118) For each of the following expressions, say whether it is valid
and, if so, compute its value ifx holds the value98:6 andk holds the value42.

a. k % 8 c. k / 9 e. 2 k + 5
b. x - k * 2 d. -x / 2

5.5 Input and output

The input/output operators >> and << are also useful operators in expressions. Between
them, they form a way for programs to communicate with the person at the computer (who
we call theuser). For printing things to the screen, the program can apply the<< operator to
the automatically-defined variablecout . (We saw an example of this in our “hello, world”
program of Section 4.2.) And to read data from the user, the program can apply>> to the
automatically-defined variablecin .

To illustrate input and output — and to illustrate the other concepts we have seen in this
chapter — we examine a complete program to convert temperatures. Again, the line numbers
are for reference in this book, and are not part of the actual program.

1 #include <iostream>
2 #include <string>
3
4 int main() {
5 double fahrenheit;
6 cout << "What temperature? "; // prompt user and read number
7 cin >> fahrenheit;
8 double celsius = (fahrenheit - 32) / 1.8; // print conversions
9 cout << "It is " << celsius << ’C’ << endl;

10 cout << "It is " << (celsius + 273.15) << ’K’ << endl;
11 return 0;
12 }

24 Variables

Lines1–4 and the last line are exactly the same as in the “hello, world” program of Section 4.2.
The change is in lines5–11. Once the computer compiles and runs this program, it will begin at
line 5 and proceed line by line until reaching areturn statement (which, in this case, occurs
in line 11).

When we run this program, what it does looks something like the following. (Boldface
indicates what the user types.)

What temperature? 98.6
It is 37C
It is 310.15K

Let us trace how it managed to do this, line by line.

Line 5: The computer begins at line4 because this is what immediately follows the opening
brace for themainfunction. In this line, the computer creates a box labeledfahrenheit ,
designated for holding numbers. At this point, the box contains some weird, useless
value.

Line 6: The computer writes"What temperature?" to the screen, to ask the user for
what to convert.

Line 7: The computer waits for the user to type a piece of data for thefahrenheit box.
Sincefahrenheit has thedouble type, the computer knows to read a number. Once
the user types a number and presses the Enter or Return key, the computer reads it and
places the corresponding number into thefahrenheit box.

Line 8: The computer creates a new box calledcelsius and assigns its value to be the result
of subtracting32 from the contents of thefahrenheit box and then dividing this
difference by1:8.

Line 9: The computer prints several things to the screen: First it prints the string"It is " ,
followed by the contents of thecelsius box, followed by the character ‘C’; finally, it
ends this line of output.

Line 10: Again, the computer prints several things to the screen. This time, it computes the
expression “celsius + 273.15 ” and prints the result to the screen.

Line 11: The computer encounters thereturn statement and so stops.

What we know so far, then, is enough to write moderately useful programs. But to write
genuinely interesting programs, we must learn about statements that control the flow of execu-
tion. It is these that we examine in the next chapter.

Exercise 5.4:(Solution, 118) Write a program to determine your age on January 1 of a partic-
ular year. The following should be a sample transcript; it will differ slightly if you were born in
a different year.

It is January 1 of which year? 1999
You are 25 years old.

Chapter 6

Control statements

The fundamental unit of a program is a statement. We have already seen several types
of statements: declaration statements, assignment statements, expressions, andreturn state-
ments. For most tasks, we also need statements tocontrolwhat other statements the computer
executes. These arecontrol statements. In this chapter, we look at examples of both types of
control statements:conditional statementsanditeration statements

6.1 Conditional statements

An if statement tells the computer to execute a sequence of statements onlyif a particular
condition holds. This is a type ofconditional statement, since it allows us to execute some
statements only in some circumstances. In C++ anif statement looks like this:

if(hthisIsTruei) {
hstatementsToDoIfTruei

}

This corresponds to the flowchart in Figure 6.1. The part in parentheses after the wordif (and
the parentheses must be there) is acondition— that is, an expression with a value oftrue or
false. (We’ll see several examples of conditions soon.) If this expression’s value istrue, then
the computer sequentially executes the statements between the braces. Then it goes on to do
whatever follows the braces. If the value isfalse, then the computer skips the statements in
braces and goes directly to whatever follows them.

For example, consider the following code fragment.

double abs = num;
if(num < 0.0) {

abs = -num;
}
cout << "Absolute value = " << abs << endl;

In this code fragment, we create a variableabs , which initially holds the value ofnum. If num
is less than0, then we instead put the value of “-num ” into abs , and then we continue to the
statement printing this as the absolute value. But ifnum is not negative, we skip the “abs =
-num ” statement and go directly to printabs as the absolute value (in this case, the printed
value is the same as that ofnum).

26 Control statements

START

Is

true?
<thisIsTrue>

<statementsToDoIfTrue>

no

yes

STOP

Figure 6.1: A flowchart for theif statement.

Conditions

A condition is an expression with alogical value, which can betrueor false. In C++, a logical
value is represented by anint : 0 representsfalseand any nonzero value representstrue.

We have already seen one example of a condition: “abs < 0.0 ”, which introduces the<
operator. C++ includes operators for all six comparison possibilities.

== equal to
!= not equal to
< less than
> greater than

<= at most (less than or equal to)
>= at least (greater than or equal to)

(Why does the exclamation point in!= meannot? There’s not a good reason; just play along.)
A detail
worth
remembering

Some people at first find the distinction between the comparison operator
== and the assignment symbol= confusing. Use= when you want to
changea variable’s value, and use== when you merely want tocompare
two values without changing anything. Generally you want to use==
only in conditions (as in theif statement), while you want to use= only
in assignment statements.

A detail
worth
remembering

One occasional pitfall when comparingdouble s is that round-off er-
ror can cause unexpected results. For example,1 - 1.0/3.0 may not
equal2.0/3.0 , because the first may be something like0.666667 and
the second something like0.666666 . To avoid this, when you are test-
ing to see if twodouble s are equal, you should instead test to see if the
absolute value of their difference is very small.

In addition to comparison operators, C++ includes operators for combining logical values.

&& and(true if both sides aretrue)
|| or (true if either side istrue, or if both sides aretrue)
! not (true if expression isfalse)

6.1 Conditional statements27

rank operators
1 ! - (negation)
2 * / %
3 + - (subtraction)
4 << >>
5 < <= >= >
6 == !=
7 &&
8 ||
9 =

Table 6.1: Order of precedence for C++ operators.

A few examples illustrate how you can use these.

expression value
k >= 0 && k <= 3 true if k is at least0 and at most3

!(k >= 0 && k <= 3) true if k is not between0 and3
k < 0 || k > 3 true if k is less than0 or greater than3

A detail
worth
remembering

C++ does not provide any way to express the concept of “betweenness”.
If you want to see ifk is between0 and3, you should use “0 <= k &&
k <= 3 ”. (Using “0 <= k <= 3 ” doesn’t work.)

A detail
worth
remembering

In combining multiple logical operators in an expression, you should al-
ways parenthesize to indicate the order of evaluation. Until now, the op-
erators’ order of precedence has been what you expect — multiplication
precedes addition, for example. But C++ uses a weird order for the logi-
cal operators. Table 6.1 lists all the operators we have seen in their order
of precedence. Notice that thenot operator (!) is near the top, while
the and operator&& is just above theor operator|| near the bottom.
Because of this weird ordering, you’re best off parenthesizing every time
you combine more than one logical operator.

The else clause

Sometimes we want to do one thing if the condition is true and another thing if the condition is
false. In this case theelse keyword comes in handy.

if(hthisIsTruei) {
hstatementsToDoIfTruei

} else {
hstatementsToDoIfFalsei

}

Figure 6.2 contains a flowchart diagramming this type of statement.

For example, if we wanted to compute the larger of two valuesx andy , then we might use
the following code fragment.

28 Control statements

START

Is

true?
<thisIsTrue>

STOP

<statementsToDoIfTrue> <statementsToDoIfFalse>

noyes

Figure 6.2: A flowchart for theelse clause.

int max;
if(x > y) {

max = x;
} else {

max = y;
}

This function says place the value ofx into max if x holds a larger value thany ; otherwise —
it says — place the value ofy there.

Sometimes it’s useful to string several possibilities together. This is possible by inserting
“else if ” clauses into the code.

char order;
cout << "What would you like? ";
cin >> order;
double price = 0.00;
if(order == ’s’ || order == ’S’) { // sandwich ordered

cout << "Would you like fries with that?" << endl;
price = 4.20;

} else if(order == ’f’ || order == ’F’) { // fries ordered
cout << "Is that all?" << endl;
price = 2.10;

} else if(order == ’d’ || order == ’D’) { // drink ordered
cout << "Soda or pop?" << endl;
price = 0.80;

} else { // unrecognized order
cout << "That’s gibberish!" << endl;

}
cout << "That will be $" << price << "." << endl;

Exercise 6.1:(Solution, 119) For each of the following conditions, describe the variable values
for which it is true.

a. ’a’ != ’A’
b. x * x == x && x > -1
c. score > 90 || bonus && score == 89
d. !k == 1

6.2 Iteration statements29

STOP

START

Is

true?
<thisIsTrue>

no

yes

<statementsToRepeat>

Figure 6.3: A flowchart for thewhile statement.

Exercise 6.2:(Solution, 119) Write a condition to test whether theint variableyear repre-
sents a leap year. (Remember that a year is a leap year if it is a multiple of4, except for years
that are multiples of100 but not400. For example,1992 and2000 are leap years;2100 is not.)

Exercise 6.3:(Solution, 119) Describe all the errors in the following code fragment, and write
a version correcting all of them.

char ch;
if k = 2 {

ch = "?";
}

Exercise 6.4:(Solution, 119) Write a program to tell whether an integer divides another exactly.
It should behave something like the following. (You may find the modulo operator%useful.)

What is the numerator? 13
What is the denominator? 2
2 does not divide 13.

6.2 Iteration statements

The statements we have seen so far allow us to write programs following a top-down sequence.
With conditional statements, we are able to tell the computer to sometimes skip some state-
ments, but in all cases we can only go downward.

So we introduceloops, which allow us to tell the computer to execute a sequence of state-
ments several times. They’re calledloopsbecause they introduce loops into flowcharts. Each
time through this sequence of statements is called aniteration ; of course, a loop may iterate
many times before finally proceeding to instructions past the loop.

while loops

The simplest C++ loop is thewhile statement. It is constructed exactly like anif statement.

30 Control statements

START

Is

true?
<thisIsTrue>

STOP

<initialAssignment>

<updateAssignment>

no

yes

<statementsToRepeat>

Figure 6.4: A flowchart for thefor statement.

while(hthisIsTruei) {
hstatementsToRepeati

}

The difference is that when the computer finishes executing the statements within thet braces,
it retests the condition. If it still holds, the computer repeats the statements in braces again and
again until it finally finishes the statements in braces and the condition no longer holds. Once
the computer gets to this point, it continues to the first statement following the loop (after the
closing brace). (If the condition never held in the first place, the computer skips past the loop
immediately.) Figure 6.3 illustrates this process.

Let’s look at a particularly useless code fragment illustrating awhile statement at work.
char cont = ’y’;
int i = 0;
while(cont == ’y’ || cont == ’Y’) {

cout << "Iteration " << (i + 1) << ": Shall I continue (y for yes)? ";
cin >> cont;
i = i + 1;

}
cout << "Ok; there were " << i << " iterations." << endl;

Here is a sample run of this fragment.

Iteration 1: Shall I continue (y for yes)? y
Iteration 2: Shall I continue (y for yes)? Y
Iteration 3: Shall I continue (y for yes)? y
Iteration 4: Shall I continue (y for yes)? n
Ok; there were 4 iterations.

for loops

The for loop is a different iteration statement which is also frequently useful. It is meant for
executing a sequence of statementsfor every value in a set (especially for iterating over some

6.3 Extended example31

statementsfor every integer in a range). Afor loop looks like the following in C++.

for(hinitialAssignmenti; hthisIsTruei; hupdateAssignmenti) {
hstatementsToRepeati

}

This corresponds to the flowchart in Figure 6.4. The syntax here is a bit awkward, but it turns
out to be quite useful. You may find it easiest to understand this by the followingwhile loop
which is equivalent for our purposes.

hinitialAssignmenti;
while(hthisIsTruei) {

hstatementsToRepeati
hupdateAssignmenti;

}

As an example, let’s consider a fragment to compute the factorial of a numbernum. (The
factorial of a number is the product of all the integers up to the number; so the factorial of 6 is
1� 2� 3� 4� 5� 6.)

int fact = 1; // we begin with 1
int i;
for(i = 1; i <= num; i = i + 1) {

fact = fact * i; // multiply the value of i into fact
}
cout << num << " factorial = " << fact << endl;

This fragment begins by creating two variablesfact (initially 1) andi . For the first iteration
of the for loop, we put the value1 into i . As long asi does not exceednum, we execute the
statements in the loop (“fact = fact * i ”) and then add 1 toi . So we’ll execute the loop
once withi being1, then once withi being2, once withi being3, and so on until we get to
wherei is more thannum, at which point we are finished with the loop. Then we print out the
current value offact as the factorial ofnum.

If numhappened to hold6 as the computer begins executing this code fragment, then within
the fragment the computer would print

6 factorial = 720

(You’ll frequently see a variable namedi as the variable being changed each time through
the loop. The name choice is arbitrary — we could name ita loop variable , if we wanted
— but many programmers name their loop variablesi for some reason.)

6.3 Extended example

Now that we know our control statements, we can at last write genuinely useful programs. Let’s
look at an example program incorporating everything we’ve seen so far in an implementation
of thePrime-Test-All algorithm from Chapter 2.

32 Control statements

1 #include <iostream>
2 #include <string>
3
4 int main() {
5 // read in a number from the user
6 int to_test;
7 cout << "What do you want to test? ";
8 cin >> to_test;
9

10 // test each possible divisor up to sqrt(to_test)
11 int i;
12 for(i = 2 ; i * i <= to_test; i = i + 1) {
13 if(to_test % i == 0) { // then we have found the divisor i
14 cout << to_test << " is not prime." << endl;
15 return 0;
16 }
17 }
18 cout << to_test << " is prime." << endl;
19 return 0;
20 }

Here’s a sample run of this program.

What do you want to test? 25
25 is not prime.

Let us do a step-by-step trace to see how this came about. First the computer prompts the
user (line 7) for a number and reads the number from the user (line 8). The user types25, so
the variableto test now contains the number25. Now we create a new variablei before
entering thefor loop (line 11). We assigni to hold2 as thefor statement instructs.

First iteration: Sincei 2 � 25, we go through our first iteration. In line 13, we test to see
if “ to test % i ” is 0, which it is not (the remainder is1); thus we continue past the
statements in these braces (lines 14 and 15) to what follows them (line 17). This ends the
statements within thefor loop, so we execute the assignment “i = i + 1 ” from the
for statement. Nowi holds the value3.

Second iteration: Still i 2 � 25, so we go through another iteration. This time “to test %
i ” has the value1, so we skip the statements within the braces to line 17. This ends the
statements within thefor loop. We execute “i = i + 1 ”; now i holds the value4.

Third iteration: Still i 2 � 25, so we go through another iteration. This time “to test %
i ” has the value1, so we skip the statements within the braces to line 17. This ends the
statements within thefor loop. We execute “i = i + 1 ”; now i holds the value5.

Fourth iteration: Still i 2 � 25, so we go through another iteration. This time “to test
% i” has the value0, so we execute the statements within the braces. In this case, the
statements tell us to print thatto test is not prime (line 14) and then to exit the program
immediately (line 15). We are thus done with our trace.

Exercise 6.5: (Solution, 119) Translate the following into a fragment using awhile loop
instead, and explain what the fragment does.

double total = 1;
for(i = 30; i > 0 ; i = i / 2) {

cout << total << endl;
total = 2 * total;

}

6.3 Extended example33

Exercise 6.6: (Solution, 119) Describe all the errors in the following code fragment, write a
version correcting all of them, and describe what the corrected version does.

for(i == 30, i != 0, i = = i + 1) {
cin << num
product = product * num

}

Exercise 6.7: Write a program to help balance a checkbook. A run of the program should look
like this.

To add? 30.25
+ 30.25 = 30.25
To add? -20.30
- 20.3 = 9.95
To add? 998.23
+ 998.23 = 1008.18
To add? -447.87
- 447.87 = 560.31
To add? 0.0

The user should be able to type as many entries as desired; but when the user types zero, the
program exits. (Using zero this way allows you to read the user-typed value into adouble
instead of doing something more complicated.)

Chapter 7

Functions

A function is a packaged sequence of statements to accomplish a certain task. A useful
analogy is to think of a function as a sort of juicer.

square

A function takes someparametersand produces areturn value. In our juicer analogy, the fruit
would be parameters, and the juice produced would the return value. If you give it oranges, it
makes orange juice. Give it lemons, and it makes lemonade.

One purpose of a function is to allow the programmer to describe a procedure once, even if
the program executes the procedure many times. For example, maybe your program determines
whether a number is prime in many places. By making a function to test primality, you can
write your algorithm only once (as the machinery for that function) and then easily use this
function in many places. This simplifies the task of writing the program, but more importantly
it makes modifying the primality-testing method very easy later.

Another major purpose of functions is to decompose a program into subtasks. Even if there
is only one location in your program where you decide whether a number is prime, it may be
useful to make it a separate function anyway, just because in the larger program the details
of exactly how you determine this are irrelevant. By using functions in this way, a program
becomes easier to read, and it becomes possible to write much larger programs.

7.1 Function calls

To use a function, a program usesfunction calls. A function call is a part of an expression,
which begins with the name of the function being called, followed by parentheses with the
parameter value placed within the parentheses.

7.2 Function definitions35

For example, one of the functions that is already built into C++ is theabs() function. (The
name is actually justabs ; but to distinguish functions from variables, conventionally function
names are written with parentheses.) It takes one integer as a parameter and returns that integer’s
absolute value. The following line of code illustrates a call toabs() .

cout << x << " and " << y << " are " << abs(x - y) << " apart." << endl;

In this case, we have used theabs() function with the value of the expression “x - y ” as its
parameter. So ifx held1 andy held5, thenabs() would be called with its parameter equal to
�4, and the output of this code fragment would be

1 and 5 are 4 apart.

7.2 Function definitions

Actually, we have already seen several function definitions: Each of our programs defines a
function calledmain() . Until now, however, we have ignored this as necessary verbiage; now
we examine exactly what is happening.

A function definition looks like the following.

hreturnValueTypei hfunctionNamei(hparameterListi) {
hstatementsi

}

Let’s break apart a very simple example to illustrate this.

double square(double to_square) {
return to_square * to_square;

}

double This definition begins with the worddouble , saying that we are about to define a
function whose return value is adouble .

(C++ includes a special return type calledvoid for functions returning nothing useful.
Of course the return value of such a function is not useful, but we may still want to call
the function if it has other useful effects like printing information to the screen. We’ll see
examples of this later.)

square Then we find the name of the function —square in this case. The rules for function
names are the same as for variable names. Always think carefully about how to name your
functions so as to best communicate the function’s purpose.

(double to square) In the parentheses are the function’sparameters— the lemons for
our juicer. In this case, the function takes one parameter, which is of typedouble ; within
the function, we refer to its value with the nameto square . The rules for parameter
names are the same as for function names and for variable names, and as for them you
should try to use names that describe their purpose.

–. . . ˝ The brace characters surround the statements that say what the function does. This is
called thefunction body. This corresponds to the machinery within the juicer.

36 Functions

return to square * to square; In our example, the function body is a single state-
ment, which is areturn statement. When the computer gets to areturn statement,
it stops working on the function. The value of the expression between the wordreturn
and the semicolon is used as the function’s return value (the lemonade, according to our
analogy). In this case we want the return value to be the square ofto square , so our
return value isto square multiplied by itself.

7.3 Extended example

To illustrate how functions work, we trace through a complete program including a function.

1 #include <iostream>
2 #include <string>
3
4 int fact(int what) {
5 int ret = 1; // this will be the factorial of what
6 int i;
7 for(i = 1; i <= what; i = i + 1) {
8 ret = ret * i; // multiply the value of i into ret
9 }

10 return ret;
11 }
12
13 int main() {
14 int n;
15 int r;
16 cout << "Choose how many of how many? ";
17 cin >> r >> n;
18 cout << (fact(n) / fact(r) / fact(n - r)) << " choices" << endl;
19 return 0;
20 }

Here is a sample run of this program.

Choose how many of how many? 2 6
15 choices

Let’s see how this came about.

Lines 14–17: We begin at the beginning ofmain() . We create two variablesn andr and wait
for the user to give their values. Nowr contains2 andn containts6.

Line 18: In order to compute the first expression to be printed, we compute the value of
“ fact(n) ”. Sincen holds6, we callfact() with the parameterwhat holding6.

Lines 5–9: We run through the code offact() with what holding6. This code multiplies
all the integers between1 and6 together; we finally reach line 10 withret holding720.

Line 10: We return the value ofret (that is,720) and continue with executing line 18.

Line 18: Now that we know the dividend is720, we compute the divisor. Again, we call
fact() , this time withwhat holding whatr holds, the value2.

Lines 5–10: We run throughfact() with what holding2. When we reach line 10,ret
holds2 and so2 is the return value.

7.4 Parameters and variables37

Line 18: Now that we have computed the first two calls, we divide to get720=2 = 360. But
we still have to perform another division. We know the dividend is360; to get the divisor,
we callfact() again, this time withwhat holding the value of “n - r ”, which is4.

Lines 5–10: We run throughfact() one more time, this time withwhat holding4. The
return value is24.

Line 18: Now that we have24 from fact() , we perform the second division to get360=24 =
15. This is the first number printed. Then we print" choices" , followed by an end-
of-line.

Line 19: We reach thereturn statement inmain() , so we are finished with running the
program.

7.4 Parameters and variables

The variables available within a function are exactly those declared within the function. The
code within a function cannot see variables defined in other functions. For this reason, whenever
you want to call a function, you should include among its parameters any information that the
function needs.

Often we want a function with several parameters. In this case we list the parameters,
separated by commas. For example, we might want a functionchoose() .

int choose(int n, int r) {
return fact(n) / fact(r) / fact(n - r);

}

To call such a function, you list the expressions for the arguments in the same order they are
defined, separated by commas.

cout << choose(6, 2) << " choices" << endl;

This will call ourchoose() function with the parametern holding the value6 and the param-
eterr holding the value2.

Note that when we call a function, values are copied into the parameters. So if we happen
to change a parameter’s value, this does not alter anything outside the function. As an example,
consider the following program.

void setToZero(int n) {
n = 0;
return;

}

int main() {
int i = 1;
setToZero(i);
cout << i << endl;
return 0;

}

(Remember that C++ usesvoid as the return value type for functions that do not return any-
thing useful.) This program will print the value1. Setting the value ofn to0 in setToZero()
has no effect on the value ofi in main() . This system of parameter passing is calledcall-by-
value.

38 Functions

C++ also allows forcall-by-referenceparameters. This alters the behavior so that changes
to the parameterdoeffect the variable passed to it. You can indicate a call-by-reference parame-
ter using an ampersand ‘&’ just before the parameter name. For example, we can instead define
setToZero() as follows.

void setToZero(int &n) {
n = 0;
return;

}

When we use this in place of our earliersetToZero() , the change of parameter valuedoes
affect the value ofi in main() , and so the program prints0. (Of course, whenever you use
a call-by-reference variable, you must pass something whose value can be changed. You can’t
use “setToZero(2) ” in an attempt to change2, for example.)

A final type of parameter passing that C++ provides is theconstant-reference parameter.
Here the value is not copied to the parameter, but C++ does not allow the programmer to change
the value of the parameter. You can indicate a constant-reference parameter by including the
wordconst beforehand.

void setToZero(const int &n) {
n = 0; // this now causes a compile-time error
return;

}

This fragment will cause a compile-time error because the statement “n = 0” attempts to alter
the value of the constant-reference parametern.

Exercise 7.1: Define a function to find the greatest common divisor of two numbers, and
use this to modify the checkbook exercise of Exercise 6.7 to work with fractions rather than
double s. The program should keep the total in lowest terms.

To add? 5 6
+ 5/6 = 5/6
To add? 3 4
+ 3/4 = 19/12
To add? 5 12
+ 5/12 = 2/1
To add? 0 0

Chapter 8

Complex data types

Besides allowing for variables holding only a single item of data (a number or character),
C++ allows variables to hold conglomerations of data. These allow programs to work with more
massive data.

8.1 Arrays

An array holds a sequence of values of the same type. This is especially useful when you want
to store a large group of related data, like data points in a graphing program or students’ scores
in a gradebook program. Each individual value in the array is called anarray element.

66
83

97 score

You can declare a new variable to be an array using the following format.

vector< htypeOfElementi> hvariableToDefinei(hlengthOfArrayi);

For example, the following creates an array namedscore to hold3 numbers.

vector<double> score(3);

More generally, the array length can be any expression (“2 * num students ” instead of
“3”, for example).

To work with an array, we must refer to individual elements using theirarray indices. The
array elements are automatically numbered from0 up to one less than the array length.

40 Complex data types

A detail
worth
remembering

Yes, that’sone less than the array length. So if you declare an array
score of length3, the array indices are0, 1, and2. C++ always begins
at 0. (This turns out to be more convenient than the intuitive choice of
1.) If you try to access an undefined array index, the program may be-
have weirdly (unexpectedly crash, for example), so be careful with array
indices.

To refer to an array element in an expression, type the array variable name, followed by
the element’s array index enclosed in brackets. You can also do this on the left-hand side of an
assignment to alter an array element’s contents.

vector<double> score(3);
score[0] = 97.0;
score[1] = 83.0;
score[2] = 66.0;
cout << "Average = " << ((score[0] + score[1] + score[2]) / 3.0) << endl;

In these statements we create an array of three numbers, calledscore . We assigned its three
boxes to hold three test scores,97, 83, and66. And finally we printed the average of these. The
computer will display82.

Parameters can be arrays too. Use the typevector< htypeOfElementi> to indicate that a
parameter is an array,
A detail
worth
remembering

When you pass arrays as parameters to a function, they should be either
reference parameters (if you want to change the elements) or constant-
reference parameters (if you do not). Do not pass arrays as call-by-value
parameters; the inefficiency of copying arrays is too large to ignore.

Let’s look at an implementation of theMode-Tally algorithm we discussed in Chapter 3.
This implementation combines everything we have seen about arrays.

1 int modeTally(const vector<int> &score, int num, int max) {
2 vector<int> tally(max + 1);
3 int i;
4 for(i = 0; i <= max; i = i + 1) { // set all tallies to 0
5 tally[i] = 0;
6 }
7 for(i = 0 ; i < num; i = i + 1) { // tally up the scores
8 tally[score[i]] = tally[score[i]] + 1;
9 }

10 int mode = 0; // find the most-frequently-occurring score
11 for(i = 1; i <= max; i = i + 1) {
12 if(tally[i] > tally[mode]) {
13 mode = i;
14 }
15 }
16 return mode;
17 }

Line 1: Here we have an array of integers namedscore as one of our parameters. (Notice
thatscore is a constant-reference parameter here.) We have another parameternum to
tell the function how many elementsscore has.

Line 2: We define a new arraytally to hold “max + 1” integers. We use “max + 1”
rather than just “max” because scores can range from0 to max, and we want a tally box
for each one of these possibilities.

8.2 Strings41

Lines 3–6: Just after creating an array, the array element contents are undefined. We want all
the tally boxes to be initially empty, so we go through the array and set all elements to
zero.

Lines 7–9: Now we tally up the scores. For each array indexi for thescore array (and the in-
dices onscore range from0 to num - 1), we add1 to tally boxtally[score[i]] .
(You may find it a bit weird to have array indices within array indices, but this is perfectly
legitimate. If it helps to understand what is going on, there is no problem with separating
this statement into two, the first defining a variablex to be “score[i] ” and the second
adding1 to tally boxtally[x] .)

Lines 10–16: Finally we go throughtally to find which entry is the largest. We usemode
to hold the largest entry found so far. We begin with this being0 (we see only the first
array element), but as we go along the array we compare more elements to the best we
have found so far. When we see something better, we store the index of that element in
mode instead.

Exercise 8.1: (Solution, 120) Write a functionremoveDuplicates() to replace the el-
ements of an array ofint s with the sequence with adjacent duplicates removed. The func-
tion should return the number of elements in the new sequence. For example, given the array
h3; 7; 7; 7; 8; 3; 3i, the function should replace the elements withh3; 7; 8; 3i and return4.

Exercise 8.2: (Solution, 120) Write a program that computes the median of a set of integer
test scores between0 and100. (Themedian is an element that falls in the middle if we list the
scores in sorted order.) Here is a sample transcript.

How many numbers? 5
#1: 83
#2: 32
#3: 83
#4: 71
#5: 65
Median = 71

8.2 Strings

Thestring type is quite similar to thevector type: Each individual element of thestring
is a character, and you can access individual characters using brackets.

In addition, you can get a string’s length (the number of characters in it) by using the
length() function. The following fragment illustrates all these aspects at work.

string name;
cout << "Who are you? ";
cin >> name;
cout << "Hello, ";
for(int i = 0; i < name.length(); i = i + 1) {

if(name[i] == ’_’) {
cout << ’ ’;

} else {
cout << name[i];

}
}
cout << "!" << endl;

42 Complex data types

This fragment reads a word the user types into the variablename. (When you use the input
operator>> with a string, the string it reads includes the characters up to the first space or return
character. Subsequent letters are left for later inputs.) After reading this word, the fragment
prints out the name, but prints spaces in place of the underscore characters (‘’).

Who are you? J_Edgar Hoover
Hello, J Edgar!

You can also compare strings with operators like< and== just as you compare numbers.
The ordering is similar to a dictionary’s, but all the upper-case letters precede all the lower-case
case letters. So “"Washington" <= "cherry" ” has a value oftrue.

Exercise 8.3: (Solution, 121) Write a program that gets a word that the user types and then
tells the user whether or not the word is a palindrome. (Apalindrome is a sequence of letters
that read the same forwards and backwards. Examples includeredderanddeified.)

8.3 Structures

It’s also sometimes useful to have variables conglomerating several very different pieces of data.
For example, we may want a variable to represent a student. A student may have an ID number,
a raw score, and a letter grade. To make a single variable to contain all this data, you can use a
structure.

A structure is a programmer-defined type combining several other pieces of data. You can
use thestruct keyword to define a new structure.

struct hnameOfStructureTypei {
helementDeclarationsi

};

The structure definition should appear outside function bodies.

struct StudentType {
int id; // student id
double score; // raw score
char grade; // letter grade (’A’, ’B’, ’C’, ’D’, or ’F’)

};

A detail
worth
remembering

Notice that a structure definition introduces a semicolon after the closing
brace, in contrast to the rules we have seen elsewhere in C++. It’s easy to
forget that semicolon, but you must include it to avoid confusing the C++
compiler.

Once you have defined a structure, you can easily create variables of that new type.

StudentType stud;

In an expression or an assignment statement, you can refer to individual data elements within
the structure by using the dot operator. .

stud.id = 42;
stud.score = 98.3;
stud.grade = ’A’;

Of course there’s no problem with using arrays of structures, representing perhaps an entire
array of students.

8.3 Structures43

int findMaxScore(const vector<StudentType> &student, int num_students) {
int max = 0;
int i;
for(i = 1; i < num_students; i = i + 1) {

if(student[i].score > student[max].score) {
max = i;

}
}
return student[max].id;

}

This function takes an array of students as its parameter. It determines the index of the student
with the highest score (exactly as we determined the maximum tally inmodeTally()), and
it returns that student’s ID number.

Note that, just as an array parameter should be either a reference parameter or a constant-
reference parameter, so should a structure parameter.

Exercise 8.4:(Solution, 121) Write a C++ fragment to define a new type representing a library
book. The relevant data to include in this structure are the book’s name, ID number, the price,
and the due date.

Chapter 9

Objects

In large software projects, a primary problem is how to structure and decompose the prob-
lem into more manageable brain-sized chunks. Software engineers use a variety of techniques
to do this. One fairly recent and very popular technique isobject-oriented design. In this
chapter we look at what this means, and we examine how it works in practice using a particular
language designed for object-oriented designs, C++.

9.1 Object-oriented design

The main insight motivating the idea of object-oriented design as that most tasks involve the
manipulation of objects. This is certainly true in the real world, and object-oriented design
proposes that it holds for computing too. If this is true, then a natural way to structure a program
is to define separately each of the objects involved in the task. If these are designed properly,
then the program to manipulate the objects should be short and straightforward.

As an example, consider a program for drawing graphs. The program manipulates several
objects related to the interface: a menu, individual menu items, a canvas for the graph, a palette
of colors, and maybe a toolbox. The program also manipulates objects related to the graph
itself: thex-axis, they-axis, data points, data series, labels, and a legend. And the program
manipulates objects for handling graph data: a spreadsheet, files, the printer. In an object-
oriented design, each of these objects would be a candidate for being a separate component of
the program.

A single component defines a single object. An object has two basic pieces — its state and
its interface. Thestateof the object is the information associated with it. Themethodsof the
object are the actions the object can perform. Together, these are themembersof the object.
Good designs usually prevent the state from being changed except through the methods. Think
of a Rubik’s cube: the state would be the current configuration, and the methods would include
actions for twisting and turning the cube. The cube does not allow tweaking individual pieces
of the state, so the object should not allow the program to do this by changing the object’s state
directly.

To return to our graphing example, a data point object may have thex- andy-coordinates as
its state. Among its methods may be a method for drawing the point on the screen and a method
for moving the point.

Deciding where different functionality lies is a matter of taste. Is it the data point’s job to
draw itself, or is this the purview of the data series, or should the canvas draw it? The designer

9.2 Defining objects45

must decide which is most natural. Object-oriented design then, does not make program design
simple: It is a guiding paradigm, which provides guidelines but not answers about how to
structure a design.

9.2 Defining objects

A programming language can provide support for object-oriented programs. C++ is one of
these languages; this is one of the features most distinguishing it from C, BASIC, and Pascal.

Defining an object’s type

To define an object in C++, you first define the object’s type, whic specifies its behavior. An
object type is called aclass. Like a structure, this new data type is an alternative to the basic
data types we have already seen ofint , char , of double . C++ calls one of these types a
class. An example of a class definition is the following.

class DataPoint {
public:

double my_x;
double my_y;
void draw(Graphics &dest);

};

Thisclass definitionshould appear outside any function bodies in the program. Here we have
defined an object class calledDataPoint . It has two data members associated with it, called
my x andmy y . And it has one method, calleddraw() . We haven’t defined what this method
does yet; we’ll get to this soon.

Defining an object

Now that we have defined an object’s class, it is time to create an individual object. When we
create an object, we set aside some memory to hold that object’s state.

DataPoint pt;

Usually we want the object to define what its initial state is. To do this we include aconstructor
in the class definition. The constructor is called automatically when a new object is created. To
define it, we create a method with the same name as the class and without any return type. It
can take parameters.

class DataPoint {
public:

DataPoint(double x, double y);
// declarations of other data and methods

};

If the constructor takes parameters, then we must include them when we create an object.

DataPoint pt(3, 4);

46 Objects

class DataPoint {
public:

double my_x;
double my_y;

DataPoint(double x, double y);
double getX();
double getY();
void draw(Graphics &dest);
void move(double x, double y);

};

DataPoint::DataPoint(double x, double y) {
my_x = x; my_y = y;

}

double DataPoint::getX() { return my_x; }

double DataPoint::getY() { return my_y; }

void DataPoint::draw(Graphics &dest) {
dest.drawRect(my_x - 1, my_y - 1, 3, 3);

}

void DataPoint::move(double x, double y) {
my_x = x; my_y = y;

}

Figure 9.1: TheDataPoint class.

Accessing an object

To access an object, we use a period. To drawpt in theGraphics objectgraph , for example,
we would include the statement

pt.draw(graph);

This will call thedraw() method defined in theDataPoint class, with the parameterdest
beinggraph . (As with arrays and structures, when you pass an object as a parameter, you
should either make it a call-by-reference paramater or a constant-reference parameter.)

When the computer calls a method (such asdraw()), it includes information about the
object (such aspt) on which the action is to operate. Within the method, we can refer to
individual members of this object directly without specifying them as part of the object.

With this in mind we create ourdraw() method:

void DataPoint::draw(Graphics &dest) {
dest.drawRect(my_x - 1, my_y - 1, 3, 3);

}

(This definition would appear outside the class definition.) Here we have indicated that the
action of drawing a point should be completed by drawing a3�3 square centered on the point’s
coordinates. Figure 9.1 contains a complete definition of aDataPoint class, including the
constructor.

9.3 Additional object concepts

The definition of objects is the most basic and important way that C++ and other object-oriented
languages provides support for objects. But it also includes other features.

9.3 Additional object concepts47

Multiple files

To help modularize a larger program, we will want to split it across files. A natural way to do
this in object-oriented designs is to designate a file for each object’s definition.

In C++, when we want to have a file for an object, we include both aheader file and
a definition file. The header file contains the type definition (theclass block), while the
definition file contains definitions of the methods. The header file’s name is typically something
like “DataPoint.h ”, while the definition file is typically something like “DataPoint.cc ”.

When we have a file including code using the class definition (and this includes the defini-
tion file), we must tell the compiler this. We do this using the#include statement at the file’s
beginning.

#include "DataPoint.h"

(This is similar to what we have blindly included earlier; there we were telling the compiler
that we wanted to use the input and output objects, and that we wanted to use thestring
object. Now we place the file name in quotes rather than angle brackets because the file is not
compiler-supplied.)

Protecting information

In the Rubik’s cube example of Section 9.1, we noted that generally the program should not
alter the state of an object without using the object’s interface. C++ provides support for this
with its private keyword. When we define a data member or methodprivate instead of
public , we disallow that member to be used outside the object’s methods.

Good programming practice suggests that all state information (the data members) should
be declared asprivate . If the program does this, then a programmer can later change the
implementation of the object without worrying about how the rest of the program uses the
object, provided that the interface remains unchanged. In ourDataPoint example, we would
instead declare the class as follows.

class DataPoint {
private:

double my_x;
double my_y;

public:
DataPoint(double x, double y);
void draw(Graphics &dest);
double getX();
double getY();
void move(double x, double y);

};

Later circumstances may make us decide that it is more convenient to define a data point
using polar coordinates, as the distance from the origin and the angle from thex-axis. Ifx andy
are private members, then we can do this safely by modifying only theDataPoint definition.
We can ignore the rest of the program, since it does not usex andy directly.

Extending an object

In larger programs, we may find that some objects are just specific instances of different types.
We may decide, for example, that a pencil is just a special type of drawing utensil. Or buttons

48 Objects

and checkboxes in the user interface are both special types of user-input devices. We might hope
that we can write code that applies to both. C++ and other object-oriented languages provide
support through this through the mechanism ofinheritance. This is a complicated mechanism;
we will touch on C++’s support of inheritance only briefly.

We call a class that inherits from another asubclass, and the class it inherits from we call a
superclass. SoPencil would be a subclass ofDrawingUtensil .

In C++, we define a subclass just as a regular class, but we add a colon to indicate what it is
a subclass of.

class Pencil : public DrawingUtensil {
private:

int uses_left;

public:
Pencil();
void sharpen();
void draw();

};

Pencil::Pencil() { uses_left = 10; }

void Pencil::sharpen() { uses_left = 10; }

void Pencil::draw() {
if(uses_left > 0) {

DrawingUtensil::draw();
uses_left = uses_left - 1;

}
}

In our subclass definition, we have added some functionality to the pencil. In particular, it
includes some new state indicating how sharp the pencil is. We have added a method to
sharpen the pencil. And we have inherited any other methods ofDrawingUtensil . If
DrawingUtensil has methoderase() , for example, then we can callerase() onPencil s
too.

One of these methods,draw() , we have overridden so that it only draws if the pencil
has been sharpened recently. This implementation happens to use theDrawingUtensil
draw() method; it indicates that it wants to use this method (and notPencil ’s draw()) by
using the:: operator.

In many cases it is natural to have subclasses of subclasses. ARedPencil might be a
subclass ofPencil , for example. We can draw a tree of the different subclasses; this is called
an inheritance hierarchy. The inheritance hierarchy is a good way to illustrate the structure of
an object-oriented program’s design.

Conclusion

Object-oriented design is a useful paradigm in many situations. Some people claim that it is the
best paradigm for all programs. This seems to be an exaggeration, but object-oriented design has
proven useful in many instances. User interfaces (an important component of most commercial
software) are particularly conducive to object-oriented design.

Object-oriented languages (like C++) can aid in developing programs with object-oriented
designs. These languages add features like data protection and inheritance, which are awkward
to simulate in other languages.

9.3 Additional object concepts49

-

6

�
�

�

�

�
�
�
�
�
�
�
�
��

0

10

20

30

50 350 650 950

Figure 9.2: Input for line-fitting program.

In any case, structure is essential in very large projects. Design paradigms — like object-
oriented design — are natural and very helpful for producing well-structured programs.

We close with a longer program illustrating object-oriented design, in Figure 9.3. This
program computes the least-squares fit to a series of data. Here is a sample run of this program
for the input of Figure 9.2.

How many points?
4
Point 1 (separate numbers with space):
150 1.6
Point 2 (separate numbers with space):
350 6
Point 3 (separate numbers with space):
650 16.4
Point 4 (separate numbers with space):
950 29.24
slope : 0.0349034
intercept: -5.01429
corr rˆ2 : 0.986412

Exercise 9.1: Define aRational class and use it to convert the checkbook program of
Exercise 7.1 to an object-oriented design.

50 Objects

#include <iostream>
#include <string>

class DataSeries {
private:

int num; double x_sum; double y_sum;
double xx_sum; double xy_sum; double yy_sum;

public:
DataSeries();
void addPoint(double x, double y);
double getSlope();
double getIntercept();
double getCorrelation();

};

DataSeries::DataSeries() {
num = 0; x_sum = 0.0; y_sum = 0.0;
xx_sum = 0.0; xy_sum = 0.0; yy_sum = 0.0;

}

void DataSeries::addPoint(double x, double y) {
num = num + 1; x_sum = x_sum + x; y_sum = y_sum + y;
xx_sum = xx_sum + x * x; yy_sum = yy_sum + y * y; xy_sum = xy_sum + x * y;

}

double DataSeries::getSlope() {
return (xy_sum - x_sum * y_sum / num) / (xx_sum - x_sum * x_sum / num);

}

double DataSeries::getIntercept() {
return (y_sum / num) - getSlope() * (x_sum / num);

}

double DataSeries::getCorrelation() {
double xy_var = xy_sum - x_sum * y_sum / num;
double x_var = xx_sum - x_sum * x_sum / num;
double y_var = yy_sum - y_sum * y_sum / num;
return (xy_var * xy_var) / (x_var * y_var);

}

int main() {
// let num_pts be the number of points
int num_pts; cout << "How many points? "; cin >> num_pts;
while(num_pts < 2) {

cout << "At least two are required. How many? "; cin >> num_pts;
}

// add the points to the data series
DataSeries series;
for(int i = 0 ; i < num_pts; i = i + 1) {

cout << "Point " << (i + 1) << " (separate numbers with space): ";
double x; double y;
cin >> x >> y;
series.addPoint(x, y);

}

// print statistics
cout << "slope : " << series.getSlope() << endl;
cout << "intercept: " << series.getIntercept() << endl;
cout << "corr rˆ 2 : " << series.getCorrelation() << endl;

}

Figure 9.3: A program to fit a line.

THIRD UNIT

Recursion

In the third unit of this text,Recursion, we look at programming from a slightly more
abstract level. We begin in Chapter 10 by extending our programming tools to encompass the
concept ofrecursion— that is, functions that use themselves. This concept is very intuitive and
allows simple procedures to accomplish complex tasks effectively.

In Chapter 11, we look at the specific task of playing games. Game playing is a huge success
of the study of artificial intelligence, and we study many of the most successful game-playing
techniques. In our study, we find that recursion plays an important role in game playing. This
study also sets the stage for other abstract computer science concepts coming in the following
units.

Chapter 10

Recursion

Recursion is a powerful technique, often giving impressive results through simple expres-
sions that are otherwise quite complex. In this chapter, we examine recursion through three
specific examples: a definition of Jews, exponentiation, and the Tower of Hanoi puzzle.

10.1 Definition

Recursionis the concept of well-defined self-reference.
Definitions are often recursive. Consider, for example, the following hypothetical definition

of a Jew. (We examine this definition only because of its interesting structure. I don’t vouch for
its validity — I just heard it at a party once.)

Somebody is a Jew if his or her mother is a Jew.

This definition isself-referential because it relies on itself for a definition. This definition has
a problem, though; do you see it?

One problem that sometimes comes up with self-referential definitions is that they are circu-
lar. For example, “A rose is a rose” is circular. The Jewishness definition would also be circular
if it were possible for somebody to be their own mother or their own maternal grandmother
(or further down the line); then somebody’s Jewishness might depend on her own Jewishness.
Barring science-fiction time anomalies, however, this is impossible.

The problem with the definition is that it is missing abase case. There has to be at least one
person whose Jewishness does not rely on her mother; otherwise, we have a problem of infinite
regress: I’m Jewish if my mother is Jewish; my mother is Jewish if her mother is Jewish; she is
Jewish if her mother is Jewish; and so on. We never stop. This problem is easy to fix.

Somebody is a Jew if she is Abraham’s wife Sarah, or if his or her mother is a Jew.

So if I want to know if I am a Jew, I look at this definition. I’m not Sarah, so I need to know
whether my mother is a Jew. How do I know about my mother? We look at the definition again.
She isn’t Sarah either, so we ask about her mother. We keep going back through the generations
— recursively — until we arrive at Sarah.

We can translate this procedure for determining whether somebody is a Jew into pseu-
docode.

10.2 Exponentiation53

Algorithm Is-A-Jew(person)
if person = Abraham’s wife Sarah,then:

return true .
else:

return Is-A-Jew(person’s mother).
end of if

This is arecursive function, since it uses itself to compute its own value. Every recursive
functionmusthave a base case. That is, it must have some case (in this example, whenperson

is Sarah) when the function does not call itself recursively. A function without a base case will
keep calling itself and will never get around to returning a value. The program will either crash
or it will continue until an external effect stops it; it will certainly not find the right value.

Notice thatIs-A-Jew still has a problem. What if I am not a Jew? Then we’ll ask about my
mother, then her mother, then her mother, and so on. We’ll never reach Sarah, and the list of
mothers will go much further back: We’ll never stop. (In this case, we’ll crash at some point
(maybe when we get to Eve).)

The problem is that in this example we need more than one base case. Here is a repaired
version.

Algorithm Is-A-Jew(person)
if person = Abraham’s wife Sarah,then:

return true .
else ifperson was born before Sarah was born,then:

return false .
else:

return Is-A-Jew(person’s mother).
end of if

As this example demonstrates, recursion can involve subtle problems, but it’s often useful or
even essential.

10.2 Exponentiation

Now we’ll look at a very different, very practical problem: exponentiating a number. That is,
given a numberx and a nonnegative integern, we want to findxn.

A C++ implementation

This time, we’ll use C++ rather than pseudocode. A recursive function in C++ is written just as
you would expect: Call the function exactly as you would any other function.

Notice that whenn > 0, we have

xn = x � xn�1 :

This suggests that we might computexn by first computingxn�1 (using recursion) and then
multiplying it by x. We can implement anexponentiate() function doing exactly this.

double exponentiate(double x, int n) {
if(n == 0) {

return 1.0;
} else {

return x * exponentiate(x, n - 1);
}

}

54 Recursion

This is simple, but it is rather poor for largen. Notice that if we want to take something to the
1000th power, the computer will go1000 levels deep into the recursion. This takes a while, and
it extends the resources of computers, which are often not designed to handle that many layers
of function calls.

A faster implementation

Fortunately, recursion suggests a faster way by noticing a different fact about exponents: Ifn is
even, thenxn = (x2)n=2. And if n is odd, thenxn = x � (x2)(n�1)=2.

We can use this fact to write a new solution.

double exponentiate(double x, int n) {
if(n == 0) { // base case

return 1.0;
} else if(n % 2 == 0) { // then n is even

return exponentiate(x * x , n / 2);
} else { // then n is odd

return x * exponentiate(x * x, (n - 1) / 2);
}

}

How deep does the recursion go for this new version ofexponentiate() ? Here’s a
way to bound it: Notice that each time we go one level deeper in the recursion, the value of
n at the new level is at most half of what it was. You can see that this will always be true by
looking at our definition ofexponentiate() . (Whenn is even, the value at the next level is
exactly half; whenn is odd, the value is a little less.) Therefore, if we golog2 n levels deep, the
exponent at that level isat most

n

�
1

2

�log2 n

= n
1

2log2 n
= n

1

n
= 1 ;

wheren is the exponent at the top level. When we go one more level deep, the exponent will
become 0 and we will have reached the base case. So the deepest the recursion will ever go is
1 + log2 n levels.

This is much faster than then levels we saw with our first algorithm. For example, taking
something to the1000th power required going down1000 levels of recursion, which seemed a
bit unreasonable; now we go only10 levels down (at most).

10.3 Tower of Hanoi

In the Tower of Hanoi puzzle, we have three pegs and several disks, initially stacked from largest
to smallest on the left peg. We’ll refer to these disks by the numbers0 through3 (3 being the
largest). For example, the four-disk puzzle is the following.

a b c

Our goal is to move the entire tower from the left peg to the middle peg, but we can only move
one disk at a time and we can never place a larger disk on a smaller one. (You should try to
figure this out on your own before continuing.)

10.3 Tower of Hanoi55

According to folklore�, a 64-disk version of the puzzle lies in a Hanoi monastery, where
monks work continuously toward solving the puzzle. When they complete the puzzle, the world
will come to an end. This brings up two crucial questions on which the future depends:

� How should the monks solve the puzzle? That is, how can we write a program for solving
the puzzle?

� If the monks use our program, how long will the world last?

We’ll answer both of these questions in sequence.

Solving the puzzle

Recursion is the easiest way to explain how to solve this puzzle. Before going on and spoiling
the fun, try yourself to think of a way to define the pattern for solving Tower of Hanoi.

Using recursion often involves a key insight that makes everything simpler. Often the insight
is determining what data exactly we are recursing on — we ask, what is the essential feature of
the problem that should change as we call ourselves? In the case ofIs-A-Jew, the feature is the
person in question: At the top level, we are asking about a person; a level deeper, we ask about
the person’s mother; in the next level, the grandmother; and so on.

In our Tower of Hanoi solution, we recurse on the largest disk to be moved. That is, we will
write a recursive function that takes as a parameter the disk that is the largest disk in the tower
we want to move. Our function will also take three parameters indicating from which peg the
tower should be moved (source), to which peg it should go (dest), and the other peg, which we
can use temporarily to make this happen (spare).

At the top level, we will want to move the entire tower, so we want to move disks3 and
smaller from peg A to peg B. We can break this into three basic steps.

1. Move disks2 and smaller from peg A (source) to peg C (spare), using peg B (dest) as a
spare. How do we do this? By recursively using the same procedure. After finishing this,
we’ll have all the disks smaller than disk3 on peg C. (Bear with me if this doesn’t make
sense for the moment - we’ll do an example soon.)

a b c

2. Now, with all the smaller disks on the spare peg, we can move disk3 directly from peg A
(source) to peg B (dest).

a b c

3. Finally, we want to move disks2 and smaller from peg C (spare) to peg B (dest). We do
this recursively using the same procedure again. After we finish, we’ll have all disks on
dest .

a b c
�Invented by Edouard Lucas in 1883 to help market his commercial version.

56 Recursion

In pseudocode, this looks like the following. At the top level, we’ll callMove-Tower with
disk = 3, source = A, dest = B, andspare = C.

Algorithm Move-Tower(disk ; source; dest ; spare)
1 if disk = 0, then:
2 Movedisk from source to dest . // base case
3 else:
4 Move-Tower(disk � 1; source; spare); dest) // Step 1 above
5 Movedisk from source to dest . // Step 2 above
6 Move-Tower(disk � 1; spare; dest; source) // Step 3 above
7 end of if

Note that the pseudocode adds a base case in line 1: Whendisk is0, the smallest disk, we don’t
need to worry about smaller disks, so we can just move the disk directly. In the other cases,
we follow the three-step recursive procedure we already described for disk3 (this is done in
lines 4–6).

An example will help to explain what is going on here. First, a definition: Thecall stack
is a representation of where we are in the recursion. As we progress through the algorithm,
we will have several levels. Each level will have a different status (the variablesdisk , source,
dest , andspare are different at all levels, and we will be at different locations in the different
functions. As we proceed, we will put new function calls at the top (end) of the stack, and we
will remove function calls from the top (end) of the stack as we finish them.

We’ll look a three-disk problem here. We useMT as an abbreviation forMove-Tower.

1. We begin with a call toMT(2; A;B;C), so that our call stack is simplyh(MT(2; A;B;C); 0)i.
(This representation of the call stack says that there is one function call currently on it. This is
a function call toMove-Tower(2; A;B;C), and we are currently at line0 of the call.) Since
disk 6= 0, this is not the base case, and we go to line 4.

2. At line 4 ofMT(2; A;B;C), we callMT(1; A;C;B). So now our call stack becomes

h(MT(2; A;B;C); 4); (MT(1; A;C;B); 0)i :

Now at this new call toMT, we havedisk = 1. We are still not in the base case, so we proceed to
line 4.

3. At line 4 ofMT(1; A;C;B), we callMT(0; A;B;C). So now our call stack becomes

h(MT(2; A;B;C); 4); (MT(1; A;C;B); 4); (MT(0; A;B;C); 0)i :

At this call toMT, we havedisk = 0. We enter the base case (line 1) and move disk 0 fromA to
B.

4. We now reach the end of the call toMT(0; A;B;C). We remove this from the call stack and step
to the next line (line 5) of what is now on the top. Our call stack is now

h(MT(2; A;B;C); 4); (MT(1; A;C;B); 5)i :

This says to move disk 1 fromA toC.

10.3 Tower of Hanoi57

5. Now, at line 6 ofMT(1; A;C;B), we callMT(0; B;C;A). Our call stack now becomes

h(MT(2; A;B;C); 4); (MT(1; A;C;B); 6); (MT(0; B;C;A); 0)i :

In this call, we are at the base case and so move disk 0 fromB toC.

6. We return from this call, making the call stack become

h(MT(2; A;B;C); 4); (MT(1; A;C;B); 7)i :

Proceeding from line 7 ofMT(1; A;C;B), we find we reach the end and so return from it too.
Now the call stack is simplyh(MT(2; A;B;C); 5)i. Line 5 says to move disk 2 fromA toB.

7. At line 6 of MT(2; A;B;C), we make another function call, now toMT(1; C;B;A). Our call
stack becomes

h(MT(2; A;B;C); 6); (MT(1; C;B;A); 0)i :

We do not enter the base case, and proceed to line 4 ofMT(1; C;B;A), where we make another
function call to make the call stack

h(MT(2; A;B;C); 6); (MT(1; C;B;A); 4); (MT(0; C;A;B); 0)i :

In the callMT(0; C;A;B) we enter the base case and move disk 0 directly fromC toA.

8. We return fromMT(0; C;A;B); now the call stack is

h(MT(2; A;B;C); 6); (MT(1; C;B;A); 5)i :

At line 5 of MT(1; C;B;A), we move disk 2 to pegB.

9. At line 6, we callMT(0; A;B;C). The call stack is now

h(MT(2; A;B;C); 6); (MT(1; C;B;A); 6); (MT(0; A;B;C); 0)i ;

and from here we proceed to line 1 and move disk 0 fromA toB.

10. We return from the call toMT(0; A;B;C); the call stack is now

h(MT(2; A;B;C); 6); (MT(1; C;B;A); 7)i :

We return from the call toMT(1; C;B;A); the stack is nowh(MT(2; A;B;C); 7)i. We return
from the call toMT(2; A;B;C); the call stack is now empty, and so we are done.

Besides the call stack, another useful way to visualize what happens when you runMove-
Tower is acall tree. The call tree graphically represents all the recursive calls made by a single
function call. For example, Figure 10.1 contains a call tree forMove-Tower(3; A; B; C). Each
function call in the call tree is called anode. The nodes connected just below any noden

represent the function calls made by the function call forn Just below the top, for example,
areMove-Tower(2; A; C; B) andMove-Tower(2; C; B;A), since these are the two function
calls thatMove-Tower(3; A; B; C) makes. At the bottom are many nodes without any nodes
connected below them — these represent base cases.

58 Recursion

3; A; B; C

2; A; C; B
���

2; C; B;A
HHH

1; A; B; C
��

1; B; C; A
ZZ

1; C; A;B
��

1; A; B; C
ZZ

Figure 10.1: Call tree forMove-Tower(3; A; B; C).

Analyzing our solution

Now we ask: If the monks useMove-Tower, how long will it be before the world ends? To
answer this question, we need to learn aboutrecurrences. A recurrence is a well-defined
mathematical function written in terms of itself; it’s a mathematical function defined recursively.

Take theFibonacci sequenceas an example. The Fibonacci sequence is the sequence of
numbers

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; :::

The first two numbers of the sequence are both 1, while each succeeding number is the sum of
the two numbers before it. (We arrived at 55 as the tenth number, since it is the sum of 21 and
34, the eighth and ninth numbers.)

Let’s define a functionF (n) that returns the(n+1)th Fibonacci number. (Don’t let the use
of n+ 1 rather thann confuse you; it’s just a little more convenient if we number this sequence
starting at0.) First, we knock off two base cases:

F (0) = 1

F (1) = 1

Now we consider the other numbers. To get the(n + 1)th Fibonacci, we just add thenth
Fibonacci and the(n� 1)th Fibonacci.

F (n) = F (n � 1) + F (n � 2) :

This functionF is called arecurrencebecause it is defined in terms of itself evaluated at other
values.

Now we’re going to use a recurrence to find how many times the monks will move a disk
if they follow our Move-Tower program. Think about this on your own for a while before
proceeding.

To answer how long it will take our friendly monks to destroy the world, we write a recur-
rence (let’s call itM(n)) for the number of movesMove-Tower takes for ann-disk tower.

The base case — whenn is1 — is easy: The monks just move the single disk directly. Thus
we have

M(1) = 1 :

In the other cases, the monks follow our three-step procedure. First they move the(n� 1)-disk
tower to the spare peg; this takesM(n� 1) moves. Then the monks move thenth disk, taking
1 additional move. And finally they move the(n � 1)-disk tower again (this time to the top of
thenth disk), takingM(n� 1) moves. This gives us our recurrence relation,

M(n) = M(n� 1) + 1 +M(n � 1) = 2M(n� 1) + 1 :

10.3 Tower of Hanoi59

Since the monks are handling a64-disk tower, all we need to do is to computeM(64), and
that tells us how many moves they will have to make. This would be more convenient if we had
M(n) in closed form— that is, if we could write a formula forM(n) without using recursion.
Do you see what it should be? (It may be helpful if you go ahead and compute the first few
values, likeM(2),M(3), andM(4).)

Looking at these first few numbers, we see the following.

M(1) = 1
M(2) = 2M(1) + 1 = 3
M(3) = 2M(2) + 1 = 7
M(4) = 2M(3) + 1 = 15
M(5) = 2M(4) + 1 = 31

By looking at this, we can guess that

M(n) = 2n � 1 :

We can prove this using a simple proof by induction. Forn = 1,M(n) is1, which is indeed
2n � 1. Now consider anyn > 1 and sayM(n � 1) = 2n�1 � 1. ThenM(n), which we have
already seen is2M(n � 1) + 1, is 2(2n�1 � 1) + 1 = 2n � 1. This completes a proof by
induction thatM(n) = 2n � 1.

So the monks will move264 � 1 � 18:45 � 1018 disks. Even if they could move a disk
every millisecond, they’d have to work for584:6 million years. It looks like we’re safe.y

Exercise 10.1:(Solution, 121) Write a recursive program to enumerate all subsets off1; : : : ; ng
for somen the user specifies. (The order in which they are printed is not important.)

Choose from how many? 2

2
1
1 2

Exercise 10.2: Write a recursive program to enumerate all the subsets of a given size from
f1; : : : ; ng for somen the user specifies. (This is like the program on page 36, except now we
actually list the choices.)

Choose how many of how many? 2 4
1 2
1 3
1 4
2 3
2 4
3 4

One tempting way to do this exercise is to take the answer of Exercise 10.1 and modify it to
only print out subsets of the given size. Don’t do this; it is impractically slow for largen. (Your
program should handle all pairs from40 numbers quite quickly.)

yActually, you might object that the monks could use a much faster algorithm. But it turns out thatMove-Tower
uses the fewest moves possible.

Chapter 11

Playing games

Although artificial intelligence research dates from the dawn of computer science, its goals
are so ambitious that it still has far to go. But it has a few successes behind it. One of the most
notable examples is in playing games.

The motivation behind game-playing research is much more serious than it sounds. The pri-
mary goal is to have computers adapt and plan, so that they can handle serious tasks like driving
a car or managing a production line. Game-playing as a topic of study came about because
it was fun, manageable, but somewhat beyond current technology. For similar reasons, some
robotics researchers today concentrate on creating robotic juggling — not because juggling is a
useful task, but because it requires dexterity and quick thinking that robots need but currently
lack.

Classical game-playing techniques work for a variety of games with certain common char-
acteristics. We assume that the game involves two players alternating turns. We assume that
both players always know everything about the current state of the game. (This is not true for
many card games, for example, because a player does not know the other’s hand.) And we
assume that the number of moves on each turn is limited.

These restrictions still encompass many games, including tic-tac-toe, Connect-4, Othello,
checkers, chess, and go. In this chapter we look at the simplest of these, tic-tac-toe. But, except
for go, the techniques covered in this chapter work well for all of the games just listed.

In case your childhood somehow lacked tic-tac-toe, let us review the rules. We start with a
3 � 3 board, all blank. It isX’s turn first, andX can place his mark in any of the nine blanks.
ThenO places her mark in one of the eight remaining blanks. In responseX has seven choices.
In this way the players alternate turns until one of the players has three marks along a horizontal,
vertical, or diagonal line (thus winning the game), or until the board becomes filled (this is a tie
if neither player has won).

One approach to writing a tic-tac-toe program is to simply enumerate the situations that may
occur and what the computer should do in each case. For example: If the computer isO, and
X’s first move is in a corner, thenO should play in the center. IfX’s first move is in the center,
O should play in a corner. And so on. But this approach has a major problem: It relies on a
human to list what to do in every circumstance in advance. The list becomes unmanageable for
games more complicated than tic-tac-toe; worse, the computer will never exceed the ability of
its programmer.

11.1 Game tree search61

X’s turn

O’s turn

X’s turn

X O O
X
O X

(1)

X O O
X X
O X

(1)

X O O
X X
O X
(� 1)

X O O
X
O X X
(� 1)

X O O
X X O
O X

(1)

X O O
X X
O X O

(1)

X O O
X O X
O X
(� 1)

X O O
X X
O X O

(1)

X O O
X O
O X X
(� 1)

X O O
X O
O X X

(1)

X O O
X X O
O X X

(1)

X O O
X X X
O X O

(1)

X O O
X X X
O X O

(1)

X O O
X X O
O X X

(1)

!!!!!!!!

aaaaaaaa

�
�
��

E
E
EE

�
�
��

E
E
EE

�
�
��

E
E
EE

Figure 11.1: Evaluating a board.

11.1 Game tree search

A more general approach is have the computer determine how to move by evaluating all choices.
Say the current board is

X O O
X
O X

and the computer, playingX, must choose a move. To do this, the computer can consider each
of the three possible next boards and consider which is most appealing toO.

X O O
X X
O X

X O O
X X
O X

X O O
X
O X X

To determine which is best forO, the computer looks at each ofO’s possibilities. Eventually
we end up with what is called agame tree, as in Figure 11.1.

The parenthesized numbers in Figure 11.1 indicate the “value” of each board:0 for a tie,
1 for a guaranteed win forX, and�1 for a guaranteed win forO. At the bottom, when a final
board is reached, the value of the board is the outcome for that board: In the figure, the bottom
left board is1 becauseX has completed the diagonal. For other boards, the value is the best of
the choices for the current player. For the top board, we have three choices: a win forX, a win
for O, or a win forO. It is X’s turn, soX would choose the win forX; hence the board’s value
is 1, andX should move in the board’s center.

62 Playing games

Evaluating such a tree is called theminimax searchalgorithm, sinceX chooses the max-
imum of its childrens’ values andO chooses the minimum. We can write the minimax search
algorithm very naturally using recursion.

Algorithm Minimax-Search(board ; player)
// base case for final state
if board is a win forX then return 1.
else ifboard is a tiethen return 0.
else ifboard is a win forO then return �1.
end of if
// try all moves, lettingbest be value of most desirable
if player = X then let best hold�1.
elselet best hold1.
end of if
for each legalmove onboard do

Makemove onboard .
Let value holdMinimax-Search(board ; oppositeplayer).
Undomove from board .
if player = X and value > best then let best holdvalue.
else ifplayer = O and value < best then let best holdvalue.
end of if

end of loop
return best.

11.2 Heuristics

The problem with minimax search is that it takes a lot of time. Tic-tac-toe games, which last at
most9 moves, have game trees that computers can exhaust. But a chess game may last more
than50 moves; the game tree is well beyond the total computing capacity of the world.

The solution is simple. We search only to a certain depth of the tree. When we see a board
at the depth that is not in a final state, we apply aheuristic function to estimate the board’s
value. The heuristic function is a function written by the programmer that tells roughly how
good the board is. In tic-tac-toe, a simple heuristic function may calculate the difference of the
number of possible wins forX and the number of possible wins forO, where a possible win is
a row, column, or diagonal with none of the opponent’s pieces. The board

O X
X O
X O X

has one possible win forX (the right column) and no possible wins forO; its heuristic value
would be1. We should also make the value of guaranteed wins more extreme (106 and�106,
say) to indicate how sure we are of them.

We now evaluate the board by going to a certain depth and using the heuristic function to
evaluate the boards at the bottom depth that are not final. We use the same minimax procedure
for boards above the maximum depth. Figure 11.2 illustrates an example going to a depth of2.
In this example,X would decide for either the second or third choices.

11.3 Alpha-beta search63

X’s turn

O’s turn

O X
O

X O X
(0)

A

O X X
O

X O X
(�1)

O X
X O
X O X

(0)

O X
O X

X O X
(0)

B

O X X
O O
X O X

(0)

O X X
O O

X O X
(�1)

O X O
X O
X O X

(0)

O X
X O O
X O X

(0)

O X O
O X

X O X
(0)

O X
O O X
X O X

(1)

C

!!!!!!!!

aaaaaaaa

�
�
��

E
E
EE

�
�
��

E
E
EE

�
�
��

E
E
EE

Figure 11.2: Using heuristics to evaluate a board.

11.3 Alpha-beta search

Heuristics allow us to write reasonably good game-playing programs. The professionals are
somewhat more sophisticated, though, in choosing which boards to evaluate. One particularly
interesting enhancement is calledalpha-beta search, where we notice that some of the boards
need not be evaluated to get the exact answer.

Figure 11.2 provides an example where this applies. Call the right-most board in the bottom
levelC, its parentB, and the top of the treeA. Notice that, no matter what the value ofC is,
the value ofB will be at most0, sinceO will choose the minimum of its children’s values and
B already knows that the first choice gives0. Since atA X already knows it can guarantee0 by
choosing the middle route, the exact value ofB does not matter. Through this reasoning, then,
we can avoid evaluatingC.

In this case we would avoid evaluating a single board — not so impressive. But the rea-
soning can help tremendously for larger games, almost doubling the depth that can be handled
within the time limit.

The pseudocode for alpha-beta search is in Figure 11.3. It is not much longer, but it is much
harder to interpret. In the code,� (the Greek letteralpha) represents the best (i.e., maximum)
value we have found forX for any of the boards at or above the current one where it isX’s turn.
(At the top,� is initially �1.) The parameter� (the Greek letterbeta) represents the best (i.e.,
minimum) value we have found forO for any of the boards at or above the current one where it
is O’s turn; at the top it is1. (These variables are the inspiration for the decidedly lame name
computer scientists have given to this technique.) We can stop examining a board when it has
� � �.

Summary

The approach ofAlpha-Beta-Search is very close to what the best game programs use. They
have some additional enhancements. For example, a good chess program will have a large list
describing specific moves and responses for the beginning of the game. It may also vary the

64 Playing games

Algorithm Alpha-Beta-Search(board ; player ; �; �; depth)
// base case for final state
if board is a win forX then return 106.
else ifboard is a tiethen return 0.
else ifboard is a win forO then return �106.
end of if
// if we’ve max’ed out the game tree, return the heuristic value
if depth = 0, then:

return Heuristic(board).
end of if
// try all moves, lettingbest be value of most desirable
for each legalmove onboard do

Makemove onboard .
Let value holdAlpha-Beta-Search(board ; oppositeplayer ; �; �; depth � 1).
Undomove from board .
if player = X and value > �, then:

Let � holdvalue.
if � � �, then:

return �.
end of if

end of if
if player = X and value < �, then:

Let � holdvalue.
if � � �, then:

return �.
end of if

end of if
end of loop
if player = X then return �.
else return�.
end of if

Figure 11.3: TheAlpha-Beta-Search algorithm.

11.3 Alpha-beta search65

search depth based on how good the board looks, rather than going to a fixed depth. But the
primary code is very much like what is above, with a sophisticated heuristic function attached.

Philosophically, these techniques are not very satisfying. Can one really say that a computer
using exhaustive search is displaying any intelligence? Certainly if the standard is how a human
works, no. While major chess computers search through millions of boards foreach play,
a human grandmaster searches through merely hundreds. One cannot accurately say that a
computer is actually reasoning as a human does.

This is really a question for philosophers about the nature of intelligence. For computer
scientists, the interesting question raised is how to apply the human’s techniques effectively.
Through trying to apply them, we can learn more about the the human’s techniques. So far
attempts to use more human reasoning have had only limited success, however.

More pragmatically, these game-playing techniques do not generalize to other planning
tasks, where actions sometimes fail to produce the desired result (steering on ice, as an extreme
example) and the world is much larger than a few pieces on a board. These problems are much
harder. Researchers are currently addressing them, but a long time will pass before we know
how to automatically handle such real-world problems. Game-playing is just a first step.

Exercise 11.1: Prove thatX can still guarantee a tie game from the following board.

X O

Proving this involves drawing the game tree starting at this board, except that for levels where
it is X’s turn, you need only include your chosen move for X. (Thus at every other level, each
node will have only one child at the next level.)

66 Playing games

FOURTH UNIT

Internet

Computer science is hard to discuss without some knowledge of programming, but com-
puter science is notaboutprogramming — no more than mathematics is about arithmetic, or
biology is about identifying animals, or history is about knowing the dates of events. Computer
science is aboutproblem-solving, and programming is a means to understanding the capacity of
computers as problem-solving devices. Programming is a tool, and now that we understand its
basics we are ready to look at hard-core computer science.

This unit concentrates on one particular aspect of computer science: the Internet. In the
last few decades, the Internet has grown quickly from a minor plaything for computer science
researchers to become a major player in the world’s economies and lifestyles (see Figure 11.4).
The Internet is the product of decades of research and still presents many interesting problems
for computer scientists to consider, some of which we see in this unit.

There are a variety of tacks we could take on the Internet. We could, for example, study how
to use its components — mail, Web pages, newsgroups, and its other offerings. On the other
end of the spectrum, we could study how networks are built and how to create our own. This
book takes neither approach. We opt for the middle road, the most interesting from a computer
scientists’ perspective: We examine how the Internet fits together and transmits messages.

Five chapters divide our approach into more manageable chunks.

Chapter 12 We are introduced to the fundamentals of networks.

Chapter 13 We learn about how Internet messages try to reach their destination.

68 Internet

6

0

40� 106

hosts

-
’81 ’86 ’91 ’96
a a a a a a a a a a a a a

a
a

a

a

a
a

213

43:2� 106

Figure 11.4: Number of Internet host computers.

Chapter 14 Since messages sometimes fail to reach their destination, we study a protocol for
resending messages until they get there.

Chapter 15 We examine a sampling of useful protocols that use the techniques from the pre-
vious chapters for specific tasks like sending mail and fetching Web pages.

Chapter 16 We examine some of the Internet’s weaknesses and learn the fundamentals of cryp-
tography, a solution to many of the weaknesses.

One purpose of our study is to understand how the Internet works, but this is only an inciden-
tal benefit. More crucially, we want to understand the questions and techniques that computer
science has developed for the problems that the Internet presents. What are these problems?
The Internet must be able to scale well — that is, it must be able to grow as quickly as the
Internet itself. It must be able to quickly adapt to environmental changes; for example, if a
single computer or region’s power goes out, other computers must be able to work around the
absence gracefully. And, despite the complexities, the Internet must ultimately be manageable
by human programmers. These problems will crop up, sometimes obviously but more often
subtly; look out for them.

Chapter 12

Networking fundamentals

In this chapter we look at the fundamentals of networks, dividing our approach between the
representation of data and the division of labor in networking software.

12.1 Representing data

The original motivation for computers was to manipulate numbers. Most of today’s applications
appear far from this; e-mail, Web browsers, and computer games are not obviously related to
numbers. Despite their appearance, however, in a real sense even these applications reduce their
various problems to specific computational problems. Thus a crucial question is, how can we
represent numbers to a computer?

Binary numbers

On an even more fundamental level, computers manipulate electricity, routing it between wires.
Through this routing, the computer represents numbers. A wire represents1 when electricity
flows through it and0 when electricity is not. The computer constantly decides whether to route
electricity through the wire, depending on whether each wire should represent a1 or a0.�

As beings who typically have ten fingers, humans work with thedecimal(base-10) num-
bering system: It’s no coincidence that we call both our fingers and the characters0 through9
digits. In the decimal numbering system, the sequence of digits1980represents the number

1� 103 + 9� 102 + 8� 101 + 0� 100 :

Since a wire can represent only the two digits0 and1, computers work with a base-2 system:
thebinary numbering system. The basic unit of data is a single binary digit, zero or one. We
call this unit abit , from Binary digIT . To represent larger numbers, we can expand this just as
we represent larger numbers in decimal notation. Consider the binary number11010(2). (The
parenthesized subscript here is to emphasize that this is a base-2 number.) Each position in the
number now represents a power of two. To convert11010(2) to the decimal representation with
which we are familiar, we rewrite the number as

1� 24 + 1� 23 + 0� 22 + 1� 21 + 0� 20 = 16(10) + 8(10) + 0(10) + 2(10) + 0(10) = 26(10) :

�Why two values? We have to have at least two values; if there is only one value, then the computer cannot
think or communicate anything other than this value, and this is not useful. People have tried giving computers more
values than just two, but this complicates things enough to hurt overall efficiency.

70 Networking fundamentals

letter code letter code letter code
‘ ’ 00100000(2) = 32 ‘A’ 01000001(2) = 65 ‘a’ 01100001(2) = 97
‘ . ’ 00101110(2) = 46 ‘B’ 01000010(2) = 66 ‘b’ 01100010(2) = 98

‘0’ 00110000(2) = 48
...

...
‘1’ 00110001(2) = 49 ‘ I ’ 01001001(2) = 73 ‘m’ 01101101(2) = 109
...

...
...

‘9’ 00111001(2) = 57 ‘Z’ 01011010(2) = 90 ‘z ’ 01111010(2) = 122

Table 12.1: An ASCII sampler.

So11010(2) is decimal26.
Conversely, to represent the number100(10) in binary, we would break it into a sum of

distinct powers of two:

100(10) = 64(10) + 32(10) + 4(10) = 26 + 25 + 22 :

Hence the binary representation of100(10) is 1100100(2).

Types of data

Because the number of bits in a computer is so large and we rarely want to work with numbers
between 0 and 1, we find it convenient to break data into groups of eight bits, each called abyte.
A single byte can represent the numbers between00000000(2) = 0(10) and11111111(2) =
255(10). On top of bytes we build the three basic data types: characters, integers, and floating-
point numbers. There are other types of data — pictures and sound, for example — but they
tend to be simple conglomerations of these three basic types.

Characters

A character is a single letter, digit, punctuation mark, or control character (like a tab or end-
of-line). Most of today’s computers represent a character with a single byte using an encoding
standard calledASCII (AmericanStandardCode for InformationInterchange). Table 12.1
contains a few of these codes. If we want to interpret a sequence of bits

01001001 00100000 01100001 01101101 00101110

as characters, we divide it into bytes and interpret using ASCII. Here, the message is, I think,
“I am.”

Integers

The next basic type is theinteger. These are the numbers without fractional pieces, like26 or
�100 but not1:62. A single byte, we saw, can represent numbers between0 and255. Since we
frequently want to use integers outside this range, computers group bytes intowordsto represent
numbers. Word sizes vary between computers: Some old computers (the 16-bit machines) use
2-byte words, most current computers (32-bit machines) use4-byte words, and some (the 64-bit
machines) even use8-byte words.

12.2 Division of labor71

With 32 bits we can represent any integer between�231 and231� 1. Representing positive
integers is straightforward: We take the binary representation and place zeroes to the right to
fill out the bits. The number100(10) becomes

00000000 00000000 00000000 01100100 :

The most popular method for representing negative numbers is the2’s-complement represen-
tation. On a32-bit machine using2’s-complement representation, the representation of�x is
binary representation of the difference of232 andx. Thus the number�100(10) becomes

1 00000000 00000000 00000000 00000000
� 00000000 00000000 00000000 01100100

11111111 11111111 11111111 10011100

Floating-point numbers

The final basic data type of a computer is afloating-point number. A floating-point number
allows for the representation of a fractional number (like3:14). These too can be represented in
binary. The most common encoding method for floating-point numbers is theIEEE standard.
It calls for representing the number in base-2 scientific notation. In binary,3:14(10) is

11:0010001111010111000010 : : :(2) = 1:10010001111010111000010 : : :(2) � 21 :

The IEEE standard uses the first bit of a word to represent the sign:0 for positive,1 for negative.
The next eight bits hold the exponent in the scientific representation plus128 (adding128 allows
negative exponents). And the final23 bits give the first23 bits of the mantissa’s fractional part.
(Since the number before the decimal is always1, there is no reason to include it.) So the
number3:14 is represented in32 bits as

0 10000001 10010001111010111000010

All of these three basic types, then, have representations in bits. Several layers of abstraction
separate the raw electronics of the computer and the data types that programmers actually think
about. From electricity we built bits, bits begat bytes, and bytes became characters, integers,
and floating-point numbers. These are the basic building blocks of data.

12.2 Division of labor

Since networks are extremely complicated objects, researchers find it useful to work with ab-
stractions. They uselayers to divide the duties of networking into four pieces. We thus tend to
envision a single message as something of a layer cake (see Figure 12.1).

application layer Theapplication layer interprets messages using some special-purposepro-
tocol. For example, HTTP (the World Wide Web protocol) specifies how to interpret
Web page requests and how Web browsers should interpret the servers’ responses. We
will look at the application layer more in Chapter 15.

transport layer The transport layer takes a single message from the application layer and
divides it intopacketsof about1000 bytes each. Instead of sending the entire message
across the network in one big chunk, the packets are sent individually instead, since many

72 Networking fundamentals

physical layer

internetwork layer (IP)

transport layer (TCP)

application layer

Figure 12.1: The layers of an Internet message.

physical
header

IP
header

TCP
header

application message

Figure 12.2: Packet headers.

small messages are much easier to handle than big pieces. But the transport layer gives
these packets to the internetwork layer, who ships each packet to the destination. The
destination’s internetwork layer receives these and passes them up to the destination’s
transport layer, who reconstructs the original message by packing all the packets back
together again.

The most widely-used protocol for the transport layer is theTransport Control Protocol
(TCP), which we will study in Chapter 14.

internetwork layer The internetwork layer takes a single packet and attempts to route this
packet to its destination. The internetwork layer does not guarantee that these packets
will arrive at their destination in any particular order or even that they will arrive at all.
What the internetwork layerdoesguarantee isbest-effort delivery— that it will make a
reasonable effort to get the packet to its destination if possible. This is inconvenient, since
generally all packets need to reach their destination. The jobs of resending lost packets
and of ordering the packets correctly go up to the transport layer.

On the Internet, the internetwork layer is implemented using theInternet Protocol (IP).
We will discuss this in Chapter 13.

physical layer The Internet is a networked combination of networks. Any Internet packet must
pass through several networks; thephysical layer’s job is to pass the packet through a
single network. We will not examine the physical layer in this book; we simply assume
that we already have a facility for transporting packets within a single network.

Each layer adds aheaderto a message giving information about how to handle the message,
as in Figure 12.2. For example, the internetwork layer header contains several bytes telling the
address of where the packet is headed. Among other things, the transport layer adds bytes
identifying where the packet is within the overall message (so that the destination knows where
the packet goes within the final message).

Now we begin our journey up the layers. We assume a physical layer to transport messages
within a single network. How does the internetwork layer get a packet to its destination?

Chapter 13

Transporting packets

In this chapter we take a look at how the Internet gets a packet from one place to another
using IP (InternetProtocol).

The Internet is a network of networks. We assume that each network knows how to deliver
a message within itself (the job of routing a packet within an individual network is handled by
the physical layer). The Internet’s job is to determine how to find its way through the networks
to deliver a message, say from San Francisco to Pittsburgh.

There are two basic steps to routing a packet from its source to its destination. First we must
determine where the packet is going; then we must send the packet through the Internet to that
place.

13.1 Machine names

The first step toward transmitting a message is to determine where it is going. To do this, we
use the machine’s address. A computer on the Internet typically has two identities. The first is
a mnemonic name, like

truffle.bh.andrew.cmu.edu

Notice that the mnemonic name consists of several parts separated by periods. The first part
(truffle) is the name of the computer itself. The succeeding parts are calleddomains; they
are an indication of where the computer is. Sotruffle is part of thebh domain, which is
part of theandrew domain, which is part of thecmudomain, which is part of theedu domain.
This layering of domains is called thedomain hierarchy. Figure 13.1 illustrates some of the
domain hierarchy.

The second identity of a computer is its4-byte IP address. For example,truffle ’s IP
address is

128.2.124.147

This is what computers actually use to identify other computers on the network. The numbers
of an IP address are also hierarchical. In this case, the first two numbers of the address,128.2 ,
indicate that the computer is in CMU’s network.

Although we can use IP addresses to tell where to send a message, the mnemonic names
are much easier for humans, so that is what we humans usually use. But to send the message,
the computer must have the IP address. So the first step to sending a message is to translate the
mnemonic name into the corresponding IP address. This is calledname resolution.

74 Transporting packets

avrim

pc

cs
��
��

truffle

bh

andrew

www-pgss

mcs
PP

PP
cmu
��
�

pitt
HH

H

cburch whitehouse ac

edu

com
�
�

gov
HH

HH

uk
```

```
```

`

Figure 13.1: Internet domain hierarchy.

The simple solution to name resolution is to store all the translations on every computer.
This is an impractical solution: There are too many computers and the Internet changes too
rapidly. Every Internet computer would spend a vast amount of resources just try to remember
everybody’s names! Instead, when a computer sees a new mnemonic name, it goes out to the
network to find the corresponding IP address.

To do this, the computer goes down the domains. Each domain has adomain name server
whose job is to give IP addresses for the domains within it. So, if we want to findtruffle ,
we begin at the top-level domain name server to find theedu name server. Then we ask the
edu name server for thecmu domain. We ask thecmu name server for theandrew domain,
whose name server we ask for thebh domain, whose name server we ask fortruffle . This
name server answers with the IP address oftruffle , answering our question.

This approach solves the old problems of size and rapid change, but now a new problem
arises: A name server (like the.com server) cannot conceivably handle the traffic of answering
a request every time any Internet computer sends a message to another computer.

So actually a computer stores (caches) the important IP addresses it sees. This saves time
and communication. So if we have already accessedtruffle , there is no need to go through
the process at all. If we have not, but we have accessed some computer inbh, we may remem-
ber thebh name server’s address and ask it directly whotruffle is. If we don’t have this
information, but we have accessed theandrew domain before, then we can skip to asking the
andrew name server for the identity ofbh.

By using domain name servers, the network distributes the job of maintaining name trans-
lations to just a small fraction of the computers of the Internet. In practice, a computer using
good caching techniques usually spends verylittle time in translating a name.

13.2 Finding a route

Once we know the IP address of our message’s destination, we still must route the message
through the Internet. This is not easy: Somehow the messages are to go through the network
and end up at a destination, without the benefit of any single map to consult.

But what does it mean to send a message on its way? Remember that we are not going
to worry about individual networks; we assume they can work individually. But somehow we
have to send messages between networks. To transfer a packet between networks, the Internet
hasgateways. A gateway is a computer that resides on two (or more) networks. This allows



13.2 Finding a route75

� �

� �
10.?.?.?

10.0.0.5
20.0.0.5

� �

� �
20.?.?.?

20.0.0.6
30.0.0.6

� �

� �
30.?.?.?

30.0.0.7
40.0.0.7

� �

� �
rest of Internet

Figure 13.2: Internet gateways. (Boxes are gateways; ovals are networks.)

it to transfer messages between the networks. Figure 13.2 diagrams a series of networks (the
light-bordered ovals), connected by gateways (the heavy-bordered rectangles). Notice that a
gateway has multiple IP addresses, one foreach network it is on. This is so the gateway can be
recognized as being part of each of its networks.

To send a message on its way, then, means to send it to the best gateway in the network.
To determine this, the computer consults arouting table, which tells where to send packets
of different destinations. For example, for the gateway between the20 and30 networks of
Figure 13.2, the routing table might read

if destination is then route to
10.?.?.? 20.0.0.5
20.?.?.? destination directly
30.?.?.? destination directly

else 30.0.0.7

You can read this table as follows. If the packet’s destination is in the10 network, then the way
to get there is through the gateway between the10 and20 networks, whose address on the20
network is20.0.0.5 . It can route the packet directly to this computer since the computer is
on the20 network. Since the computer is on both the20 and30 networks, it can route packets
directly to machines in these networks. And since other packets should go through network40,
the computer routes these packets to the gateway to that network, via the30.0.0.7 gateway.

Naturally, these routing tables change occasionally. Periodically gateways tell their neigh-
bors about the best routes they know. When a gateway receives this information, it considers
whether to update its routing table. If it does, it also forwards the updated routes to its neighbors.

These gateways provide what is calledbest-effort delivery. That is, they try to route pack-
ets, but they may ignore (drop) packets if routing it is inconvenient. Possible reasons for drop-
ping a packet include: The gateway is too busy with other things, the gateway doesn’t know
where the packet should go next, the packet has passed through too many computers (and so it
may be that it is going in circles), or just the whimsy of the gateway dictates that it should be
dropped.

Packet drops are frequent; it is not uncommon for about half of the packets to fail to reach
their destination. In this case, the sender and receiver should detect there is a problem, negotiate
what to do about it, and send the lost packets again until all packets successfully reach the
destination. This task is performed by upper layers, not IP. We consider this issue in the next
chapter, where we study TCP.



Chapter 14

Putting packets together

The IP protocol gives us the ability to route packets from their source to their destination
with some degree of reliability (if only minimal). Of course programs often want to work with
a much stronger system. Therefore computers provide an additional layer separating programs
from IP. This layer is calledTransport Control Protocol (TCP), and it provides reliable deliv-
ery of arbitrary amounts of information.

A program using TCP (as built into the computer’s system) does not have to worry about
the vagaries of lost packets and out-of-order transmission. Instead, the program can treat com-
munication as being as simple as a telephone call. We’ll see examples of programs using TCP
in the next chapter.

In this chapter we see how TCP achieves its goal. We first see how TCP provides the
illusion of a connection between programs. Then we see how TCP provides reliable delivery of
information.

14.1 Connections

IP provides a system for computer-to-computer delivery, but programs want a telephone-like
connection, and for that they need program-to-program delivery.

Abstract model

To provide this, TCP providesports. A port is not a physical device; it is just a number between
0 and65; 535. (Why65; 535? It is216� 1, the largest number that can fit into two bytes.) Each
program using TCP reserves a port on its computer for its own use, and each TCP packet header
indicates for which TCP port it is intended. When the computer receives a TCP message, it
reads the port number from the header, and it routes the body of the message to the program
reserving that port.

A connectionis a pair of Internet addressesA0 andA1 and corresponding portsp0 andp1.
When program0 wants to send a message to program1, it sends a message toA1 including in
the header all the information about the connection (A0, A1, p0, andp1). WhenA1 receives
this message, it can tell from the header that the message is for program1, since program1 is
the program reserving portp1. So the computer gives the message to program1, and program
1 can tell which connection the message belongs to, since all the information (A0, A1, p0, and
p1) is included in the message.



14.2 Reliable delivery77

port protocol
17 QUOTE (quote of the day)
21 FTP (file transfer)
23 TELNET (remote login to computers)
25 SMTP (e-mail transfer)
37 TIME (time)
42 NAMESERVER (host name server)
53 DOMAIN (domain name server)
80 HTTP (Web page transfer)

Table 14.1: Some well-known port numbers.

Before sending any messages, the connection must beestablished. This is a matter of a
simple initial protocol to make sure both machines know what to expect from the other’s TCP
information.

What really happens

The above description is a bit abstract. Luckily, things are a little easier to follow in practice.
Normally, one program — called aserver — runs on a computer on a publicized port

number. For widely-distributed applications, there arewell-known port numbers reserved for
them. For example, port 80 is reserved for Web servers. Table 14.1 lists several other well-
known port numbers.

A program — called aclient — (maybe on a different computer) reserves a port for it to
communicate, and it sends a message asking to be connected with a given port on the server’s
computer. It includes its own port number in its message to the server, so that the server knows
how to send messages back to the client. For example, when you tell your Web browser (which
is a client) that you would like a page fromwww.whitehouse.gov , it sends a message to
that computer saying that it wants to get in touch with whatever program is running on port 80.

Programs can and often do converse with many programs simultaneously through the same
port. (Busy Web servers do this, for example.) This is fine, because each TCP message also
includes information about the computer and port from which the message originated, and the
program can use this information to distinguish conversations.

Technically, TCP doesn’t impose such a client-server relationship between programs. But
this is what happens in practice, as we’ll see in the next chapter.

14.2 Reliable delivery

TCP’s approach to reliable delivery is obvious, but it becomes more complex as we worry about
efficiency issues.

Simple acknowledgement protocol

The obvious protocol for ensuring that a packet reaches its destination is to have the destination
send an acknowledgement whenever it receives a packet. If the sender does not receive an
acknowledgement within a reasonable time after the packet is sent, then the sender concludes



78 Putting packets together

sender

tim
e

destination

2

2

2

2

1

2

1 Sender sends first packet to destination; it is received.

Sender receives acknowledgement.

Destination receives packet again and resends acknowledgement.
Sender gives up and sends second packet once more.
Sender waits for acknowledgement but receives none.
Acknowledgement is lost in transit.
Destination receives packet and sends acknowledgement.
Sender gives up and resends second packet.

Sender waits for acknowledgement but receives none.

Sender receives acknowledgement and so sends second packet.

Second packet is lost in transit.

Destination sends acknowledgement of receipt.

Figure 14.1: Simple acknowledgement protocol.

that the packet may have been lost, and so it resends the information. It continues sending
packets until it receives an acknowledgement of receipt. Figure 14.1 diagrams this process.

This protocol necessitates numbering the packets as they appear in the message, since the
destination may receive the same packet twice (as in Figure 14.1 when the destination’s ac-
knowledgement was lost in transit). Thus the TCP header for a packet includes, besides the
port numbers of the source and destination, asequence numbertelling with which byte the
packet begins, relative to the first byte in the connection sent by the sender. It also includes an
acknowledgement number, which indicates how many bytes the sender has received from the
destination since the connection began.

Sliding window protocol

This system is pretty slow, however. The lag time for a packet to reach its destination can be
large — we don’t really want to wait that long for every single packet. It’s like having a bucket
brigade with only one bucket.

A bucket brigade is much more efficient with several buckets; likewise, a TCP connection is
more efficient when there are several packets on the network at once.



14.2 Reliable delivery79

� � � 42 43 44 45 46 47 48 49 50 51 52 53 � � �

window!

packets

Figure 14.2: The TCP sliding window.

sender destination

5
6

4
3
2

5

4
3
2
1

1

5

Figure 14.3: Example of communicating with sliding window of size4.

On the extreme end, the sender might send all the packets in the message simultaneously.
This would be a waste, however, since neither the intermediate points in the network nor the
receiver can handle such large quantities, and almost all the packets would be lost. Instead,
therefore, TCP adopts a compromise, calledsliding windows.

The sliding window technique maintains a window of several packets that TCP is currently
trying to send. (See Figure 14.2.) TCP keeps all the packets in its window on the network.
When it receives an acknowledgement of receipt from the destination network, TCP moves the
window up so that the first unreceived packet is on the far left of the window, and it sends all the
packets that enter the window. When a packet in the window times out (that is, enough time has
elapsed that the server gives up on receiving an acknowledgement for that packet), the sender
resends the packet.

To illustrate how this works, let’s step through the event sequence diagrammed in Fig-
ure 14.3. Here we have a sliding window of4, so the window initially contains packets 1–4.
It sends each of these to the destination. Packet 1 reaches the destination, and the destination
sends back an acknowledgement of receipt. But packet 2 is lost midstream. In TCP, the destina-
tion only sends back an acknowledgement when the window can move forward, so even though
the destination receives packets 3 and 4, it does not acknowledge them.



80 Putting packets together

source
port

0

dest.
port

2

sequence
number

4

acknowledgement
number

8

len.

12

—

12.5

window
size

14

—

16
byte number

Figure 14.4: TCP header information.

Once the sender receives the acknowledgement for packet 1, the window moves forward,
and the sender sends the new packet in the window, packet 5. Eventually it decides that packet 2
must have been lost, and so it resends packet 2. It does the same for packets 3 and 4 when their
acknowledgement is long overdue.� The destination receives packet 5, but it cannot yet ac-
knowledge it, because it still doesn’t have packet 2. But when the destination receives packet 2,
it has packets 3, 4, and 5 from their first transmissions. So it sends back an acknowledgement
telling the sender that it has received everything through packet 5. Now the sender moves the
window to cover packets 6–9, and it sends each packet to its destination. And so the protocol
continues.

The actual protocol

A small detail is that TCP works with bytes, not packets. The window has many bytes, and it
divides its window up intosegmentsand sends each segment via IP.

Because the destination can become over-full with data, whenever the destination sends an
acknowledgement, it also tells the sender how big a window it should use (based on how much
more data the destination can handle). This is not entirely necessary, since the destination can
actually just drop any messages it receives beyond its own capacity, but as long as it is sending
an acknowledgement anyway, it might as well try to avoid unnecessary network traffic. This
complicates matters slightly for the sender, since the window size will vary.

Another complication in real TCP is the determination of how long to wait between sending
a packet and giving up on the acknowledgement. Network traffic varies considerably over time,
so it should quickly adapt to changing delays. To do this, the sender keeps track of recent
observed delays and computes a weighted average based on this data.

Figure 14.4 diagrams the information appearing in a TCP header that we have seen in this
chapter. The TCP includes the source port and the destination port (each 16 bits long) to identify
to which connection it belongs (the IP address of the source machine and destination machine
are already in the IP header). The sequence number (32 bits) tells which byte of the message
begins the segment. The acknowledgement number (32 bits) tells the destination the first byte
the sender has not yet received. The header length (4 bits) tells how many 32-bit groups the
header contains (so that TCP can tell where the actual message begins). The window size (16
bits) tells how big a window the destination should use (or, equivalently, how much data the
sender can handle).

Now that we have a fair understanding of what TCP provides, we can go on to applications
using TCP.

�Actually, since packets 3 and 4 may have reached their destination (but the sender cannot be sure), TCP imple-
mentations are allowed to decide against resending packets 3 and 4 in this case.



Chapter 15

Using messages

TCP and IP give us the ability to send messages reliably between computers. Now we want
to use them to do something useful. In this chapter we look at two of the most useful application
protocols in existence, the Web-access protocol (HTTP) and the mail protocol (SMTP). We will
not learn all of the details of how these protocols work; instead, we look at short common
examples of how they are used.

15.1 HTTP

HTTP (Hypertext TransferProtocol) is the basis for Web communication. Since the protocol
is so simple, it is ideal for a first look at an application protocol.

Let’s say that we want our browser to get the page at

http://avrim.pc.cs.cmu.edu/index.html

This jumble of letters means that the browser should use HTTP to request the file “/index.html ”
from avrim.pc.cs.cmu.edu . So the browser uses TCP to open a connection to port80 of
avrim (80 being HTTP’s well-known port number).

Once the browser connects to the server, it tells the server what it wants with the message

GET /index.html HTTP/1.1
Accept: text/html

The first line says that the browser wants to get the file “/index.html ” using version 1.1 of
HTTP. After this the browser can specify preferences for what it would like. In this example the
second line says that the browser prefers HTML. The preferences end with a blank line.

In this case the server responds with the following message and, since there is nothing more
to say, closes the connection.

HTTP/1.0 200 Document follows
Server: CERN/3.0A
Date: Mon, 11 Jan 1999 03:22:42 GMT
Content-Type: text/html
Content-Length: 115
Last-Modified: Mon, 11 Jan 1999 03:17:24 GMT

<p>I’m <tt>avrim.pc.cs.cmu.edu</tt>; my primary user is
<a href=http://www.cburch.com/>Carl Burch</a>.</p>



82 Using messages

The first line here gives the basic nature of the response. The server is using version 1.0 of
HTTP, and it is responding with a code-200 response;200 is the code for successful requests.
Then the server says several things about the request: The server identifies itself as version 3.0A
of CERN’s server and tells the time when it received the request. Finally, it says that the file is
an HTML file, that it is115 bytes long, and that it was last modified on January 11. Finally a
blank line says that the file is about to start. In this case the file is just two lines of HTML,

<p>I’m <tt>avrim.pc.cs.cmu.edu</tt>; my primary user is
<a href=http://www.cburch.com/>Carl Burch</a>.</p>

15.2 SMTP

Most mail on the Internet is transfered using SMTP (SimpleMail TransferProtocol). It’s more
complicated than HTTP, but not much worse.

Let’s say I’mspot@cburch.com working on the machineavrim.pc.cs.cmu.edu ,
and I tell it to send mail toburch@andrew.cmu.edu . Thenavrim opens up a connection
to port 25 (SMTP’s well-known port number) on the computerandrew.cmu.edu . Unlike
HTTP, an SMTP transaction is an extended two-sided conversation; in the following, boldface
text indicates whatavrim sends, and normal text indicates whatandrew sends.

First andrew responds with a message welcoming you to the system. Each line begins
with a 220 code so that automatic mail systems can just read the code to know what sort of
messages are being sent. (We can’t expect the automatic system to understand the text.)

220-andrew.cmu.edu ESMTP Sendmail 8.8.5/8.8.2
220-Mis-identifying the sender of mail is an abuse of computing facilities.
220 ESMTP spoken here

In SMTP, nothing prevents people from lying about who is sending the message. The ‘welcome’
message at this SMTP server kindly warns you that doing this is abusive behavior. In many cases
doing this is grounds for serious penalties (expulsion from school or workplace, perhaps).

Once this is sent,avrim sends a message identifying itself using thehelo command.

helo avrim.pc.cs.cmu.edu
250 andrew.cmu.edu Hello AVRIM.PC.CS.CMU.EDU [128.2.185.114], pleased to meet you

The server courteously responds that it recognizes the computer. Now the client wants to send
mail; first it tells the server the sender and the recipient.

mail from: spot@cburch.com
250 spot@cburch.com... Sender ok
rcpt to: burch@andrew.cmu.edu
250 burch@andrew.cmu.edu... Recipient ok

The server accepts both of these e-mail addresses as valid. Finally, the client is ready to give the
message to be sent using thedata command. When the server gives the code-354 message, it
is ready to receive the message to be sent. The client will insert the message verbatim and finish
it off with a line containing a single period.

data
354 Enter mail, end with "." on a line by itself
Arf, arf!
.
250 XAA21092 Message accepted for delivery

The server commits to delivering the message. The client is now done and so signs off.
quit
221 andrew.cmu.edu closing connection



Chapter 16

Cryptography

One of the striking things about the Internet protocols is how trusting they are. There is
nothing to prevent somebody from listening in on a message (given access to a machine on the
path) or from counterfeiting messages.

One of the most attractive options for addressing privacy iscryptography. The obvious
approach to preventing a spy from reading a message is to hide the message from the spy.
Cryptography has a more subtle approach: We do not worry about whether the spy sees the
message; instead, we encode the message so that only the intended recipient will understand it.

The idea of cryptography is certainly not new. It has been around at least since Julius Caesar,
and war has continued to inspire cryptography. In World War II, when secrets were transmitted
by broadcast radio, cryptography blossomed into a full-blown science.

Now cryptography is no longer the domain of soldiers, criminals, and spies. Everybody
sends sensitive information (passwordsand credit card numbers, for example) across the essentially-
public Internet. But using cryptography, we can render electronic communication one of the
most secure forms of communication.

This chapter begins by defining different types of cryptographic goals. Then we look at
the most simple goal, private-key cryptography. And finally we look at how one can provide
interesting and impressive guarantees for some special cases.

16.1 Protocols

Cryptography has a number of applications. In this section we look at a few of the most impor-
tant goals. In the following, we suppose that Bob wants to deliver a message to Alice, but Eve
can eavesdrop.

Private-key cryptography

The traditional form of encryption isprivate-key cryptography. In private-key cryptography,
Alice and Bob agree in private on akeyK. When Bob wants to send his message, he encrypts it
so that anybody withK can decrypt it. He sends the encrypted message to Alice, who decodes
the message usingK. If Eve happens to get what Alice sent, she would have to knowK to
understand the message.



84 Cryptography

Public-key cryptography

Private-key cryptography has a crucial shortcoming: Alice and Bob have to agree beforehand
on their key. This is inadequate if Alice and Bob have never met privately before. This may
happen if Bob has just visited Alice’s Web site and decided that he wants to buy something from
her store with his credit card.

Public-key cryptography is a way to address Alice and Bob’s conundrum. Of course,
Alice can’t include a private key on her Web site, because Eve could find it too. But she can
publicize a public keyP that, if a message is encrypted using it, the encryption can only be
decoded with a corresponding private keyK that only Alice knows. So when Bob responds
to Alice’s advertisement, he encrypts his message usingP . Now only people who haveK can
decrypt the message, and only Alice has it.

Doing this safely is an ambitious goal. It is somewhat surprising that there are any tech-
niques to do this. But there are a few. One of the most well-known is calledRSA encryption
(named after its inventors, Rivest, Shamir, and Adelson); it is one of the most important pieces
of PGP (PrettyGoodPrivacy), the most widespread cryptography package on the Internet. An
RSA public key is the product of two large prime numbers (of several hundred digits each),
and the private key includes the factorization. Breaking RSA essentially requires that the public
key be factored. Webelievethis takes impractically long for large numbers, since people have
worked on this problem since the ancient Greeks with only moderate success.Prime-Test-All
is basically the best algorithm we know, and it takes much to long for large numbers. RSA
encryption is therefore interesting and important, but it is too complicated to adequately explain
here.

Public-key cryptography is inherently insecure. If Eve can intercept messages between
Alice and Bob, then she can pretend to be Alice to Bob and pretend to be Bob to Alice. That is,
she creates a set of public and private keys, and she convinces Bob that this public key is really
Alice’s. Now Bob sends a message which Eve can decrypt. If she wants Alice to receive the
message, she can encrypt the message using Alice’s real public key. So public-key cryptography
has problems. But it forces Eve to masquerade as somebody else rather than just eavesdrop; this
is usually much harder to do.

Signatures

A related issue is signing a message. Here we want Alice to be sure that messages from Bob are
actually from Bob. For this purpose, Bob publishes a public keyP . When he sends a message,
he encrypts it using a private keyK that Alice doesn’t know, in such a way thatP can decrypt
it. Now Alice can verify that Bob sent the message by seeing if his public keyP decrypts it.
She can be sure that Bob sent the message insofar as she is sure thatP is Bob’s public key. Eve
couldn’t masquerade as Bob unless she could figure outK.

This is called asignature. A good signature algorithm is much more difficult to forge than
a traditional signature. RSA, it turns out, can also be used as a signature algorithm. But we’re
still not going to talk about it.

Special-purpose goals

The above protocols were for very general purposes. There are many special-purpose cases that
are interesting for cryptographers to consider. How can we vote securely? What is a secure way
to bid on an item? How can we transmit money with minimal risk? How can we insure that



16.2 Private-key cryptography85

keys are kept secure? All these are good questions, and cryptographers seek ways to handle
these cases.

16.2 Private-key cryptography

It’s important that a private key be long enough that computers can’t search through all of them
to see which one gives a result in an interpretable language. For good cryptographic schemes,
searching through all possible keys is often the best known attack.

The simplest and most popularly-understood form of cryptography is thesubstitution ci-
pher, also known as thesecret decoder ring. In it Alice and Bob agree on a translation between
letters. One possible translation is

from _ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
to A X J E W U I D C H T N M B R L V P O Y G K Z Q F S _

So if Bob wants to say, “I_DO,” to Alice, he would send, “HAWL.” When Alice receives it, she
goes in the opposite direction to get the original message.

There are many (27! � 1028) possible keys here; Eve is unlikely to be able to try them
all to decode Bob’s message. But of course, as anybody who has ever solved a newspaper
cryptogram knows, this is not very secure. By analyzing letter frequencies, Eve can deduce the
original message.

To analyze cryptography rigorously, we need to have a mathematical model of what it means
for a protocol to be secure. A particularly strong model, proposed by Alan Turing, isperfect
security. In perfect security, we model Eve’s belief about messages as a probability distribution.
Perhaps Eve thinks Bob will say “Yes” with probability0:7 and “No” with probability0:3. A
protocol is perfectly secure if the message does not change her belief at all; that is, it is secure
if for the transmitted messageX , for every possible original messageM , we have

Pr [M is original message] = Pr [M is original message, given transmissionX] :

(This is not true of the substitution cipher, since in seeingX , Eve can immediately eliminate
messages not matching the pattern. It is also not true of RSA, since an infinitely-powerful Eve
might factor the public key, and this would change her belief.)

Here’s a simple scheme worth analyzing, called theone-time pad. Here Alice and Bob
agree to a stream of random numbers between0 and26:

h2; 23; 20; 8; 16; 16; 1; 23; 20; 3; : : :i :

Now when Bob wants to send the message, he adds the corresponding number to each letter
(wrapping around when he reachesZ).

I D O
+2 +23 +20 +8

K W X W

So he sends “KWXW” to Alice, who then subtracts the same numbers to get the original mes-
sage. (Bob should also append several spaces to his original message so that Eve doesn’t learn
anything about the message’s length.)



86 Cryptography

To analyze the one-time pad, we need a fact calledBayes’ theorem. Bayes’ theorem says
that for any two eventsA andB, we have

Pr [A occurs, givenB occurs] =
Pr [B occurs, givenA occurs] � Pr [A occurs]

Pr [B occurs]
:

The following sequence of equalities is a simple proof of this theorem.

Pr [B occurs, givenA occurs] � Pr [A occurs]
Pr [B occurs]

=
Pr [A andB both occur]

Pr [B occurs]
= Pr [A occurs, givenB occurs]

We takeA to be the event that a particular messageM is the actual message Bob sent, and
we takeB to be the event that Bob sent the encrypted messageX . Say that the key and message
both havek characters.

Notice that the probability ofB occurring given thatA occurs (that is, the probability that
X is the encryption ofM ) is (1=27)k, since for each letter ofM , there is a1=27 chance that the
private key happens to include the right rotation to get to the corresponding letter ofK. Notice
also that the probability ofB occurring (regardless ofA) is also(1=27)k, since

Pr [X is encryption] =
X

keysK

Pr [K is key] � Pr [M isX �K]

=
X

keysK

�
1

27

�k
� Pr [M isX �K]

=

�
1

27

�k
�
X

keysK

Pr [M isX �K]

=

�
1

27

�k
:

The last step holds because the summation is over all possibilities for the original messageM ,
and the probability that the message is one of its possibilities is exactly1.

Now we apply Bayes’ theorem.

Pr [A occurs, givenB occurs] =
Pr [B occurs, givenA occurs] � Pr [A occurs]

Pr [B occurs]

=
(1=27)k � Pr [A occurs]

(1=27)k

= Pr [A occurs] :

Thus the one-time pad satisfies our definition of perfect security.
The one-time pad is useful in some very high-security military applications. But it is not

adequate for prime-time use, because the number of bits in the key is as long as the message.
Transmitting such a long key is as expensive as transmitting the original message itself.

For this reason, we normally go with a goal much weaker than perfect security:complexity-
theoretic security. In this, we build a cryptographic scheme so that the key cannot be broken
quickly unless somebody finds a fast algorithm for a problem for which nobody seriously be-
lieves a fast algorithm exists. This is where RSA, factoring, and prime numbers come in: Fac-
toring is a very well-studied problem for which no known algorithm can handle thousands of
digits in a practical amount of time.



16.3 Communicating an average87

Alice Bob Carl Dafna score
Alice 135 240 301 221 95
Bob 285 363 109 133 88
Carl 135 300 334 83 50

Dafna 132 5 230 116 82
total 286 106 172 152 315

Table 16.1: Communicating the average fork = 4, m = 100

Exercise 16.1:(Solution, 122)

OKXYUOPUAKURCCAPLUBLMR!LBULSUPBMMXYU

BLSU,OQQSVDMIGYUDABLUSJSPUMCUC OTSYU

IOTSUDLACC AK!UBLVMR!LUBLSUBR !SJUDMMXYU

OKXUQRVQ SXUOPUABUIOTSW

16.3 Communicating an average

Let’s look at a special-purpose cryptographic protocol. Say we have several (k) students, and
they want to know their average test score. But none of them wants to tell what their test score
is. What can they do?

It turns out that they can find out their average without anybody revealing any information
about their score! (This ignores the information that is inherently gained from the average
itself.) To do this, we use sumsmodulo km + 1, wherem is the maximum test score possible.
(Sokm+ 1 is more than the sum of the scores could possibly be.) The sum ofx andy modulo
z is the remainder ofx+ y when divided byz. That is, ifx andy are both between0 andz� 1,
it will be x+ y if x+ y < z andx+ y � z otherwise.

Say Alice’s score is 95. Alice selectsk � 1 random numbers between0 and km, and
she computes a numbernA between0 andkm such that the sum ofnA and all these random
numbers is 95 modulokm+ 1.

Confidentially, Alice tells each other person one of these random numbers. Each other
person does the same: They pickk � 1 random numbers, compute someni, and communicate
the random numbers confidentially. So Alice has been toldk � 1 numbers, and she still has
nA. Now she adds them up modulokm + 1, and tells everybody the result. The sum of what
everybody announces will be the sum of all their test scores. (And of course Alice is intelligent
enough to divide byk to get the average.)

Now is it really the case that this is the sum? Look at Table 16.1. The score of each person is
the sum of the numbers in the row, and we want the total of these. In our protocol, each person
announces a column sum, and we add them. These are just two ways of summing all the entries
in the table. Since adding modulokm + 1 is associative and commutative, both sums are the
same.

Now can anybody know anything about Alice’s score? They certainly don’t from the ran-
dom number she first told them. And the number she announced to everybody is the sum of
her score and several random numbers. The chance that she announces any individual number
between0 andkm is 1=(km + 1). (The sum of all the random numbers has a uniform dis-



88 Cryptography

tribution between0 andkm, and addingnA modulokm + 1 will only shift this distribution
cyclicly, maintaining the uniform distribution.) So that says nothing aboutnA. Hence nobody
else knows anything more about Alice’s score.

Cryptography appears to be the surest way to handle many of the problems that arise in
communication. It will continue becoming more prominent as the Internet matures to handle
more people and important transactions.

Exercise 16.2: One very important place where cryptography can be used is in voting. Here
we have several people wanting to vote yes or no on an issue, and we want to determine which
has the majority without revealing any information about individuals’ votes. One tempting
approach is to use the protocol of Section 16.3 to tally votes. What’s wrong with this approach?



FIFTH UNIT

Algorithms

In this unit we look at the study of developing fast algorithms for problems. Our approach is
mathematical, in defining algorithms, in proving their correctness, and in analyzing their speed.

Our study begins in Chapter 17 with an examination of how we can analyze an algorithm’s
speed usingasymptotic analysis, which basically means that we analyze the algorithm’s time
requirements for very large problems. This concept is a foundational tool for mathematically
analyzing algorithms, so we must learn how to do this well.

After learning the fundamentals, we turn to a selection of two techniques in the development
of algorithms that have proven useful for a variety of problems: divide and conquer (Chapter 18)
and dynamic programming (Chapter 19). Of course there are many other algorithms and general
techniques to study; we choose these two because of their relation to recursion (Chapter 10) and
their frequent usefulness.

In each of these latter two chapters, we will see two or three very different problems where
the technique applies. As you read each chapter, try to think abstractly about what unites the
algorithms in the chapter. By understanding the techniques better, you can become better at
writing your own algorithms for other problems.



Chapter 17

Analyzing algorithm speed

Constructing algorithms is easy. But we would like to be able to compare them. In particu-
lar, we often want to know how fast they are. How can we determine which of two algorithms
is the faster?

Computer scientists have a mathematical approach to answering this question. The answer
eliminates the tedium of experimentation and adds much more rigor. This approach is called
asymptotic analysis. This chapter introduces and explains this concept.

17.1 Comparing algorithms

How can we compare two algorithms’ speed? We quickly look at several alternatives.

Implement and test: The most reliable and intuitive approach is to implement both algorithms
and to test them. Done correctly, this approach has a definite advantage: It gives strong
evidence that the algorithm often works well. There are several problems, though, that
lead us to look for other ways. First, implementing algorithms takes a lot of time. Second,
the results depend strongly on which computer we use and how well we implement each
algorithm. Finally, the algorithm that appears to be better may actually be much slower
for many cases not included in the tests. This especially could be a problem if we run
our tests on small problems but later, as we work with more powerful computers, we start
attempting to use the same algorithm for larger problems.

Extrapolate: The last objection can be met partially by graphing the speed of each algorithm
relative to problem size and extrapolating. Unfortunately, as is typical with extrapolating,
this can lead to major problems far from the known points (especially if, for example,
we fit the points to a line, but actually as problem size increases, the points fit a parabola
better).

Create a formula: We can ignore experimentation and just write a formula for the algorithm.
For example, we might introduceTadd for the time it take our machine to add two num-
bers together,Ttest for the amount of time it takes to compare two numbers, and so on.
The problem with this approach is that it is quite tedious, and the resulting formula isn’t
easy to interpret.

Approximate: So what we actually do is calledasymptotic analysis. The real question, as
the problem size gets larger, is: Which term of the formula grows the fastest? AsN



17.2 Finding big-O bounds91

increases, does anN term dominate? Or does anN2 term dominate? (We ignore the
constant coefficient for the term, since that makes things more complicated.)

Admittedly, ignoring slower-growing terms and coefficients in this way is extremely
crude, but it is an important first cut in deciding which algorithms are worth consider-
ing.

We indicate a algorithm’s speed usingbig-O notation. For example (as we’ll see soon),
Prime-Test-All runs inO(

p
N) time (pronouncedorder square-root ofN ), because as

the input numberN grows, the dominating term in the time formula is some coefficient
times

p
N .

We can define big-O notation explicitly and rigorously. (Don’t worry about this definition
too much if it’s confusing; the intuition is easier to understand and use.) We say a function
f(n) is O(g(n)) if there are constantsc andM so that, for all numbersN pastM , we
havef(N) < c � g(N).

Before we look at asymptotic analysis of algorithms, we first should get a better feel of the
asymptotic bounds of an expression. To do this, you go through each term and determine which
term grows fastest for large values, and you ignore the coefficient in this term.

expression asymptotic bound
50x2 + 25x+ 40 = O(x2)
5096 log2 n+ 0:02n = O(n)
4; 236; 121 = O(1)
4 � 2n log2 n+ n2 = O(2n log2 n)

It’s important to remember that big-O bounds areupper bounds. For example, though
50x2 + 25x + 40 isO(x2), it is alsoO(x3) and evenO(22

x
), since all these grow faster than

the fastest-growing term of the expression.

Exercise 17.1:(Solution, 122) Order the following from slowest-growing to fastest-growing
asn increases to very large values.

p
n log2 log2 n 2n n2

1 log2 n n log2 n n!

Exercise 17.2:(Solution, 122) Give the best asymptotic bound for each of the following ex-
pressions using big-O notation.

a. 3n log2 n + 5
p
n c. n! + 8 � 2n + 5

b. 8n2(4 log2 n + 3
p
n) d. 8+3 log

2
n

n

17.2 Finding big-O bounds

To find the bound for a program, there are some simple rules that you can use. After describing
the rules, we go through several examples illustrating these rules at work. (Sometimes these
rules are somewhat crude, but don’t worry about that for now.)

Constant Rule: All computer actions, except for function calls and iteration statements, take
O(1) time.



92 Analyzing algorithm speed

Sequence Rule:If you do one thing that takesO(f(n)) time and then another thing that takes
O(g(n)) time, then doing both takesO(f(n) + g(n)) time.

Iteration Rule: If you go throughO(f(n)) iterations of a loop, and each iteration takesO(g(n))
time, then the time for all iterations is bounded byO(f(n) � g(n)).

Function Rule: Calls to functions take as much time as the analysis for that function says.
(Recursive calls are more complicated; we defer this issue to Chapter 18.)

In light of these rules, we return to thePrime-Test-All example.

Algorithm Prime-Test-All(N)
1 Let i hold2.
2 while i2 � n, do:
3 if i dividesn, then:
4 return false .
5 end of if
6 Add1 to i.
7 end of do
8 return true .

When we analyze algorithms like this, we start from the inside and go out. Lines 3, 4, and 6
have no function calls or iteration statements, so each takesO(1) time (Constant Rule). By the
Sequence Rule, the total time for lines 3–6 isO(1+1+1+1) = O(1). (Usually we don’t get to
line 4, but it doesn’t hurt to throw it in too.) Now we apply the Iteration Rule to thewhile loop
of lines 2–7: We go throughO(

p
N) iterations of this loop, and each iteration takesO(1) time,

so the total time isO(
p
N � 1) = O(

p
N). By the Constant Rule, lines 1 and 8 each takeO(1)

time. We apply the Sequence Rule again: The total amount of time taken byPrime-Test-All is
O(1 +

p
N + 1) = O(

p
N).

Now let’s look at an algorithm forMatrix-Addition. Given twon � n matrices, we’re to
find the sum of each corresponding pair of elements.

Algorithm Add-Matrices(A;B)
1 for each integeri between1 andn, do:
2 for each integerj between1 andn, do:
3 LetCi;j holdAi;j + Bi;j .
4 end of do
5 end of do
6 return C.

This is slightly more complicated because of the nested loop. Again, the approach is to start
with the inside and go out. By the Constant Rule, line 3 takesO(1) time. There aren iterations
of thej loop in lines 2–4, and each iteration takesO(1) time, so by the Iteration Rule, lines 2–4
takeO(n�1) = O(n) time. For thei loop in lines 1–5, there aren iterations, and we just saw that
each iteration takesO(n) time, so by the Iteration Rule, lines 1–5 takeO(n � n) = O(n2) time.
Line 6 takesO(1) time (Constant Rule), so the total amount of time (applying the Sequence
Rule to combine lines 1–5 with line 6) isO(n2 + 1) = O(n2). ThusAdd-Matrices takes
O(n2) time.

Another example: This C++ function takes a number to a positive integer power. We exam-
ined this algorithm in Chapter 10; now we replace the recursion with a loop.



17.2 Finding big-O bounds93

1 double exponentiate(double x, int n) {
2 double ret = 1.0;
3 double y = x;
4 int i = n;
5 while(i > 0) { // always at this point yˆn == xˆi * ret
6 if(i % 2 == 0) { // i is even
7 i = i / 2;
8 } else { // i is odd
9 ret = ret * x;

10 i = (i - 1) / 2;
11 }
12 x = x * x;
13 }
14 return ret; // i must be 0, so yˆn = xˆ0 * ret = ret
15 }

By the Constant and Sequence Rules, each iteration of lines 6–12 takesO(1) time. But how
many times do we go through the loop? After each iteration,i is at most half of what it was
before, so afterk iterations,i is at mostn(12)

k. Thus if go throughk = log2 n iterations,i
is at mostn(12)

log
2
n = n

n = 1. One more iteration bringsi to 0, so there areat most1 +
log2 n iterations. (Sometimes we will finish the loop sooner. But it will always stop in at most
1 + log2 n iterations, and an upper bound is all we need for big-O bounds.) Each iteration
takesO(1) time, so by the Iteration Rule, lines 5–13 takeO(log2 n) time. The amount of time
consumed by the statements outside the loop isO(1). So by the Sequence Rule, the amount of
timeFast-Exponentiate requires isO(1 + log2 n) = O(log2 n).

Now we look at an example involving the Function Rule. Say we want to count the number
of primes between2 andN . The following would do this.

Algorithm Count-Primes(N)
1 Letcount hold0.
2 for each i between2 andN , do:
3 if Prime-Test-All(i) = true , do:
4 Add1 to count .
5 end of if
6 end of do
7 return count .

By the Function Rule, line 3 takesO(
p
i) time, and since it is always the case thati � N , this is

O(
p
N). Line 4 takesO(1) item (Constant Rule), so each iteration of lines 3–5 takesO(

p
N)

time (Sequence Rule). We go throughN � 1 iterations of the loop in line 2, so lines 2–6 take
a total ofO((N � 1)

p
N) = O(N

p
N) time (Iteration Rule). Lines 1 and 7 each takeO(1)

time, so the total amount of time forCount-Primes isO(1 +N
p
N + 1) = O(N

p
N).

Exercise 17.3: (Solution, 122) In Exercise 2.2, you invented and compared algorithms for
theSquare-Root problem. Using big-O notation, analyze the speed of each of the following
Square-Root algorithms. Describe the best big-O bound you can find.

int squareRootA(int n) {
int i = 0; // find the least i whose square is less than n
while(i * i <= n) {

i = i + 1;
}
return i - 1;

}



94 Analyzing algorithm speed

int squareRootB(int n) {
int i = n; // find the greatest i whose square is more than n
while(i * i > n) {

i = i - 1;
}
return i;

}

int squareRootC(int n) {
int low = 0; // this algorithm works by successively halving
int high = n; // range (low, high), as dictionary searching
while(high - low > 0) {

int mid = (low + high) / 2;
if(mid * mid < n) {

low = mid + 1;
} else if(mid * mid > n) {

high = mid;
} else {

return mid;
}

}
if(low * low <= n) {

return low;
} else {

return low - 1;
}

}

int squareRootD(int n) { // assumes n perfect square
// take every other number in the prime factorization
int ncur = n;
int sqrt = 1; // always we have (sqrt * sqrt) * ncur == n
for(int i = 2; ncur != 1 ; i = i + 1) {

while(ncur % i == 0) {
ncur = ncur / i / i;
sqrt = sqrt * i;

}
}
return sqrt;

}



Chapter 18

Divide and conquer

One of the most useful general algorithmic approaches isdivide and conquer. Algorithms
using this approach solve a problem in three steps.

1. Split the problem into smaller, similar subproblems.

2. Solve each of these problems using recursion.

3. Combine the solutions into a solution for the original problem.

We will see how to use the divide-and-conquer technique for two important problems: sorting
and multiplication.

18.1 Sorting

One of the classic — and one of the most useful — instances of using the divide-and-conquer
approach is in sorting an array.

Problem Sort:
Input: an arrayA of integers.
Output: an array in increasing order, containing each integer exactly as often as it

occurs inA.

For example, given the input array

A = h19; 1; 29; 30; 6; 15; 2; 5i

we would want to output
h1; 2; 5; 6; 15; 19; 29; 30i :

The Merge-Sort algorithm

Our strategy is to divide the problem in two using the simplest possible method: We split the
array down the middle. Recursively we sort both halves. How can we combine these solutions?
The two solutions may overlap, but we can combine them into a single sorted list by merging
the two sorted solutions in a zipper fashion.



96 Divide and conquer

19 1

6
19

6
1

19 1

29 30

6
29

6
30

29 30
�
�
��

1 19
@

@
@I

29 30

19 1 29 30

6
1 19 29 30

Figure 18.1: Sorting the arrayh19; 1; 29; 30i usingMerge-Sort. (Italic numbers are inputs,
Roman numbers are outputs.)

Algorithm Merge(A;B)
// A andB must be already-sorted arrays
Let nA andnB be the length of arraysA andB.
LetC hold an array of lengthnA + nB. // C will be the result
Let a, b, andc hold0. // current positions inA, B, andC
while a < nA or b < nB , do:

if a < nA and Aa < Bb, then:
LetC [c] holdA[a].
Add 1 to a andc.

else:
LetC [c] holdB[b].
Add 1 to b andc.

end of if
end of loop
return C.

Since every time through the loop we handle one of the items inA orB, we go through the loop
exactlynA + nB times. Each iteration of the loop, since it involves no loops or function calls,
takesO(1) time. SoMerge consumesO(nA + nB) time.

With Merge in hand we can write our divide-and-conquer sorting algorithm,Merge-Sort.

Algorithm Merge-Sort(A)
if A has only one item,then:

return A.
else:

LetA0 hold first half ofA.
LetA1 hold second half ofA.
return Merge(Merge-Sort(A0);Merge-Sort(A1)).

end of if

Figure 18.1 gives an example of usingMerge-Sort on the arrayh19; 1; 29; 30i. We divide it
into two arraysh19; 1i andh29; 30i. Recursively we sort each to geth1; 19i andh29; 30i. And
finally we merge these two arrays and returnh1; 19; 29; 30i.



18.2 Multiplication 97

Time analysis ofMerge-Sort

To analyze the time this algorithm consumes, we write a recurrence forT (n), the time to sortn
numbers. Let us assume for convenience thatn is a power of2. In the base case, whenn = 1,
T (n) is O(1). For othern, we have three steps to analyze. We first divide the array into two
pieces of lengthn=2; this takesO(n) time. Then we recursively sort the two subpieces; each
recursive call takesT (n=2) time by induction, so sorting both pieces takes2T (n=2) time. And
finally we merge the two lists, takingO(n=2 + n=2) = O(n) time. Thus the total amount of
time is

T (n) = O(n) + 2T (n=2) +O(n) = 2T (n=2)+ O(n) :

That is, for somec, T (n) is at most2T (n=2) + cn.
To solve this recurrence, we will apply the recurrence to itself until we reach the base case

of T (1).

T (n) � 2T (n=2) + cn

� 2(2T (n=4)+ cn=2) + cn = 4T (n=4) + 2cn

� 4(2T (n=8)+ cn=4) + 2cn = 8T (n=8) + 3cn

In general, after applying the recurrence to itselfk times we have

T (n) � 2kT (n=2k) + kcn

Let us takek to belog2 n, so thatn=2k isn=n = 1. In this case we have

T (n) � 2log2 nT (n=2log2 n) + (log2 n)cn

= nT (n=n) + cn log2 n

= nO(1) + O(n log2 n)

= O(n log2 n)

Thus we have that the total amount of time forMerge-Sort isO(n log2 n).
(We’ll not see why in this book, but the general form ofSort cannot be done in less than

O(n log2 n) time. TheMerge-Sort algorithm, then, is optimal within a constant factor.)

18.2 Multiplication

Given twon-digit numbersa andb, theMultiplication problem is to find their product.

Problem Multiplication:
Input: numbersa andb of n digits each.
Output: the product ofa andb.

Our goal is find a quick multiplication algorithm.

The grade-school method

The multiplication method that you probably know from grade school works fairly well. It in-
volves going though each digit ofb and multiplying that single digit witha, and then adding the



98 Divide and conquer

1215
� 1998

9720
10935
10935

+ 1215
2427570

Figure 18.2: Example of grade-school multiplication.

results in a special way. In case you suffer from calculator-induced forgetfulness, Figure 18.2
illustrates this method.

This is not a divide-and-conquer technique, but we should analyze it first to get a point of
comparison: How much time does the grade-school approach take? We haven digits of b to
multiply by a; each of these multiplications takesO(n) time, so the first step of writing down
the numbers takesO(n2) time. Then we add togethern numbers, each having at most2n digits.
Adding two2n-digit numbers takesO(n) time, so the addition step takesO(n2) time. Thus the
grade school method takesO(n2) time.

Karatsuba’s method

We now expose the ruse your grade school teacher played on you: There is a better way. Using
divide and conquer, we can multiply inO(n1:59) time!

Say we dividea into two pieces,aL andaR, whereaL has the topn=2 digits of a andaR
has the bottomn=2 digits. Soa is aL � 10n=2 + aR. Divide b likewise intobL andbR. Then
a� b can be written as

(aL � 10n=2 + aR)(bL � 10n=2 + bR) = aLbL � 10n + (aLbR + aRbL)� 10n=2 + aRbR :

This already gives us a divide-and-conquer algorithm: Dividea andb into two pieces each, find
the four products (aLbL, aLbR, aRbL, andaRbR), and add them together as the equation tells
us.

We can analyze this algorithm by writing another recurrence, lettingT (n) represent the
amount of time taken to multiply twon-digit numbers. Dividinga andb into two pieces takes
O(n) time. Four multiplications ofn=2-digit numbers will take4T (n=2) time. And adding the
results together according to the equation involves adding four numbers, each with at most2n
digits. This takesO(n) time. So our recurrence is

T (n) � 4T (n=2) + O(n) :

We can solve this similarly to how we solved theMerge-Sort recurrence; if we did this we
would find an answer ofT (n) = O(n2). This is not an improvement over the grade-school
method.

The problem is that we save nothing by multiplying four numberseach withn=2 digits. But,
using a bit of cleverness, we can conserve our multiplies. In particular, say we calculatex1, x2,
andx3 as follows.

x1 = aLbL



18.2 Multiplication 99

x2 = (aL + aR)(bL + bR)

x3 = aRbR

Each of these three quantities involves multiplying twon=2-digit numbers. (Calculatingx2 may
involve multiplying numbers ofn=2 + 1 digits, but for largen the additive1 is not significant.
For convenience we ignore it.) From these we already haveaLbL andaRbR. The clever thing,
though, is that we also haveaLbR + aRbL, because we can obtain it by subtractingx1 andx3
from x2. Thus we can writeab as

ab = aRbR�10n+(aLbR+aRbL)�10n=2+aRbR = x1�10n+(x2�x1�x3)�10n=2+x3 :

So we can multiply twon-digit numbers by multiplying onlythreen=2-digit numbers!
This gives us a new, faster multiplication algorithm, invented by Karatsuba in 1962.

Algorithm Karatsuba-Multiply(a; b)
if a or b has one digit,then:

return a � b.
else:

Let aL hold the highern=2 digits ofa.
Let aR hold the lowern=2 digits ofa.
Let bL hold the highern=2 digits ofb.
Let bR hold the lowern=2 digits ofb.
Let x1 holdKaratsuba-Multiply(aL; bL).
Let x2 holdKaratsuba-Multiply(aL + aR; bL + bR).
Let x3 holdKaratsuba-Multiply(aR; bR).
return x1 � 10n + (x2 � x1 � x3)� 10n=2 + x3.

end of if

Figure 18.3 contains an example of running this algorithm on1215 and1998.

Time analysis ofKaratsuba-Multiply

We now analyze the running time ofKaratsuba-Multiply. Each addition or subtraction in the
algorithm takesO(n) time, and we have3 recursive calls, each for multiplying numbers with
(about)n=2 digits. So we obtain the recurrence

T (n) � 3T (n=2) + cn ;

for some numberc. Our approach to solving this recurrence is similar to that forMerge-Sort:
We find a general equation for unrolling the recurrencek times, and then we use a value ofk
for which we getT (n) in terms of the base case,T (1).

T (n) � 3T (n=2)+ cn

� 3(3T (n=4)+ cn=2) + cn = 9T (n=4) + (3=2 + 1)cn

� 9(3T (n=8)+ cn=4) + (3 + 1)cn = 27T (n=8)+ (9=4 + 3=2 + 1)cn
...

� 3kT (n=2k) +

 �
3

2

�k�1

+

�
3

2

�k�2

+ � � �+ 3

2
+ 1

!
cn



100 Divide and conquer

1215� 1998�����������

XXXXXXXXXXX
x1 = 12� 19

��
�

HH
H

1� 1 3� 10 2� 9

1 30 18
HHH

���
18
11

+1
x1 =228

x2 = 27� 117

��
�

HH
H

2� 11 9� 18 7� 7

22 162 49
HHH

���
49
91

+22
x2 =3159

x3 = 15� 98

��
�

HH
H

1� 9 6� 17 5� 8

9 102 40
HHH

���
40

53
+ 9

x3 =1470

XXX
XXX

XXX
XX

���
���

���
��

1470
1461

+228

2427570

Figure 18.3: Example of multiplying usingKaratsuba-Multiply.

To simplify this somewhat, we factor(3=2)k�1 from the second term, and we extend the geo-
metrically decreasing series infinitely. (This extension only increases the sum.) It is a fact that
for r < 1, the sum1 + r + r2 + r3 + � � � = 1=(1� r); in this case,r is 2=3, so the sum is3.
We apply this fact to our bound too.

T (n) � 3kT (n=2k) +

 �
3

2

�k�1

+

�
3

2

�k�2

+ � � �+ 3

2
+ 1

!
cn

= 3kT (n=2k) +

�
3

2

�k�1
 
1 +

2

3
+

�
2

3

�2
+ � � �+

�
2

3

�k�1
!
cn

� 3kT (n=2k) +

�
3

2

�k�1
 
1 +

2

3
+

�
2

3

�2
+ � � �

!
cn

= 3kT (n=2k) + 3c

�
3

2

�k�1

n = 3kT (n=2k) + 2c

�
3

2

�k
n

Our bound forT (n) is in terms ofT (1) whenk = log2 n. In this case3k is

3k =
�
2log2 3

�log2 n
= 2log2(3)�log2(n) = 2log2(n)�log2(3) =

�
2log2(n)

�log2 3
= nlog2 3

We can use this to simplify our recurrence

T (n) � 3kT (n=2k) + 2c
3k

2k
n = nlog2 3T (1) + 2c

nlog2 3

n
n = O(nlog2 3) :

Thus the time bound forKaratsuba-Multiply isO(nlog2 3) � O(n1:59).

Performance ofKaratsuba-Multiply in practice

In a certain sense the theoretical analysis unsatisfying. It is not really a proof thatKaratsuba-
Multiply is always faster; it is a proof that is it faster for very largen. Indeed, the relative



18.2 Multiplication 101

� grade-school method
� Karatsuba-Multiply

-

6

�� �� �� �� �
� �

�

�

0

100

200

300

400

time
(ms)

32 128 512 2048
number of digits

Figure 18.4: Multiplication experiment results. (Note the logarithmicx-axis.)

complexity of Figures 18.2 and 18.3 suggests that perhaps your grade-school teacher was right
not to teach youKaratsuba-Multiply. Our analysis shows thatKaratsuba-Multiply becomes
faster at some point, but that point may be impractically large (hundreds of thousands of digits,
maybe).

To see how the algorithms performed with small numbers, the author performed an experi-
ment comparingKaratsuba-Multiply with the grade-school algorithm. Figure 18.4 graphs the
results. The graphed measurements are from a Sun SPARCstation 4.

What we see from the results is that the experimental results follow the theoretical analysis
very closely. The difference becomes a factor of2 at64-digit numbers, and it widens thereafter.

But why, you will ask if you are properly inquisitive, would anybody want to multiply
64-digit numbers? “We never need such precision in real life!” you can object. There are
cases when this is important. One case is cryptography. Many cryptographic protocols involve
choosing and multiplying keys containing hundreds of digits; this multiplication must be exact.
Moreover, the more digits in a key, the more secure the cryptography. A quick multiplication
algorithm, then, can help make messages more secure by allowing us to choose larger keys.

In this chapter we have seen and analyzed two divide-and-conquer algorithms: one for sort-
ing, one for multiplication. Both problems are fundamental to computer programs. Divide and
conquer applies to many other problems. It is an important technique that is worth considering
for nearly any problem you might cross.



Chapter 19

Dynamic programming

In applyingdynamic programming to a problem, we observe that we could quickly find
the problem’s solution if we had solutions to some similar but smaller problems. To solve these
similar, smaller problems, we can use solutions to similar, yet smaller problems. These will
take similar, tiny problems, which require solutions to miniscule problems, and so on. Finally
we get to something a problem so small it is trivial.

So far, this description is similar to divide-and-conquer approaches. The difference is that
dynamic programming applies when the recursive solution requires recomputation to the same
subproblem many times. To apply the technique in an algorithm, we begin with the trivial
problems and work our way up until getting to the problem at hand. This allows us to avoid
recomputing the same answer to a problem many times.

Dynamic programming algorithms tend to require quite a bit of insight. (Actually,Karatsuba-
Multiply required a neat bit of insight itself!) The best way to demonstrate how it can work is
to try an example.

19.1 Fibonacci numbers

One of the simplest examples of using dynamic programming is in computing Fibonacci num-
bers. The Fibonacci numbers turn up in a variety of places that we won’t discuss here. Instead,
we simply define them: TheFibonacci sequencebegins with the numbers

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; : : :

The first two numbers are1, and each other number is the sum of the two numbers preceding it.
Using this definition, a simple recursive function will compute thenth Fibonacci number.

Algorithm Fibonacci(n)
if n � 1, then:

return 1.
else:

return Fibonacci(n� 1) + Fibonacci(n� 2).
end of if

Look at the recursion tree forFibonacci(6) in Figure 19.1. You can see that we frequently
recompute values. For example,Fibonacci(2) is computed 5 times.



19.2 Making change103

6

5
!!
!!
!

4
aa

aa
a

4
��
�

3
PP

P

3
��

2
QQ

3
��

2
QQ

2
�

1
A

2
�

1
A

1
�

0
A

2
�

1
A

1
�

0
A

1
�

0
A

1
�

0
A

1
�

0
A

Figure 19.1: Recursion tree forFibonacci(6).

Because of this recomputation, this algorithm is quite slow. Although we won’t discuss
why, in big-O notation,Fibonacci takesO(1:62n) time. In the author’s tests, computing
Fibonacci(40) took 75.2 seconds. The execution time rapidly increases withn: Computing
Fibonacci(70) would take 4.4 years!

The dynamic programming approach standsFibonacci on its head. Rather than compute
starting atn, we will begin at0 and work up. We store the Fibonacci numbers in an array so that
to compute each Fibonacci we can access previous Fibonacci numbers without recomputation.

Algorithm Dynamic-Fibonacci(n)
Let �b0 hold1.
Let �b1 hold1.
for each i from 2 to n, do:

Let �bi hold�bi�1 + �bi�2.
end of loop
return �bn.

Each iteration of the loop here takes constant time, and there aren � 1 iterations. So this
algorithm takesO(n) time. A timing on the same computer as earlier demonstrates how much
of an improvement this is. ComputingDynamic-Fibonacci(40) took 2 microseconds, and
Dynamic-Fibonacci(70) took 3 microseconds.

19.2 Making change

Now we look at another example where we can apply dynamic programming. Say we’re given
a huge bag of coins containing an infinite number of coins for each of a set of denominations
fd0; d1; : : : ; dn�1g, and we want to make change for some amountamt . TheMake-Change
problem asks, “How can we use the fewest coins to get exactlyamt?”

Problem Make-Change:
Input: n denominationsd0; d1; : : : ; dn�1, amountamt .
Output: the smallest number of coins needed so that their net worth isamt (we can

use a denomination as often as we please).

We do this daily using the greedy method, and in American denominations the greedy
method works. (The greedy method would take the most valuable coin whose value is at most
amt , then the most valuable coin worth at most whatever’s left, and so on until we reach0.) The



104 Dynamic programming

fact that this works is a result of what American coins are worth. For general denominations
this method doesn’t always give an exact answer. Indeed, it may not find a solution when one
exists!

For example, if we have pennies, four-cent pieces, and nickels, and we want to make change
for eight cents, we should choose two four-cent pieces even though the greedy method would
recommend a nickel and three pennies. If we don’t have pennies available, the greedy method
would flail helplessly over the three cents after the nickel!

A dynamic programming approach observes that, if we knew how many coins it takes to
handleamt � d0, amt � d1,. . . , amt � dn�1, then making change foramt would take only
one coin more than the minimum of these. (If it tooki coins to reachamt � dj , we could use
thesei coins needed to reachamt � dj and then use adj-coin, for a total ofi+ 1 coins worth
amt .) Finding the best solution foramt � dj is just a matter of solving the same way, so we
can recurse. The base case here is when the amount is zero; we can changeamt = 0 with no
coins at all.

To program the solution, we start at the trivial case of zero and work our way toamt ,
remembering in the arraycoins the number of coins required to change each amounta along
the way.

Algorithm Dynamic-Make-Change(amt ; d0; d1; : : :dn�1)
Let coins0 hold0.
for eacha from 1 to amt , do:

Let coinsa hold1. // an upper bound oncoinsa
for each j from 0 to n� 1, do:

if dj � a and coinsa�dj + 1 < coinsa , then:
Let coinsa holdcoinsa�dj + 1.

end of if
end of loop

end of loop
return coinsamt .

How much time does this algorithm take? An iteration of the inner loop takesO(1) time,
and there aren iterations of it, so the inner loop takesO(n) time. Each iteration of the outer
loop, then, isO(n), and it goesamt times. Thus the total time taken isO(amt � n).

19.3 All-pairs shortest paths

Now we’ll consider shortest paths in a graph.

Problem All-Pair-Paths:
Input: an undirected graph with nonnegative edge lengths.
Output: for each pair of vertices, the length of the shortest path between them.

For simplicity, we number the vertices1 to n, and define a distance matrixd so thatdi;j is the
length of the edge betweeni andj if it exists and infinite (1) otherwise. We want to compute
the matrix ofpi;j , wherepi;j is the length of the shortest path fromi to j.

How can we approach this with dynamic programming? This requires quite a bit of insight.
Here’s the observation. If we want the shortest path betweens andt in ann-vertex graph, we
can find it quickly if we already know the shortest pathsthat only involve the firstn� 1 vertices
(except the endpoints themselves). That is, if we know the shortest path between everyi andj



19.3 All-pairs shortest paths105

that does not pass through vertexn along the way, then we can find the shortest path over all
then vertices. We use the following method. Say thatp

(n�1)
i;j is the length of the shortest path

betweeni andj that has only the firstn � 1 vertices as intermediate steps. Then the shortest
path froms to t on alln vertices will be the minimum ofp(n�1)

s;t andp(n�1)
s;n + p

(n�1)
n;t . The first

alternative (p(n�1)
s;t ) represents the case that the shortest path froms to t does not go throughn.

The second (p(n�1)
s;n +p

(n�1)
n;t ) represents the case that it does. In this case, it will only go through

n once. (Can you prove this?) The path will first extend froms to n, with lengthp(n�1)
s;n . Then

it will extend fromn to t, with lengthp(n�1)
n;t . So its total length in this case isp(n�1)

s;n + p
(n�1)
n;t .

We can likewise compute thep(n�1)
i;j if we know thep(n�2)

i;j , which we can compute if we

know thep(n�3)
i;j , and so on until we get to thep(0)i;j . This is the trivial case: The shortest path

betweeni andj going throughno intermediate vertices isdi;j .
As before, the dynamic programming algorithm will stand the computation on its head. We

begin with finding thep(0) matrix; gradually, we work up to thep(n) matrix, at which point we
are done.

Algorithm Dynamic-Paths(n; d)
// Initializep(0)

for each s from 1 to n, do:
for each t from 1 to n, do:

if there is an edge betweens andt, then:

Let p(0)s;t hold length of edge betweens andt.
else:

Let p(0)
s;t hold1.

end of if
end of loop

end of loop
// Now work up top(n) by computing successivep(k).
for each k from 1 to n, do:

for eachs from 1 to n, do:
for each t from 1 to n, do:

Let p(k)s;t holdminfp(k�1)
s;t ; p

(k�1)
s;k + p

(k�1)
k;t g.

end of loop
end of loop

end of loop
return p(n).

This algorithm takesO(n3) time. Figure 19.2 gives an example of how this problem would
work on a specific graph.

Summary

In this chapter we have investigated how dynamic programming helps in three very different
problems: computing Fibonacci numbers, making change, and finding all the shortest paths in
a graph. Dynamic programming shows up in many other problems, too.

The problems where it applies have this characteristic: One can phrase the solution to a
problem in terms of recursive solutions to smaller problems from the same problem, and these



106 Dynamic programming

1 3

2 4

2

1

3 1
@
@
@
@

6

p(0)

0 3 2 1
3 0 6 1
2 6 0 1
1 1 1 0

p(3)

0 3 2 3
3 0 5 1
2 5 0 1
3 1 1 0

p(1)

0 3 2 1
3 0 5 1
2 5 0 1
1 1 1 0

p(4)

0 3 2 3
3 0 2 1
2 2 0 1
3 1 1 0

p(2)

0 3 2 4
3 0 5 1
2 5 0 1
4 1 1 0

Figure 19.2: An example of usingDynamic-Paths.

smaller problems overlap. When you see this, it is time to consider dynamic programming. The
dynamic programming algorithm will begin with the small — or easy — problems and build on
previous solutions, remembering solutions to more and more complicated problems until finally
reaching the actually asked problem.

Sometimes the dynamic programming solution is obvious enough that only after you see
the algorithm do you realize it uses dynamic programming. But sometimes its application is
less obvious. When you encounter a problem, it is often worthwhile to consider how dynamic
programming might be applied; the thought could easily pay off in a good solution.



SIXTH UNIT

Appendices

This textbook includes four appendices.

Appendix A is a quick-reference listing the fundamentals of C++ syntax.

Appendix B lists miscellaneous keyboard symbols, their names, and how they are used in C++.

Appendix C describes some fundamental math concepts that are used elsewhere in the book.

Appendix D gives solutions to many of the exercises appearing in the book.



Appendix A

C++ syntax reference

Program structure

#include <iostream>
#include <string>

int main() {
hprogramBodyi

}

Function definition

hreturnValueTypei hfunctionNamei( hparameterListi) {
hfunctionBodyi

}

Exiting a function

return hexpressionWhoseValueToReturni;

Variable declaration

htypeOfVariablei hvariableToDefinei;
vector< helementTypei> harrayToDefinei( hlengthOfArrayi);

Variable assignment

hvariableToChangei = hvalueToGiveIti;

Conditional statements

if( hthisIsTruei) {
hstatementsToDoIfTruei

}

if( hthisIsTruei) {
hstatementsToDoIfTruei

} else {
hstatementsToDoIfFalsei

}



109

if( hthisIsTruei) {
hstatementsToDoIfThisTruei

} else if ( hthatIsTruei) {
hstatementsToDoIfThisFalseButThatTruei

} else {
hstatementsToDoIfBothFalsei

}

Iteration statements

while( hthisIsTruei) {
hstatementsToRepeati

}

for( hinitialAssignmenti; hthisIsTruei; hupdateAssignmenti) {
hstatementsToRepeati

}

Types Types included in C++:

int integer
double number

char character
string string

The array type isvector< helementTypei>, and a structure type is declared as follows.

struct hstructureTypeNamei {
helementDeclarationsi;

};

Expression operators The following table lists the operators we saw in the book. Operators
listed higher have a higher order of precedence; operators on the same line have the same
priority.

rank operator meaning
1 :: object specifier
2 ( � � �) , [ � � �] , . function call, array index, structure member
3 - , ! negation, logical not
4 * , / , % multiplication, division, remainder
5 +, - addition, subtraction
6 <<, >> output, input
7 <, <=, >=, > comparison
8 ==, != equals, not equals
9 && logical and
10 || logical or
11 = assignment

Reserved words C++ uses a variety ofkeywords (also calledreserved words) for special
purposes. These cannot be used as names for other things. Some of these we have seen in this
textbook.



110 C++ syntax reference

keyword page usage in C++
char 21 the type for characters
class 45 define a new object type
const 38 for constant-reference parameters
double 20 the type for real numbers
else 27 for an “otherwise” clause inif statements
for 30 loop through statementsfor items in a set
if 25 do some statementsif a condition holds
int 20 the type for integers
private 47 for indicating an object’s hidden members
public 47 for indicating an object’s public members
return 36 exit from a function with a given value
struct 42 define a new structure type
void 35 the return type for functions returning nothing
while 29 loop through statementswhilea condition holds

Many more keywords we have not seen at all in this book.

asm enum protected this
auto extern register throw
break float short try
case friend signed typedef
catch goto sizeof union
continue inline static unsigned
default long switch virtual
delete new template volatile
do operator



Appendix B

Symbols

symbol name C++ meaning seen in this book
! exclamation point, bang, not not operator! ; inequality operator!=
@ at sign
# sharp, pound, hash mark used in#include statements
$ dollar sign
% percent, mod remainder operator%
ˆ caret, exponentiation
& ampersand, and and operator&&; indicates reference parameter
* asterisk, star, multiplication multiplication operator*

() parentheses orders expression evaluation; function call operator() ;
delimits condition inif , for , while

- minus, dash negation operator- ; subtraction operator-
_ underscore part of a name of variable or function
= equal sign assignment operator=; comparison operators== != <= >=
+ plus addition operator+
\ backslash quote next character literally (as in’\’’ or "\\" )
| vertical bar, or or operator||
‘ backquote
˜ tilde, twiddle

[] brackets array indexing operator[]
{} braces delimits statement block
; semicolon terminates statement
: colon qualifies object (in:: ); endsprivate andpublic
’ single-quote delimits character constant
" double-quote delimits string constant, delimits file in#include
, comma separates function parameters
. period, dot structure member operator. , decimal

<> angle brackets, less/greater than comparison operators< > <= >= ; input/output operators<< >>;
delimits file in#include ; delimits vector element type

/ slash, virgule, division division operator/ ; begins comments//
? question mark



Appendix C

Mathematical concepts

You may not be familiar with all of the mathematical concepts found in this book; or maybe
you are. At any rate, in this appendix we discuss some of the more obscure mathematical
concepts we assume. Go through it quickly to make sure you understand it; and, that which you
don’t, learn.

C.1 Logarithms

A logarithm is the inverse of exponentiation. The logarithm baseb of x, written aslogb x, is
the value ofy for which by = x.

Logarithms have a number of important properties. Here are a few of them.

logb b
x = x

blogb x = x

logb(xy) = logb x+ logb y

logb(x
y) = y logb x

logy x =
logz x

logz y

It’s worth proving each of these identities on your own, to get a better feel for how logarithms
behave.

C.2 Induction

Computer scientists often usemathematical induction to prove things. Mathematical induction
is a method for proving that something holds for all integers at least some numbern0. A proof
by induction consists of two steps. The first is thebase case. Here we show that the hypothesis
is true forn0. (This is usually trivial.) The second step is theinduction step, wherein it is
shown that, if the statement is true for alli betweenn0 andn, then it is also true forn. These
two steps imply that the statement is true for alln � n0.

As an example, we will show that, for any integern � 1, the sum of the firstn positive odd
numbers isn2. As the base case, we observe that the first odd number is 1, which is12. So
the statement is true forn = 1. Now, for the inductive step, we assume it holds for alli < n.
In particular, it holds forn � 1. The sum of the firstn positive odds is the sum of the first



C.3 Geometric series113

n � 1 positive odds (which we assumed is(n � 1)2) and thenth odd number,2n � 1. Since
(n� 1)2 + 2n� 1 = n2 � 2n+ 1+ 2n� 1 = n2, we know that the sum of the firstn positive
odds isn2. So our statement is proven.

Exercise C.1: Induction can often go awry. What’s wrong with the following “proof” that all
cows are the same color? For our base case, consider one cow. Obviously the cow is the same
color as itself. Now say it holds for alli < n. Take away a cow named Alfalfa. We haven � 1
cows left, and by the inductive hypothesis they all have the same color. Put Alfalfa back, and
take away another cow, Bessie. Again, we know that they all must have the same color. This
means that if we haven cows, they must all have the same color. Since there are only a finite
number of cows in the world, they must all be identically colored.

C.3 Geometric series

You can also use induction to show facts about geometric series. Ageometric seriesis a
summation of numbers1 + r + r2 + � � �+ rn, where each number is a factorr times the last.
You can show by induction that the sum of this series is(1� rn+1)=(1� r).

An infinite geometric seriesextends the previous series out to infinity:1+ r+ r2 + � � �. If
r < 1, then this infinite sum is1=(1� r).

C.4 Recurrences

Recurrencesturn up frequently when we use an inductive method. A recurrence is a function
defined in terms of itself. Like induction (and recursion), every recurrence must have a base
case.

We can represent the sum of the firstn odd numbers using a recurrence as the following:
Let S(n) represent the sum of the firstn odd numbers. Obviously we haveS(1) = 1; this is
the base case. For other values in the parentheses, we haveS(n) = S(n� 1)+ (2n� 1), since
2n� 1 is thenth odd number, andS(n� 1) is recursively defined as the sum of the firstn� 1
odd numbers.

We proved in Section C.2 thatS(n) has a simpleclosed form— that is, a form using no
recurrences or extended summations. The closed form ofS(n) is n2.

C.5 Graphs

A graph is a pair of setsV andE, denoted(V;E). The first set,V , is a set ofvertices. This
is an arbitrary set. The second set,E, is a set ofedges. Each edge is a defined by a pair of
vertices. One graph is a square, drawn in Figure C.1. In this graph, the set of vertices is

V = fa; b; c; dg ;

and the set of edges is
E = f(a; b); (b; c); (c; d); (d; a)g :

Graphs are useful because they are very general structures that model a wide variety of
problems. The edges can represent roads between cities, friendships between people, wires
between computers, or many other things. This makes them interesting to computer scientists.



114 Mathematical concepts

d

a

c

b

Figure C.1: A simple graph.

i

i

i i

ii

Figure C.2: A disconnected graph.

If they find how to model a problem as a graph problem (which often occurs), there’s a good
chance that somebody has already solved the graph problem.

An undirected graph is one in which the order of vertices in each pair is not significant
(edge(a; d) is considered the same as edge(d; a)). In a directed graph, order matters. This
book deals exclusively with undirected graphs.

Notice that an undirected graph ofn vertices has at mostn(n� 1)=2 edges, since there are
that many pairs of vertices, and the set of edges is a set of vertex pairs.

A graph defined by setsV 0 andE 0 is a subgraph of graph defined by setsV andE if
V 0 � V andE 0 � E. A single point (V 0 = fcg,E 0 = ;) is a subgraph of the graph of
Figure C.1. Note that ifV 0 = fag andE 0 = f(a; b)g, we do not have a subgraph, even though
the vertices and edges are subsets of the graph: This is not a graph itself. (The edge includes
something not inV 0.)

A weighted graph is a graph with a functionw from edges to real numbers. Such a graph
is often notated as(V;E;w). Theweight of an edge is the value of the function for that edge.
These weights can be understood as costs, capacities, or distances of the edge,according to
what is natural for the problem.

A weighted graph defines adistancebetween vertices. Apath between two verticesu and
u0 is a sequence of verticeshu = v0; v1; v2; : : :vk�1; vk = u0i such that, for every1 � i � k,
(vi�1; vi) is an edge in the graph. Thelength of a path is the sum of the weights of the edges
on it. There can be many paths between two vertices. Thedistancebetweenu andv is the
minimum length among all the paths betweenu andv.

We call a graphconnectedif, for every pair of vertices, there is a path in the graph con-
necting the vertices. The graph of Figure C.1 is connected; the graph of Figure C.2 is not.



C.6 Mathematical notation115

C.6 Mathematical notation

This section defines most of the more unusual mathematical notation you’ll find in in this book.

h: : :i an ordered sequence of elements.

f: : :g a set of elements.

j : : : j if a number is enclosed, theabsolute value(x if x is positive, otherwise�x); if a set is
enclosed, the number of items in the set.

1 theoretically, infinity; in practice, a number that larger than anything that might occur.P
i f(i) the sum off(i) for each value ofi. If i can be any number between0 andn, this is

f(0) + f(1) + f(2) + � � �+ f(n).

n! thefactorial of a number;n! is the product of the positive integers at mostn (3! = 3�2�1 =
6)

e Euler’s constant, an irrational number (like�) whose value is approximately2:718281828.

logb x the base-b logarithm; see Section C.1.

O(: : :) big-O notation; see Chapter 17.

Pr [� � �] the probability that the event in brackets occurs.

x(b) the numberx should be interpreted in baseb. (If b = 2, thenx is in binary; ifb = 10, then
x is in decimal.)

That’s all the mathematical concepts we need. If you find a concept in the book not covered
in this appendix, try referring to the index. If you don’t find it listed, your instructor should be
happy to help.



Appendix D

Exercise solutions

(The#include lines are omitted from the program listings in these solutions.)

Exercise 2.1:(page 6)

Problem Search:
Input: A list L of numbers and a numberx.
Output: true if x occurs inL, andfalse otherwise.

Exercise 2.2:(page 7) There are many plausible answers here. The following lists just a few
of them.

Square-Root-Up Start with1 and continue counting upward until you reach a number whose
square is more thann. Output the number just before that one.

This algorithm’s primary virtue is its simplicity. This simplicity makes it easy to under-
stand and easy to program. It is not particularly quick, however.

Square-Root-Down Start atn and count downward until you reach a number whose square
is less thann.

This is a minor variation on the previous algorithm. It is also very simple (although
counting downwards is a little harder to understand), but it is much slower than before.
Consider, for example, ifn were1; 000; 000. With the previous algorithm, we count up
from1 to1; 000. But with this algorithm we count down from1; 000; 000 to1; 000, which
is a much longer distance.

Square-Root-Half Always maintain a range where the square root might be. Initially, the
range is[1; n], but then we successively refine this range by repeatedly choosing the
midpoint of the range (the first time, for example, the midpoint is(1 + n)=2), squaring
it, and seeing whether the square is more or less thann. If it is more, then we know the
square root is less than the midpoint and so we take our range to be the lower half of the
range. It it is less, then the square root is above the midpoint, and so we take the range to
be the upper half instead. We can stop once the range includes only one integerk; then
we know the answer is eitherk or k � 1, and we can easily determine which it by seeing
howk2 compares ton. (By the way, this method of searching in a range by successively
halving the range where it might be is calledbinary search.)

For example, if we sought the square root of18, we would start with the range[1; 18].
The midpoint is9:5, whose square is90:25, so we restrict our range to[1; 9:5]. Now



117

the midpoint is5:25, whose square is25:56; we restrict the range to[1; 5:25]. Now
the midpoint is3:13, and the square is9:77; we restrict the range to[3:13; 5:25]. The
midpoint is4:19, and the square is17:54; we restrict the range to[4:19; 5:25]. This range
contains only one integer,5. We test to see whether52 > 18; it is, so the answer is4.

This algorithm is considerably more complicated than either of the first two algorithms,
but it is also considerably faster. Consider again the case whenn is 1; 000; 000. The
range is initially999; 999 wide, but it halves each time we try something out. After20
tries, then, the range is999; 999(1=2)20 � 0:95 wide. At this point it contains at most
one integer, and so the algorithm will stop after another try, for a total of21 tries. This is
much better than the1; 000 done for the first algorithm. Unfortunately, the complexity of
the algorithm does make it rather error-prone.

Square-Root-Factor If we knewnwere a perfect square, then we could might take the prime
factorization ofn and then take every other prime factor. For example, to find the square
root of3600, we find the prime factorization of24� 32� 52. Every other factor of this is
22 � 3� 5 = 60, which is the square root of3600.

This procedure has the fatal flaw that it doesn’t accomplish what the problem states. It
assumes that the input is a perfect square, and the problem statement did not include this
restriction. But if the problem were for perfectly square inputs, it would be a reasonable
algorithm. (In most cases it would be much faster than the first (and certainly the second)
algorithm, and in some cases it may be somewhat faster than the third.)

Exercise 3.1:(page 10)

Algorithm Square-Root-Up(n)
Let i hold0.
while i2 � n, do:

Add 1 to i.
end of loop
output i� 1.

Algorithm Square-Root-Down(n)
Let i holdn.
while i2 > n, do:

Subtract1 from i.
end of loop
output i.

Algorithm Square-Root-Half(n)
Initialize range to [1; n].
while range contains more than1 integer,do:

Let k be the middle number in the range.
if k2 � n, then narrowrange to [range’s bottom; k].
elsenarrowrange to [k; range’s top].
end of if

end of loop
Let k be the first integer afterrange’s bottom.
if k2 � n, then output k.
else outputk � 1.
end of if



118 Exercise solutions

Exercise 3.2:(page 11) The following is a flowchart forSquare-Root-Up.

START

Add 1 toi .

STOP

Let i be 1.

Output i - 1.

Is ni >2 ?

no

yes

Exercise 5.1:(page 21)

a. "3.4" string
b. 0 int
c. 45.0 double
d. "a" string
e. -1e10 double

Exercise 5.2:(page 21)

a. name Yes; astring is probably the best choice.
b. num points Yes; anint is probably the best choice.
c. letter Yes; achar is probably the best choice.
d. char No; the wordchar is reserved for other uses in C++.
e. #students No; the ‘#’ character cannot appear in names.
f. temperature Yes; adouble is probably the best choice.
g. r2d2 Yes; but it is a poor variable name: It doesn’t indicate content.
h. 2i No; names cannot begin with digits.

Exercise 5.3:(page 23)x holds the value98:6 andk holds the value42.

a. k % 8 value is2
b. x - k * 2 value is14:6
c. k / 9 value is4 (remember integer division!)
d. -x / 2 value is�49:3
e. 2 k + 5 invalid (must use* for multiplication)

Exercise 5.4:(page 24)

int main() {
int year;
cout << "It is January 1 of which year? ";
cin >> year;
int age = year - 1974;
cout << "You are " << age << " years old." << endl;

}



119

Exercise 6.1:(page 28)

a. truealways
b. true if x is 1 or 0
c. true if score is more than90, or if bonus is nonzero andscore is more than80
d. trueonly if k is 0 (! has higher rank than==)

Exercise 6.2:(page 29) Ifyear is a multiple of4 but not100, it is a leap year. It is also a leap
year ifyear is a multiple of400. The following encodes both these cases.

(year % 4 == 0 && year % 100 != 0) || year % 400 == 0

Exercise 6.3:(page 29) This fragment letsch hold a question mark ifk holds2. One minor
fault is thatch doesn’t hold anything meaningful otherwise, so we can’t really use the value of
ch later on.

char c h = ’ ’; // ch should holds something meaningful if k != 2.
if(k == 2) { // condition must be in parentheses, and = must be doubled

ch = ’?’; // "?" is a string, but ch is a char. It should be ’?’.
}

Exercise 6.4: (page 29) Notice how the following tests whether the denominator is 0 before
performing the division. This is a feature of good programs: It is very careful with user in-
put when the user might type something causing a run-time error. It is much better to print
something meaningful in these cases.

int main() {
int num; // numerator
int den; // denominator
cout << "What is the numerator? ";
cin >> num;
cout << "What is the denominator? ";
cin >> den;

if(den == 0) {
cout << "Cannot divide by 0." << endl;

} else if(num % den == 0) {
cout << den << " divides " << num << "." << endl;

} else {
cout << den << " does not divide " << num << "." << endl;

}
}

Exercise 6.5:(page 32) This fragment prints the powers of two from1 to 16.
double total = 1;
i = 30;
while(i > 0) {

cout << total << endl;
total = 2 * total;
i = i / 2;

}

Exercise 6.6:(page 33) This is probably meant to read in30 numbers from the user and output
the product of all the numbers. (Since it beginsi at 30 and increases it for each iteration, the
loop does not actually stop.)

for(i = 0 ; i < 30; i = i + 1) { // commas become semicolons, == becomes =
cin >> num; // >> becomes <<, semicolon added
product = product * num; // semicolon added

}



120 Exercise solutions

Exercise 8.1:(page 41)

int removeDuplicates(vector<int> &arr, int arr_len) {
int j = 1; // position in array with duplicates removed
int i; // position in initial array
for(i = 1; i < arr_len; i = i + 1) {

if(arr[i] != arr[i - 1]) { // this is not a duplicate
arr[j] = arr[i]; // put it in array with duplicates removed
j = j + 1; // increase our position

}
}
return j;

}

Exercise 8.2:(page 41) Probably the most intuitive way to do this is to read the numbers into
an array and sort the numbers. This is an alternative answer working likeMode-Tally. Both are
good approaches.

int main() {
// create the tally boxes, initially 0.
int tally[101];
int i;
for(i = 0; i <= 100; i++) {

tally[i] = 0;
}

// how many scores are there?
int num_scores;
cout << "How many numbers? ";
cin >> num_scores;

// tally up the scores
for(i = 0; i < num_scores; i = i + 1) {

cout << "#" << (i + 1) << ": ";
int x;
cin >> x;
tally[x] = tally[x] + 1;

}

// now find the median
int total = 0; // number of marks found so far
for(i = 0; i <= 100; i = i + 1) {

total = total + tally[i];
if(total > num_scores / 2) {

cout << "median = " << i << endl;
return 0;

}
}

}



121

Exercise 8.3:(page 42) It’s important that you be careful with how you select the indices of
the two letters you’re comparing. (It’s easy to be off by one here.)

int main() {
string to_test;
cout << "Which word? ";
cin >> to_test;

int i;
for(i = 0; i < to_test.length() / 2; i = i + 1) {

if(to_test[i] != to_test[to_test.length() - i - 1]) {
cout << to_test << " is not a palindrome." << endl;
return 0;

}
}
cout << to_test << " is a palindrome." << endl;
return 0;

}

Exercise 8.4:(page 43)

struct Date {
int year;
int month;
int day;

};

struct LibraryBook {
string name;
int id;
double price;
Date due;

};

Exercise 10.1:(page 59)

void allSubsets(int depth, vector<int> &chosen, int n) {
if(depth == n) { // we’ve made all choices; print this subset

int i;
for(i = 0 ; i < depth; i++) {

if(chosen[i]) {
cout << " " << (i + 1);

}
}
cout << endl;

} else {
chosen[depth] = 0; // choose #depth to not be in the subset
allSubsets(depth + 1, chosen, n);
chosen[depth] = 1; // now choose #depth to be in the subset
allSubsets(depth + 1, chosen, n);

}
}

int main() {
int n;
cout << "Choose from how many? ";
cin >> n;
vector<int> subset(n);
allSubsets(0, subset, n);

}



122 Exercise solutions

Exercise 16.1:(page 87) This comes from Lewis Carroll’s poem “The Jabberwocky.”

And, as in uffish thought he stood,
The Jabberwock, with eyes of flame,
Came whiffling through the tulgey wood,
And burbled as it came!

Exercise 17.1:(page 91)1, log2 log2 n, log2 n,
p
n, n log2 n, n2, 2n, n!

Exercise 17.2:(page 91)

a. 3n log2 n+ 5
p
n = O(n log2 n)

b. 8n2(4 log2 n+ 3
p
n) = O(n5=2)

c. n! + 8 � 2n + 5 = O(n!)

d. 8+3 log2 n
n = O( log2 nn )

Exercise 17.3:(page 93)

squareRootA() O(
p

n). Each time we go through the loop, we increasei by one. We start
at zero and end at at most1 +

p
n so we go throughO(

p
n) iterations. Each iteration

through O(1) time (Constant Rule) so the total is the product of these,O(
p

n).

squareRootB() O(n). The program beginsi at n and subtracts 1. It stops by the timei
becomes

p
n � 1. So the computer goes through the loop at mostn �p

n + 2 iterations.
The fastest-growing term here is then term, so we go throughO(n) iterations. Each
iteration takes O(1) time (Constant Rule), so by the Iteration Rule, the total time isO(n).

squareRootC() O(log2 n). The distance betweenlow andhigh is initially n, and each
time through the loop this distance at least halves. After halving the distancelog2 n times,
the range’s size is at most 1, and so we have at mostlog2 n iterations. Each iteration
involves no loops or function calls, so each takes O(1) time. By the Iteration Rule, the
time required is therefore isO(log2 n).

squareRootD() It’s not the best answer, but one reasonable answer isO(
p

n log4 n). The
outer loop will go through untili is the largest prime factor ofn;

p
n is the largest

possible prime factor of a perfect square, since every prime factor occurs twice in the
factorization. So the outer loop has at most

p
n iterations. The inner loop can happen at

mostlog4 n times, since each iteration dividesn by i 2, andi is always at least 2. Each
iteration of the inner loop takeO(1) time, and the inner loop overall takesO(log4 n) time.
Thus each iteration of the outer loop takesO(log4 n) time, for a total ofO(

p
n log4 n).

A slightly better answer isO(
p

n). This comes from observing that the inner loop can
occur at mostlog4 n times during the entire execution of the function. Thus the total time
isO(

p
n + log4 n) = O(

p
n). Since this reasoning is a little subtle, you may reasonably

not have found it.



Index

#include , 17, 47

absolute value,115
acknowledgement, 77
acknowledgement number,78
Add-Matrices, 92
Adelson, Leonard, 84
AI, 3
algorithm,6

Add-Matrices, 92
Alpha-Beta-Search, 64
Count-Primes, 93
Does-Halt, 7
Dynamic-Fibonacci, 103
Dynamic-Make-Change, 104
Dynamic-Paths, 105
Fibonacci, 102
Gingerbread, 9
Is-A-Jew, 53
Karatsuba-Multiply, 99
Merge, 96
Merge-Sort, 96
Minimax-Search, 62
Mode-Tally, 10
Move-Tower, 56
Prime-Test-All, 6, 10, 31,92
Prime-Test-Exhaustive, 6,8, 9
Square-Root-Down, 116,117
Square-Root-Factor, 117
Square-Root-Half, 116,117
Square-Root-Up, 116,117, 118

algorithms,2
All-Pair-Paths, 104
alpha (�), 63
alpha-beta search,63
Alpha-Beta-Search, 64
ampersand (‘&’), 26, 38
angle brackets (‘<>’), 47
application layer,71
array,39

artificial intelligence,3
ASCII, 70
assignment statement,22
asterisk (‘* ’), 22
asymptotic analysis,90

backslash (‘\ ’), 21
base, 69
base case,52, 112
BASIC, 45
basic data type,20
Bayes’ theorem,86
best-effort delivery,75
beta (�), 63
big-O notation,91
binary numbering system,69
binary search,116
bit, 69
blank space, 17
box, 20
braces (‘{} ’), 17, 25, 35, 42
brackets (‘[] ’), 40, 41
Burch, Charles, xii
Burch, Cheri, xii
byte,70

C, 45
C++, 13, 45
cache,74
call stack,56
call tree,57
call-by-reference,38
call-by-value,37
caret (‘̂ ’), 23
Carnegie Mellon Univ, xii
char , 21
character,21, 70, 111

ampersand (‘&’), 26, 38
angle brackets (‘<>’), 47
asterisk (‘* ’), 22



124 INDEX

backslash (‘\ ’), 21
braces (‘{} ’), 17, 25, 35, 42
brackets (‘[] ’), 40, 41
caret (‘̂ ’), 23
colon (‘: ’), 48
comma (‘, ’), 37
double quote (‘" ’), 21, 47
equal sign (‘=’), 22, 26
exclamation point (‘! ’), 26
greater than (‘>’), 23, 26
less than (‘<’), 23, 26
minus (‘- ’), 22
parentheses (‘() ’), 22, 25, 35
percent (‘%’), 22
period (‘. ’), 42, 70
semicolon (‘; ’), 36, 42
single quote (‘’ ’), 21
slash (‘/ ’), 17, 22
space (‘ ’), 70
underscore (‘’), 21
vertical bar (‘| ’), 26

chess, 60
cin , 23
class , 45
class definition,45
class, C++,45

DataPoint , 45–47
DataSeries , 50
DrawingUtensil , 48
Pencil , 48
RedPencil , 48

client,77
closed form,59, 113
code,15
colon (‘: ’), 48
comma (‘, ’), 37
comment,17, 18
compile-time error,15
compiler,15
compiling,15
complexity,2
complexity-theoretic security,86
computational complexity,2
computer science,2
condition,26
conditional statement,25
connected,114
connection,76

const , 38
constant-reference parameter,38
constants, C++, 20
constructor,45
control statement,25
correctness,6, 18
Count-Primes, 93
cout , 17, 23
cryptography,83

decimal numbering system,69
declaration, variable,21
definition file,47
design, 18, 44
directed graph,114
distance,114
divide and conquer,95
Does-Halt, 7
domain,73
domain hierarchy,73
domain name server,74
Dominating-Set, 5
double , 20
double quote (‘" ’), 21, 47
dynamic programming,102
Dynamic-Fibonacci, 103
Dynamic-Make-Change, 104
Dynamic-Paths, 105

edge,113
electrical engineering, 3
element, array,39
else , 27
endl , 17
equal sign (‘=’), 22, 26
exclamation point (‘! ’), 26
execute,15
expression,22

evaluation order, 27

factorial,31, 115
factoring, 84, 86
Fibonacci, 102
Fibonacci sequence,58, 102
files, C++, 47
Find-Mode, 10
Fire-Hydrant, 5, 6
flowchart,10
for , 30



INDEX 125

FTP, 77
function body,35
function call,34
function, C++, 17, 19,34

abs() , 35
allSubsets() , 122
choose() , 37
exponentiate() , 54, 93
fact() , 36
findMaxScore() , 42
length() , 41
main() , seeprogram, C++
modeTally() , 40, 43
removeDuplicates() , 41,120
setToZero() , 37, 38
square() , 35
squareRootA() , 94, 122
squareRootB() , 94, 122
squareRootC() , 94, 122
squareRootD() , 94, 122

game tree,61
games, 60
gateway,74
geometric series,113
Gingerbread, 9
go, 60
graph,113
greater than (‘>’), 23, 26
greatest common divisor, 38

Halting, 7
Hanoi, Tower of,55
hardware systems,3
HCI, 3
header,72, 80
header file,47
heuristic function,62
HTTP, 77,81
human–computer interaction,3
Hungry, 9

IEEE standard,71
if , 25
include , 17, 47
indentation, 18
index, array,39
induction,112
induction step,112

infinite geometric series,113
inheritance,48
inheritance hierarchy,48
input,5
input/output operator,23
int , 20
integer,20, 70
integer division,23
Internet,67
Internet Protocol,72, 73
internetwork layer,72
iostream , 17
IP, 72
IP address,73
Is-A-Jew, 53
iteration,29

Karatsuba-Multiply, 99
key,83
keyword, C++,109

char , 21
class , 45
const , 38
double , 20
else , 27
for , 30
if , 25
int , 20
private , 47
public , 47, 48
return , 17,36
struct , 42
void , 35
while , 29

layer,71
length,114
less than (‘<’), 23, 26
logarithm,112
logic error,16
logical value,26
loop,29

machine language,15
main() , seeprogram, C++
Make-Change, 103
management, 3
mathematical induction,112
mathematics, 3



126 INDEX

Matrix-Addition, 92
median,41
member, class,44
memory, 18
Merge, 96
Merge-Sort, 96
method,44
Minimax-Search, 62
minus (‘- ’), 22
mnemonic name,73
mode,9
Mode-Tally, 10
modulo,87
Move-Tower, 56
Multiplication, 5, 6,97

name resolution,73
names, C++, 18, 21
network, 73
node,57

object-oriented design,44
one-time pad,85
operator, C++,22, 109

! , 26
!= , 26, 42
() , 34
* , 22
+, 22
- , 22
. , 42
/ , 22
:: , 48
<, 26, 42
<<, 23
<=, 26, 42
=, 22
==, 26, 42
>, 26, 42
>=, 26, 42
>>, 23
[] , 40
%, 22
&&, 26
|| , 26

order of evaluation, 23, 27, 109
output,5

packet,71

palindrome,42
parameter,34
parentheses (‘() ’), 22, 25, 35
Pascal, 45
path,114
percent (‘%’), 22
perfect security,85
period (‘. ’), 42, 70
PGP, 84
PGSS, xii
philosophy, 3
physical layer,72
planning, 60
port,76
Primality, 5, 6, 8
prime,5
Prime-Test-All, 6, 10, 31,92
Prime-Test-Exhaustive, 6,8, 9
private , 47
private-key cryptography,83
problem,5

All-Pair-Paths, 104
Dominating-Set, 5
Find-Mode, 10
Fire-Hydrant, 5, 6
Halting, 7
Hungry, 9
Make-Change, 103
Matrix-Addition, 92
Multiplication, 5, 6,97
Primality, 5, 6, 8
Search, 6,116
Sort, 95, 97
Square-Root, 7, 10, 11, 93

problem instance,5
program, C++

age, 24,119
checkbook, 33, 38, 49
choices,36, 59
divisor, 29,119
hello world,16, 17
line fitting,50
median, 41
palindrome, 42,121
parameter passing,37
primality, 32
subset, 59,122
temperature conversion,23



INDEX 127

programming,15
programming language,15
programming languages,3
programming process, 16, 18
protection, information, 47
protocol,71
pseudocode,8, 18
psychology, 3
public , 47, 48
public-key cryptography,84

readability, 18
recurrence,58, 97, 99,113
recursion,52, 62, 95
reserved word,109
return , 17,36
return value,34
Rivest, Ronald, 84
robotics, 60
round-off error,21
routing table,75
RSA encryption,84, 86
run-time error,15

science, 3
Search, 6,116
secret decoder ring,85
segment, TCP,80
self-reference,52
semicolon (‘; ’), 36, 42
sequence number,78
server,77
Shamir, Adi, 84
signature,84
simplicity, 18
single quote (‘’ ’), 21
slash (‘/ ’), 17, 22
sliding window,79
SMTP, 77
sociology, 3
software engineering,3
software systems,3
Sort, 95, 97
space (‘ ’), 70
speed, 6, 18, 90
Square-Root, 7, 10, 11, 93
Square-Root-Down, 116,117
Square-Root-Factor, 117

Square-Root-Half, 116,117
Square-Root-Up, 116,117, 118
state,44
statement, C++

assignment,22
declaration,21, 39
expression,22
for , 31
if , 25
return , 36
while , 29

string , 17, 21, 41
struct , 42
structure, C++,42

Date , 121
LibraryBook , 43,121
StudentType , 42

subclass,48
subgraph,114
substitution cipher,85
superclass,48

TCP,72
TELNET, 77
termination,6
testing, 19
tic-tac-toe,60
Tower of Hanoi,55
Transport Control Protocol,72, 76
transport layer,71
Turing, Alan, 85
2’s-complement representation,71
type, C++,20, 45

array,39
char , 21
class, 45
double , 20
int , 20
string , 21,41
structure,42
vector , 39

undecidable,7
underscore (‘’), 21
undirected graph,114
user,23

variable,20
variable declaration,21



128 INDEX

vector , 39
vertex,113
vertical bar (‘| ’), 26
void , 35

weight,114
weighted graph,114
well-known port number,77
while , 29
white space, 17
world, end of, 55


