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Non-negative Matrix Factorization (NMF) is a part-based image representation method
which adds a non-negativity constraint to matrix factorization. NMF is compatible with
the intuitive notion of combining parts to form a whole face. In this paper, we propose
a framework of face recognition by adding NMF constraint and classifier constraints to
matrix factorization to get both intuitive features and good recognition results. Based

on the framework, we present two novel subspace methods: Fisher Non-negative Matrix
Factorization (FNMF) and PCA Non-negative Matrix Factorization (PNMF). FNMF
adds both the non-negative constraint and the Fisher constraint to matrix factorization.
The Fisher constraint maximizes the between-class scatter and minimizes the within-
class scatter of face samples. Subsequently, FNMF improves the capability of face recog-
nition. PNMF adds the non-negative constraint and characteristics of PCA, such as
maximizing the variance of output coordinates, orthogonal bases, etc. to matrix factor-
ization. Therefore, we can get intuitive features and desirable PCA characteristics. Our
experiments show that FNMF and PNMF achieve better face recognition performance
than NMF and Local NMF.

Keywords: Face recognition; non-negative factorization; Fisher discriminant analysis;
local facial feature.

1. Introduction

Face recognition is very challenging due to the wide variety of illumination, facial
expression and pose variations. It has received extensive attention during the past
20 years, not only because it has several potential applications in areas such as

∗This work was partially supported by Grant No. 60473049 from the Chinese National Science
Foundation.

495



May 27, 2005 14:57 WSPC/115-IJPRAI SPI-J068 00419

496 Y. Wang et al.

Human Computer Interaction (HCI), biometrics and security, but also because it
is a prototypical pattern recognition problem whose solution would help in many
other classification problems.

Subspace methods have demonstrated their success in numerous visual recog-
nition tasks such as face recognition, face detection and tracking. These meth-
ods, such as Principle Component Analysis (PCA)1,6,15 Fisher Linear Discriminant
Analysis (FLDA),2 Independent Component Analysis (ICA)1,4,3 and Non-negative
Matrix Factorization (NMF),8,9 learn to represent a face as a linear combination
of basis images, but in different ways. The basis images of PCA are orthogonal
and have a statistical interpretation as the directions of largest variance. FLDA
seeks to find a linear transformation that can maximize the between-class scatter
and minimize the within-class scatter. ICA is a linear nonorthogonal transform
that yields a representation in which unknown linear mixtures of multidimen-
sional random variables are made as statistically independent as possible. NMF
factorizes the image database into two matrix factors whose entries are all non-
negative and produces a part-based representation of images because it allows only
additive, not subtractive, combinations of basis components. For this reason, the
non-negativity constraints are compatible with the intuitive notion of combining
parts to form a whole. Because a part-based representation can naturally deal with
partial occlusion and some illumination problems, it has received much attention
recently.

Li and Feng proposed Local Non-negative Matrix Factorization (LNMF)5,10

to achieve a more localized NMF algorithm with the aim of computing spatially
localized bases from a face database by adding three constraints that modify the
objective function in the NMF algorithm.

In this paper, we propose a framework of face recognition by adding NMF con-
straint and classifier constraints to matrix factorization to get both intuitive features
and good recognition results. We present Fisher Non-negative Matrix Factorization
(FNMF) by adding the Fisher constraint and NMF to matrix factorization. We also
describe PCA Non-negative Matrix Factorization (PNMF) which adds character-
istics of PCA and NMF to matrix factorization in order to get intuitive features
and characteristics of PCA, such as maximizing the variance of output coordinates,
orthogonal bases, etc. Our experiments show that they perform better than NMF
and LNMF for face recognition.

2. Previous Work

There is psychological12 and physiological11,16 evidence for part-based representa-
tions in the brain. Lee and Seung proposed NMF8,9 for learning parts of faces, and
the non-negative constraint added to the matrix factorization is compatible with
the intuitive notion of combining parts to form a whole face. However, the NMF
algorithm produces global, not spatially localized, parts from the training set. To
improve the NMF algorithm, Local NMF (LNMF)10 was proposed for learning
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spatially localized, part-based representations of visual patterns. The remainder of
this section will introduce NMF and LNMF.

A database of m face images, each of which contains n non-negative pixel values,
is represented by an n×m matrix V , where each column denotes one of the m facial
images. Basis images computed from the database are denoted by an n×r matrix W ,
where r is the number of basis images. To reduce the dimensionality of V , r should
be less than m. Hence the factorization is

V ≈ WH (1)

where H consists of the coefficients by which a face is represented with a linear
combination of basis images.

Many matrix factorizations allow the entries of W and H to be of arbitrary
sign. Therefore, the basis images of this kind do not have an obvious visual inter-
pretation because there are complex cancellations between positive and negative
numbers when the basis images are used in linear combinations. However, a matrix
factorization with a non-negative constraint can produce basis images that have an
intuitive meaning, since the entries of W and H are all non-negative.

2.1. NMF

NMF8 enforces the non-negative constraints on W and H . Thus the basis images
can be combined to form a whole face in an intuitive, additive fashion. NMF uses
the divergence of V from its approximation Y = WH as the measure of cost for
factorizing V into WH. The divergence function, used as an objective function in
NMF, is defined as:

D(V ‖Y ) =
∑
i,j

(
vij log

vij

yij
− vij + yij

)
. (2)

NMF factorization is a solution to the following optimization problem

min
B,H

D(V ‖WH )

s.t. W, H ≥ 0,
∑

i bij = 1 ∀j

where W, H ≥ 0 indicates that all elements of W and H are to be non-negative;
bj are the basis images. This where optimization can be done by using the following
multiplicative update rules:

Wia ← Wia

∑
µ

Viµ

(WH )iµ
Haµ (3a)

Wia ← Wia∑
j Wja

(3b)

Haµ ← Hau

∑
i

Wia
Viµ

Wiµ
. (3c)
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2.2. LNMF

Local NMF10 aims to improve the locality of the learned features by imposing addi-
tional constraints. It incorporates the following three constraints into the original
NMF formulation.

• LNMF attempts to minimize the number of basis components required to repre-
sent V . This implies that a basis component should not be further decomposed
into more components.

• To minimize redundancy between different bases, LNMF attempts to make dif-
ferent bases as orthogonal as possible.

• Only bases containing the most important information should be retained. LNMF
attempts to maximize the total “activity” on each component, i.e. the total
squared projection coefficients summed over all training images.

LNMF incorporates the above constraints into the original NMF formulation and
defines the following constrained divergence as the objective function:

D(V ‖Y ) =
∑
i,j

(
vij log

vij

yij
− vij + yij

)
+ α

∑
ij

uij − β
∑

i

qii (4)

where Y = WH , α, β > 0 are constants, (WT W ) = U = [uij ], and (HH T = Q =
[qij ]). This optimization can be done by using a multiplicative update rules which
was presented by Li.10

3. Fisher NMF

To achieve good recognition results and also get intuitive bases, we propose a novel
subspace method using Fisher Linear Discriminant Analysis (FLDA), called Fisher
Non-negative Matrix Factorization (FNMF).

FLDA has been successfully applied to the problem of face recognition. The
main idea of FNMF is to add the Fisher constraint to the original NMF formulation.
Because the columns of the encoding matrix H have a one-to-one correspondence
with the columns of the original matrix V , we seek to maximize the between-class
scatter and minimize the within-class scatter of H .

We define the following constrained divergence as the new objective function
for FNMF:

D(V ‖Y ) =
∑
i,j

(
vij log

vij

yij
− vij + yij

)
+ αSW − αSB (5)

where α > 0 is a constant, SW is the within-class scatter of the encoding matrix H ,
and SB is the between-class scatter of H . Let ni denote the number of vec-
tors in the ith class and C the number of classes. We define SW and SB as
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follows:

SW =
1
C

C∑
i=1

1
ni

ni∑
j=1

(hj − ui)(hj − ui)T (6)

SB =
1

C(C − 1)

C∑
i=1

C∑
j=1

(ui − uj)(ui − uj)T (7)

where ui = 1
ni

∑ni

j=1 hj denotes the mean values of class i in H .
The following update rules implement a local solution to the above constrained

minimization. The convergence proof of FNMF is shown in the appendix.

hkl ← −b +

√√√√b2 + 4

(∑
i

vil
wikh′

kl∑
k wikh′

kl

)(
2

niC
− 4

n2
i (C − 1)

)
(8)

wkl ←
wkl

∑
j vkj

hljP
k wklhlj∑

j hlj
(9)

wkl ← wkl∑
k wkl

(10)

where

b =
4

niC(C − 1)

∑
j

(
ukj −

(
uki − h′

kl

ni

))
− 2

niC
uki + 1.

4. PNMF

4.1. PCA: Statistical perspective

4.1.1. Maximizing the variance of output coordinates

The property PCA seeks to maximize is the spread of the projection of the sample
data on the new axes.

Assume that the input vector v is reduced to a single output component h =
wT v. PCA is looking for a w whose direction maximizes the variance of the output
component h, i.e. PCA is looking for a unit vector w which maximize

∑
i

(
wT vi

)2.
The projected points onto the axis represented by the vector w are as spread as
possible (in a least squares sense). The optimization problem takes the following
form:

max
1
2
‖wT V ‖2.

4.1.2. Decorrelation: Diagonalization of the covariance matrix

The existence of correlations among the components (features) of the input signal
is a sign of redundancy, therefore from the point of view of transforming the input
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representation into one which is less redundant, PCA would like to find a trans-
formation h = wT v with an output representation h with a diagonal covariance
matrix

∑
h, i.e. the components of h are uncorrelated.

4.2. Algorithm

Of the three constraints that LNMF imposes on NMF, one is similar to PCA in that
it constrains the bases to be orthogonal to each other. But orthogonal constraint is
only one of the characteristics of PCA.

PCA has been successfully applied to the problem of face recognition. To achieve
true characteristics of PCA and also get intuitive bases, we propose another novel
subspace method using Principle Component Analysis (PCA), called PCA Non-
negative Matrix Factorization (PNMF).

The main idea of PNMF is to add the PCA constraint to the original NMF
formulation. Here we add four constraints to NMF:

• Maximizing the Variance of Output Coordinates by max 1
2‖wT V ‖2 and

max
∑

i(H
TH)ii.

• Diagonalize the Covariance Matrix of the projected vector by
min

∑
i�=j((W

T V )(V T W ))ij .
• Make different bases as orthogonal as possible by min

∑
i�=j wT

i wj to minimize
the redundancy between different bases.

We define the following constrained divergence as the new objective function
for PNMF:

D(V ‖WH ) =
∑
i,j

(
vij log

vij

yij
− vij + yij

)
− α

1
2
‖wT V ‖2 − β

∑
i

(HHT )ii

+ γ
∑
i�=j

wT
i wj + λ

∑
i�=j

(WT V V T W )ij (11)

where α, β, γ, λ > 0 are constants.
The following update rules implement a local solution to the above constrained

minimization.

hkl ←
√∑

i

vil
wikh′

kl∑
k bikh′

kl

(12)

wkl ← −b +
√

b2 − 4ac

2a
(13)

wkl ← wkl∑
k wkl

(14)
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where

a = λ
∑
i�=j

vki(vT )jk − α
∑

i

(v)2ki

b =
∑

j

hlj + 2γ

(∑
j

wkj − w′
kl

)
− α

(∑
i

((vT )ik

(∑
j

(vT )ij × wjl

))

−
∑

i

(vT )2ikw′
kl

))
+ λ

(∑
j

(vkj

(∑
z

∑
i

(wT )liviz

))

−
∑

i

(
vki

(∑
j

wljvji

))
− wkl

∑
i�=j

vki(vT )jk

)

c = −w′
kl

∑
j

vkj
hlj∑

k w′
klhlj

.

The convergence proof is similar to that of FNMF.

5. Experiments

Our experiments were performed on two benchmarks: the ORL database and a
dataset from the FERET database. The Nearest Neighbor (NN) classifier was used
for all face recognition experiments. On each benchmark, we reduced the face images
from 112 × 92 to 28 × 23 for efficiency; this had little effect on the accuracy of
recognition.

5.1. Cambridge ORL database

We used the ORL face database composed of 400 images: 40 persons, with 10 images
of each person. The images were taken at different times, lighting and facial expres-
sions. The faces are in an upright position in frontal view, with a slight left-right
rotation. Figure 1 shows some samples images from the database.

Each set of 10 images for a person was randomly partitioned into a training set
of five images and a test set of the other five images. The training set was then used
to train the PCA, FNMF, PNMF, LNMF and NMF algorithms, and the test set
was used to evaluate face recognition. Both methods used the same training and
test data.

5.1.1. Learning basis components

We used NMF, LNMF and FNMF to learn the basis images of the training set from
the ORL database by the update rules described by Eqs. (8)–(10).

Figures 2–5 show, respectively, bases of NMF, LNMF, FNMF and PNMF, which
were all learned from the training faces. For comparison of different update rules,
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Fig. 1. ORL face samples.

Fig. 2. 25 and 36 basis images of NMF.

the figures show the results of computing both 25 and 36 basis images using the
four update rules. The images show that the bases trained by NMF were additive,
but not spatially localized, for representation of faces. At the same time, the bases
trained from FNMF, PNMF and LNMF are all additive and spatially localized for
representing faces.

5.1.2. Face recognition on the ORL database

In this experiment, FNMF, PNMF, LNMF, NMF and PCA were compared for face
recognition on the ORL database. Figure 6 shows the recognition results for the five
methods. The horizontal axis represents the square root of the number of bases.

This experiment shows that FNMF and PNMF give higher recognition rates
than NMF, LNMF and PCA on the ORL database. The recognition rate of NMF
was the lowest.
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Fig. 3. 25 and 36 basis images of LNMF.

Fig. 4. 25 and 36 basis images of FNMF.

5.1.3. Occluded face recognition on the ORL database

In many applications, localized features13 offer advantages in object recognition,
including stability to local deformations, lighting variations, and partial occlusion.
NMF does not perform very well in recognizing occluded faces.5,10 In this experi-
ment, FNMF, PNMF, LNMF and PCA were compared for occluded face recognition
on the ORL database. Figure 7 shows the occluded face samples.

Figure 8 shows the recognition results for the four methods. The horizontal axis
represents the square root of the number of bases. The subfigures (from left to right,
from top to down) respectively show the recognition results of the four algorithms
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Fig. 5. 25 and 36 basis images of PNMF.

Face Recognition Rate
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Fig. 6. Face recognition on the ORL database.

Fig. 7. Occluded face samples, occluding patch sizes of (from left to right) 20 × 20, 32 × 32,
44 × 44, 56 × 56 pixels.

versus the size of S × S occluding patch for S ∈ {20, 32, 44, 56}. From Fig. 8, we
can see that although PCA gets good results when the number of bases is low or
when the occluding patches is small, FNMF and PNMF performs better with the
increase of the number of bases and the size of the occluding patch.
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Fig. 8. Recognition accuracies versus the number (25, 49, 81, 121) of basis components, with
different occluding patch sizes of (from left to right, then top to down) 20 × 20, 32 × 32, 44 × 44,
56 × 56 pixels on ORL database.

5.1.4. Face sample data projection energy on the new bases

For the algorithm to have the statistical perspective of PCA, we are looking for a
unit vector w which maximizes

∑
i(W

T vi)2. In other words, the projected points
onto the axis represented by the vector w are as spread as possible (in a least squares
sense). The following experiment shows the projection energy of face sample data on
the bases of PNMF, LNMF and NMF. We use

√∑
i(WT vi)2 to stand for projection

energy. In the updating rules of PNMF, LNMF and NMF, we fix
∑

i wij = 1.
The abscissa is the iteration number of the three updating rules, from 1 to 3,000.

The vertical axis is
√∑

i(WT vi)2. Figure 9 shows that we can get larger projection
energy when using PNMF than LNMF and NMF.
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Fig. 9. Data projection energy on PNMF, LNMF and NMF.
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5.1.5. Get orthogonal bases

Different bases should be as orthogonal as possible, so as to minimize redundancy
between different bases. At the same time, PCA enforces the orthogonal constraint
on the bases; therefore, we hope to get bases that are more orthogonal.

The following experiment compares the extent of orthogonality between PNMF
and LNMF. Given that WT W = U , UiiP

j Uji
will reflect the extent of orthogonality

of the bases.
When respectively using PNMF and LNMF to get sixteen bases (the num-

ber of basis components is 16) and fixing the iteration number of both updating
rules 3,000, we get the results shown in Fig. 10. The abscissa of the figure is the six-
teen bases. The vertical axis is UiiP

j Uji
. We can see that the sixteen bases of PNMF

are more orthogonal than LNMF.

5.2. FERET subset

There are 70 persons in the FERET14 subset. Each person has six different frontal-
view images. There are three different illuminations and two different facial expres-
sions for each illumination. Figure 11 shows some samples.

Each set of six images for a person was randomly partitioned into a training set
of three images and a test set of the other three images. The training set was then
used to train PCA, FNMF, PNMF, LNMF and NMF, and the test set was used to
evaluate face recognition. Both methods used the same training and test data.

Figure 12 compares the results of PCA, NMF, LNMF, FNMF and PNMF on
the FERET database. The horizontal axis represents the square root of the number
of bases.

The experiment shows that FNMF and PNMF performed better than LNMF,
PCA and NMF for this data set.
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Fig. 10. The extent of orthogonality of bases.
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Fig. 11. FERET dataset face samples.
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Fig. 12. Face recognition on FERET database.

5.3. Discussion

From the experimental results, we find that the proposed FNMF and PNMF tech-
niques can obtain additive and spatially localized bases from a training set and
achieve a higher recognition rate than LNMF and NMF. We also found that FNMF,
PNMF and LNMF perform well on the ORL database, which has little illumination
variation, but LNMF is not as good as FNMF, PNMF and NMF on the FERET
dataset.

Why does LNMF perform better on ORL database but worse on FERET dataset
than NMF? We have the following explanations. The FERET dataset we used are
frontal view faces with less rotation and variance of expressions than ORL. The main
differences among the faces in FERET are glasses or no glasses, long and short hair,
and illumination. Though NMF and LNMF are both parts based methods, NMF’s
parts are global. By themselves, the global features are more informative than local
features when the face does not change significantly. In that case, NMF can perform
better than LNMF. However, when there is occlusion, change of facial expression,
harsher illumination change, etc. this performance edge goes away. FNMF and
PNMF can give good results on FERET because they well represent the local
discriminant characteristics.
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Other constraints may be imposed on NMF, and in future work we will explore
promising ones. For example, constraints that are part of ICA computation may be
implemented to form ICA-NMF. We will experiment with this and other modifica-
tions to the basic NMF approach.

6. Conclusion

In this paper, we presented two new constrained non-negative matrix factorization
algorithms, called Fisher non-negative matrix factorization (FNMF) and PCA non-
negative matrix factorization (PNMF), for face recognition and learning part-based
subspace representations. The main idea of FNMF and PNMF is to start with NMF
as a framework and then add useful constraints to the matrix factorization: the
Fisher constraint and characteristics of PCA. We showed that using FNMF and
PNMF results in intuitive basis images, and performs better than LNMF and NMF
on face recognition on the ORL database and FERET dataset.

Appendix

Convergence Proof of FNMF

Our update rules are based on a technique which minimizes an objective function
L(X) by using an auxiliary function. G(X, X ′) is defines as an auxiliary function for
L(X) if G(X, X ′) ≥ L(X) and G(X, X) = L(X) are satisfied. If G is an auxiliary
function, then L(X) is nonincreasing when X is updated by

X(t+1) = argmin
x

G(X, X(t)) (A.1)

because

L(X(t+1)) ≤ G(X(t+1), X(t)) ≤ G(X(t), X(t)) = L(X(t)).

H is updated by minimizing L(H) = D(V ‖WH ) with W fixed.
We construct an auxiliary function for L(H) as

G(H, H ′) =
∑
i,j

vij log vij −
∑
i,j,k

vij

wikh′
kj∑

k wikh′
kj

(
log(wikhkj) − log

wikh′
kj∑

k wikh′
kj

)

+
∑
i,j

yij −
∑
i,j

vij + αSW − αSB . (A.2)

G(H, H ′) = L(H) is easily verified, so we will just prove G(H, H ′) ≥ L(H) as
follows. Because log(

∑
k Wikhkj) is a convex function, the following holds for all

i, j and
∑

k σijk = 1:

−log

(∑
k

wikhkj

)
≤ −

∑
k

σijk log
wikhkj

σijk
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where σijk = wikh′
kjP

k wikh′
kj

. So

−log

(∑
k

wikhkj

)
≤ −

∑
k

wikh′
kj∑

k wikh′
kj

(
log wikhkj − log

wikh′
kj∑

k wikh′
kj

)

which is G(H, H ′) ≥ L(H).
In order to minimize L(H) w.r.t. H , we can update H using

H(t+1) = argmin
H

G(H, H(t)).

H can be found by letting ∂G(H,H′)
∂hkl

= 0 for all k, l, since

∂G(H, H ′)
∂hkl

=
∑

i

vil
wikh′

kl∑
k wikh′

kl

1
hkl

+
∑

i

wik + α
2

niC
(hkl − uki)

−α
4

niC(C − 1)

∑
j

(
ukj −

(
hkl

ni
+ uki − h′

kl

ni

))
. (A.3)

In fact, α is a constant, so we can try some values for α to get a relatively optimal
one; here we define α = 1. ni corresponds to the number of face vectors in the class
to which hkl belongs, and C is the number of face classes. We find that

hkl =
−b +

√
b2 + 4

(∑
i vil

wikh′
klP

k wikh′
kl

)(
2

niC
− 4

n2
i (C−1)

)
2
(

2
niC

− 4
n2

i (C−1)

) (A.4)

where

b =
4

niC(C − 1)

∑
j

(
ukj −

(
uki − h′

kl

ni

))
− 2

niC
uki + 1.

(
2

niC
− 4

n2
i (C−1)

)
is just a positive constant when ni ≥ 2 (we can easily ensure

ni ≥ 2) and has little effect on the update rules, so we can replace (4) by (8).
Just like updating H , we can update W by minimizing L(W ) = D(V ‖WH )

with H fixed. The auxiliary function for L(W ) is

G(W, W ′) =
∑
i,j

vij log vij −
∑
i,j,k

vij
w′

ikhkj∑
k w′

ikhkj

(
log(wikhkj) − log

w′
ikhkj∑

k w′
ikhkj

)

+
∑
i,j

yij −
∑
i,j

vij + αSW − αSB. (A.5)

We can prove G(W, W ) = L(W ) and G(W, W ′) ≥ L(W ) in the same way as proving
G(H, H ′) = L(H) and G(H, H ′) ≥ L(H). By letting ∂G(W,W ′)

∂wkl
= 0, we find

wkl =
w′

kl

∑
j vkj

hljP
k w′

klhlj∑
j hlj

.

According to the above analysis, we conclude that the three step update rules lead
to a sequence of nonincreasing values of D(V ‖WH), and hence a local minimum.
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