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Abstract—How do people interact with their Facebook wall? At
a high level, this question captures the essence of our work. While
most prior efforts focus on Twitter, the much fewer Facebook
studies focus on the friendship graph or are limited by the
amount of users or the duration of the study. In this work, we
model Facebook user behavior: we analyze the wall activities of
users focusing on identifying common patterns and surprising
phenomena. We conduct an extensive study of roughly 7K users
over three years during four month intervals each year. We
propose PowerWall, a lesser known heavy-tailed distribution to
fit our data. Our key results can be summarized in the following
points. First, we find that many wall activities, including number
of posts, number of likes, number of posts of type photo, etc.,
can be described by the PowerWall distribution. What is more
surprising is that most of these distributions have similar slope,
with a value close to 1! Second, we show how our patterns and
metrics can help us spot surprising behaviors and anomalies. For
example, we find a user posting every two days, exactly the same
count of posts; another user posting at midnight, with no other
activity before or after. Our work provides a solid step towards
a systematic and quantitative wall-centric profiling of Facebook
user activity.

I. INTRODUCTION

“What can a Facebook wall reveal about the user and their
activities?” As Facebook is still a dominant social network, its
walls capture a significant part of online social interactions.
A challenge in analyzing Facebook behavior is that there are
many different activities which include user posts, comments,
likes, wall-to-wall interactions with friends, Facebook games
and applications. Furthermore, each Facebook user has a wall,
which we can describe as their ”space”, and a newsfeed which
aggregates information from the walls of the user’s friends.
Here we focus on the activities as they appear on the wall
of a user, and we attempt to detect common, persistent and
surprising behaviors.

We focus on modeling the posting behavior of Facebook
users on their walls. This topic has received relatively little
attention. On one hand, most previous work on Facebook
studies the evolution of friendship network [1], [2], [3], the
ego network of a user [4], [5], the propagation of benign and
malicious cascades [6], [7]. On the other hand, studies on user
profiling have typically focused on other social platforms and
communication networks, such as Twitter [8], the telephone
call network [9], [10], [11], blogs [12] etc. More recently, there
have been several studies that extract real-life information from
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Fig. 1. PowerWall fits real data well, and persistently: (Top) The Odds
Ratio plot of the number of self posts (feature F2) in dataset D-13 fitted with
PowerWall distribution. We observe that the Odds Ratio fits the empirical
data very well with ρ ≈ 1. The fitting is represented by R2 and the
slope ρ. (Bottom) The plot maintains roughly the same slope and a good
approximations fit for each week of the four month period.

users to predict conditions like depression [13] and stress [14].
We discuss related work in more detail in section VI.

In this paper, we study the user interaction and activities
on Facebook walls empirically to identify common behaviors,
patterns and surprising phenomena. We conduct an extensive
study of roughly 7K distinct users in four month intervals for
three different years.

Our key results are the following:
• Distribution - PowerWall: Almost all the distributions

of user activities, such as count of posts, “likes” and
comments on users’ Facebook walls, obey our PowerWall
distribution. Figure 1(a) shows the Odds Ratio distribution
of the count of self posts created by the user on their own
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wall in a four month duration in 2013. The distribution
is well approximated by a straight-line in this log-log
plot (R2 > 0.98). This approximation holds true for nine
different behavioral features, as we discuss in section IV.

• Pervasiveness of PowerWall: Despite the diversity, almost
all the behavioral features have similar slope in their odds-
ratio plot, in the range of 0.9−1.2; moreover, this slope is
rather stable over time. Figure 1 (b) shows the persistence
of slope of the PowerWall over three datasets spanning
three years, and a measure of the goodness of the fit R2,
which is close to 1 consistently, as we discuss in section
IV.

• Usefulness: The pervasiveness of our PowerWall gives us
confidence to spot outliers, like a user posting every two
days, exactly the same count of posts; and another user
posting at midnight, with no other activity before or after
as we discuss in section V.

Reproducibility: We have open-sourced our code, at https:
//github.com/pdevineni/Powerwall. We will also provide con-
trolled access to our data, respecting the privacy of the users.

II. MODELS AND BACKGROUND

In this section, we provide background on modeling real
user behaviors and activities using skewed distributions with
heavy tails.

A. Power laws
Power law distributions occur often, including settings in

computer science and social sciences. Mathematically, the
distribution of a quantity x obeys a power law, if its probability
distribution function is of the form

p(x) ∝ x−α,

where α is a constant (the exponent of the law). Power-
law degree distributions characterize the inter-domain Internet
topology with α = 2.1 − 2.2 [15]. Power laws have been
used to model graph evolution using a process of preferential
attachment, a mechanism where newly arriving nodes have a
tendency to connect with already well-connected nodes with
α in the range 2.1 − 4 [16], citation networks with α = 3
[17], call graphs [9], [11], online social networks like Flicker,
Orkut and YouTube and many more. Clauset et al. [18] provide
a more expansive list of work on power law distributions.

B. Beyond power laws
Where traditional power laws fall short in explaining deviat-

ing behaviors, researchers used heavy-tailed Pareto-like distri-
butions such as lognormal, double Pareto, Weibull distributions
to model complex networks and natural phenomena. The log-
normal distribution is used for modeling growth in any process
where the underlying change rate is a random factor over a
time step independent of the current size [19]. The double
Pareto lognormal (DPLN) distribution is generated by mixing a
number of lognormals and exhibits power law behavior at both
the upper and the lower tails. An earlier work [20] used DPLN
to model mobile call graphs and identify outlier behaviors. In

[10], the authors propose the TLAC distribution, a truncated
version of log-logistic distribution to model call duration of
users whose distribution comprises of semi-heavy tails. A more
recent work [21] proposed Self-Feeding Process that behaves
like Poisson in the short term and gives power-law tails in the
long term to model dependencies between inter-arrival times
in social networks. Weibull distribution is another heavy tailed
distribution widely used in reliability engineering to assess
the life cycle of products [22]. However, due to the difficulty
involved in estimating parameters, it is often left resort from
a modeling point of view.

C. The log-logistic distribution
The log-logistic distribution is used in economics and was

first introduced in 1952 [23]. The log-logistic distribution
presents a modified version of the well-known phenomenon
“rich get richer”. Table I gives the major symbols we use and
their definitions.

TABLE I. SYMBOLS AND DEFINITIONS

Symbol Definition
fX(.) Probability density function (PDF) of a random variable X
fD(.) PDF of a distribution D e.g. fLL(x) = PDF of log-logistic
FX(.) Cumulative distribution function (CDF) of a random variable X
FD(.) CDF of a distribution D e.g. FLL(x) = CDF of log-logistic
ORD(.) Odds ratio function of a distribution

σ shape parameter of our distribution
µ location parameter of our distribution
ρ slope of the tail of our distribution
α scaling exponent of the power-law
R2 coefficient of determination indicates how well the data fits

the statistical model
PDF Probability density function
CDF Cumulative density function

CCDF Complementary cumulative density function
OR Odds ratio function of a distribution

A continuous random variable X ∈ R+ follows the log-
logistic distribution, if and only if its logarithm lnX follows
the logistic distribution [23], [21]. Note that, in our study,
we deal exclusively with discrete random variables, as we
discuss in section IV. The log-logistic Cumulative Distribution
Function (CDF) is the sigmoid, as defined below:

FLL(x) =
1

1 + e−w
x ∈ R+ (1)

where w = ln(x)−ln(µ)
σ , σ > 0 is the shape parameter, µ > 0

is the location parameter and ρ = 1/σ is the slope of tail of
the distribution.

A tell-tale property of the log-logistic is that its Odds Ratio
plot is a power law. The odds-ratio function, OR(t), is used
in the survival analysis and is the ratio between the number of
individuals that have not survived by time t versus the ones
that survived. Formally:

Definition 1: The odds ratio function of a distribution is the
ratio of CDF over the complementary CDF:

ORLL(t) =
FLL(t)

1− FLL(t)
(2)
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Fig. 2. Suitability, and generality, of proposed PowerWall: (a) PDF of real data (blue dots - number of total posts on each user’s wall for dataset D-12) -
it exhibits “top concavity”, violating the power-law. Our proposed PowerWall remedies that: being more general, it can exhibit top-concavity (see (b)), or not
(see (c)), depending on the value of the location parameter µ.

More specifically, the Odds Ratio of a log-logistic distribu-
tion is linear on a double logarithmic plot with slope ρ and
an intercept −ρ lnµ (see, e.g., [10], or substitute Eq. 1 in the
definition of odds ratio).

III. DATASET

In this section, we present in more detail the datasets and the
feature set that we use to describe the behavior of Facebook
users. The data was collected through a Facebook app that
was voluntarily installed by the users. We opt to not refer to
the app to provide an additional layer of protection for the
users identity. We analyzed approximately 2.5 million posts
of 7, 310 unique users spanning over four months in 2011,
2012 and 2013. Table II summarizes all of our datasets. There
is an overlap of nearly 1000 users in the three datasets.

The dataset consists of activity of Facebook users who share
information on their walls. The wall is an interactive feature in
a user’s Facebook profile where the user and her friends can
interact through posts, likes or comments. There are three main
types of posts: (i) plain text, (ii) media like photos and videos,
or (iii) URL link. Each post belongs to one such category,
and Facebook itself assigns a type, which we also use in
our study. A post on a user’s wall can be either a self post,
provided by the user, or a friend post created by a friend of
that user. A comment is a response to a post, and appears as
such, and is categorized accordingly by Facebook as well. A
like is essentially a non-verbal comment that shows support or
appreciation for a post, and it is done through a distinct button
that appears under every post.

TABLE II. SUMMARY OF DATASETS

Dataset Year Period # users # posts
D-11 2011 Jul-Oct 5,170 1,159,647
D-12 2012 May-Aug 3,123 729,059
D-13 2013 Mar-Jun 2,779 537,881

For each post, we obtain a set of fields that describe the
metadata of the post. Some of the fields include the original
author of the post, time stamp of post creation, number of likes
and comments, type of the post - status update, link, photo or
other, application ID and name if the post was created via a
Facebook application.

TABLE III. FEATURES AND DEFINITIONS

ID Feature Name Description
F1 Total posts # posts on users’ wall
F2 Self posts # posts by user on her wall
F3 Total likes # likes on all posts
F4 Self likes # likes on self posts
F5 Total comments # comments on all posts
F6 Self comments # comments on self posts
F7 Link posts # self posts of type LINK
F8 Photo posts # self posts of type PHOTO
F9 Status posts # self posts of type STATUS

From the data described above, we choose a set of features
that, we think, aptly describe the interaction between the user
and her wall. We choose nine features of instructive per-user
characteristics that measure the behavior of individual users
in a wall-centric point of view. Table III list the features
generated. Self-posts seem to dominate one’s wall. We find
that the posts from friends constitute anywhere between 11%
and 17% to the total posts on a user’s wall in the three datasets.

IV. MAIN DISCOVERY: PowerWall
We show that PowerWall, which we define below, describes

the empirical distributions for a select group of features that
depict the behavior of Facebook users. In addition, we show
that PowerWall includes power-laws as a special case, and
observe that the slope parameter ρ is very close to 1, regardless
of the time interval, or the population of users for our selected
group of features.

A. What the data looks like

TABLE IV. COMPARISON OF DISTRIBUTIONS
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Skewed 3 3 3 3
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Fig. 4. Persistence of PowerWall across features: For all nine features for
D-12: the approximation accuracy R2 and the perfect fit represented by the
line at y = 1, and the slope ρ which is close to 1.

We begin by presenting the challenge in modeling the
observed user behaviors. Figure 2(a) shows the histogram of
the total number of posts (F1) on a user’s wall for the D-
12 dataset. The distributions for all features were qualitatively
similar across all three datasets. An indication of that is
presented in Figure 3. An extensive table of all features, their
distribution parameters, and their approximation is omitted due
to space limitations.

We observe that the distribution has a heavy-tail and de-
scribing the distribution is not straightforward. It cannot be
described by distributions with exponentially decaying tails.
The distribution deviates significantly from a power law, which
would have appeared as a straight line in this plot. At the
same time, the Pareto distribution (a power-law probability
distribution), which is also a heavy-tail distribution, lacks the
flexibility to model a distribution that exhibits this flatness for
low values (number of posts between 1 and 10 in our plot).
Table IV compares distributions that have been widely used
to model skewed distributions. The log-normal is a parabola
on log-log scale, and if appropriately masked, may seem like
a power-law. However, lognormal is more concentrated in the
median and does not support as well the flatness for low values.
This necessitates the use of a different model to accurately
describe the observed distribution.

B. The PowerWall

We turn to the Odds Ratio function that we described
earlier. In Figure 3, we plot the Odds Ratio for six of our
metrics, which seems to be well approximated by a line in our
logarithmic x and y axis.

For the Odds Ratio fitting, we perform a linear regression
using Ordinary Least Squares (OLS) for all our empirical
distributions. In addition, we also evaluate and verify the
fitness using Maximum Likelihood Estimation (MLE). For a
fitted polynomial of the form a0 lnx+a1, the slope parameter
is ρ = a0 and µ = − exp(a1/a0). The Odds Ratio manages
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to display the cumulative behavior in both the head and in the
tail of the distribution at the same time.

We denote the above distribution of a discrete random
variable to be PowerWall. Specifically, we define PowerWall
as the distribution whose CDF is given below:

FPW (x) =
xρ

xρ + µρ
x ∈ N+ (3)

where ρ > 0 is the slope parameter, µ > 0 is the location
parameter in following the notation used in the literature for
consistency [23]. The distribution has an interesting property:
its Odds Ratio ORPW (x) is linear on a double logarithmic
scale with a slope ρ:

ORPW (x) = µ−ρxρ (4)
ln(ORPW (x)) = ρ lnx− ρ lnµ (5)

Furthermore, most of the features we study have a linear
approximation with a slope of roughly ρ = 1, as we see
below. This similarity in slope makes PowerWall even more
intriguing. As we saw in the previous section, earlier works
have focused on variable random variables and they did not
focus on a particular slope.

C. Ubiquitousness: PowerWall describes many behaviors
We find that all nine of our users behaviors captured by our

features seem to described by a PowerWall. In other words,
Odds Ratio for every feature in our set can be approximated
by a line in double logarithmic plot. We use the coefficient of
determination, also known as R2, to evaluate the goodness of
the fit. The closer R2 is to 1, the better the model fits the data.
Figure 3 displays the Odds Ratio distributions and their linear
approximation for six features in the D-12 dataset. There is a
good fitness in all these plots with R2 > 0.97.

In Figure 4, we plot the approximation accuracy R2 and the
slope ρ for all the nine features for year 2012, as captured
in D-12. The approximation is quite strong and the slope is
consistently close to 1. In fact, for all the nine features across
the three years, the approximation holds with R2 always above
0.95, except for the status self posts (F9), which we discuss
in section V. This pervasiveness suggests that PowerWall is a
good model for the user behavior as seen through Facebook
walls.

D. Slope ρ: a surprising near-invariant
The slope of the PowerWall Odds Ratio for the features

in our dataset always lies in the range 0.9 − 1.2. We have
noticed that the ρ value for each feature remains fairly constant
across all datasets, typically within 8% of its mean value. An
indication of this stability is shown in Figure 5 for distribution
of total posts (F1). On the left plot, we see the stability of
the ρ and R2 values on the three different datasets across the
three years. Intrigued by this, we wanted to further stress test
this by looking at a weekly granularity. On the right plot, we
separate dataset D-12 in weeks, and plot R2 and slope ρ for
the feature total posts (F1) for D-12.
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Fig. 5. Persistence in time: The invariance of the PowerWall for the feature
total posts (F1) reporting the approximation accuracy R2 and the perfect fit
represented by the line at y = 1, and the slope ρ which is close to 1 for: (a)
across the three datasets, and (b) on a weekly basis in dataset D-12.

E. Analysis - Pareto as a special case of PowerWall
The PowerWall is heavy-tailed distribution that has Pareto

tails on both ends. Pareto distribution is often invoked in
connection with a long tail theory, but also with many other
types of observable phenomena.

Lemma 1: A PowerWall distribution with parameters µ and
ρ, includes Pareto as a special case, that is, asymptotically
behaves like a a power law of slope α = 1 + ρ.

Proof: Let X by a random variable in (0,+∞] that obeys
the PowerWall, which means its CDF follows, Equation 3, with
parameters µ and ρ. Differentiating the CDF, we obtain the
PDF of the distribution below:

fPW (x) =
ρ(x/µ)ρ

x(1 + (x/µ)ρ)2

For x→∞, we have that x� µ, x/µ� 1 and

(1 + (x/µ)ρ)2 ' x2ρ

and eventually:

fPW (x) ∝ x−(1+ρ) x→∞

which completes the proof.
The above lemma has the following implications that are

captured in Figure 2: when the location parameter µ is small
(say 0.001), PowerWall shows no top concavity, because x�
µ for any positive integer value of x, and thus behaving like
a Pareto with slope α = 1 + ρ; when µ is large (say 4), then
PowerWall does exhibit top-concavity, matching the real data.

V. IDENTIFYING SURPRISING BEHAVIORS

As we saw, the observed PowerWall describes a large
number of Facebook users behaviors, and the near-constant
ρ is even more surprising. Can we put all these observations
to practical use?

This is exactly what we attempt to do in this section.
We provide initial evidence that, deviations from the Pow-
erWall pattern are usually due to strange, and often robot-
like behavior. Specifically, we study the top 5 outliers from
status type posts (F9) in D-11 and D-12, which is one of
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(1a) daily activity (1b) FFT (1c) time-of-day plot (1d) time-vs-day plot

Typical user

(2a) daily activity (2b) FFT (2c) time-of-day plot (2d) time-vs-day plot
‘Insomniac’ outlier

(3a) daily activity (3b) FFT (3c) time-of-day plot (3d) time-vs-day plot

‘Flip-flopper’ outlier

Fig. 6. PowerWall spots outliers: The top row represents the behavior of a typical user and the next two rows are for the ‘Insomniac’ user and ‘Flip-flopper’
user. Middle row - the ‘Insomniac’ outlier: consistent activity at 16:00 UTC, while apparently sleeping (no other activity before, or after, for several hours).
Non-organic behavior, possibly due to a cron-job, or hijacked account. Bottom row - ‘Flip-flopper’ outlier: notice the wild 2-day oscillations (25 posts; then
nothing; repeat).

the most deviating features, with low R2 value. We present
investigation results for two of the users that have more
pronounced surprising behaviors.

Metrics for user-specific behavior investigation. We propose
and generate a set of metrics and associated plots to study
these outliers and discover some interesting and surprising
behaviors. We showcase these plots in Figure 6:
1. Daily time series (1a-3a) presents the time series plot of
the status posts made by the user per day.
2. Fast Fourier transform (FFT) of daily time series (1b-3b)
to detect any periodicity.
3. Aggregated time plot (1c-3c) is the aggregate number
of status posts made at a given hour during the period of
observation. This shows the hours that the user is most active,
and for example, help us infer her sleeping patterns. As we are
not aware of the time zone of of the user, we use the given

Greenwich time, which most likely does not coincide with the
local time of the user.
4. Time-day plot (1d-3d) provides a heat-map of the number
of user posts behavior per hour (x-axis) and per day (y-axis).

Here, we focus on the status type of posts but the same plots
could be generated for our other features to cast a wider net
for capturing surprising behaviors.

A. Typical user
To highlight the weirdness of the behavior of the users we

spotted, we also show the plots for a ‘typical’ user - which
we selected among the users that do obey the PowerWall; this
user has 60 status posts, and comes from the D-13 dataset.
Figure 6 (1a) to (1d) shows the behavior of that typical user
Figure 6 (1a) and (1b) show the daily activity and its Fourier
Transform: notice the lack of periodicity - not even a weekly
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one. This is probably due to smartphones: people don’t need to
be in front of a desktop, to post on facebook. Figure 6 (1c) is
UTC time-of-day plot - notice that there is a gap of 7-9 hours
of inactivity (red double-arrow), obviously the sleeping time
for that user in his/her timezone. This is corroborated by the
’time-vs-day’ plot in Figure 6 (1d): there are no posts between
01h and 07h (UTC), throughout the full four month duration
of the dataset. This means that our user maintained his/her
sleeping pattern, and probably he/she did not travel outside
the original timezone.

In short, we would expect ‘typical’ users to have (a) some
fairly consistent sleeping interval and (b) no periodicities.
The two outliers that PowerWall spotted, each violate these
expectations, as we discuss next.

B. ‘Insomniac’ outlier
We analyze the behavior of the most active user in terms of

status posts, who deviates from the PowerWall. Figure 6 (2a)-
(2d) shows the status posting behavior of that user. The most
interesting plot is Figure 6 (2c) and (2d), which show that there
is a single hour with high posting activity within a quiet period
with zero posts. If we conjecture that the quiet time is the night
time, the user wakes up at exactly the same time almost every
night and creates status posts. Upon investigation, we find that
all status posts, including the ones in the “isolated” hour, are
generated through Twitter’s Facebook application.

C. ‘Flip-flopper’ outlier
We also find that the third most active user in terms of status

posts exhibits surprising behavior, which we study in Figure 6
(3a)-(3d). In this case, the surprising behavior is a very precise
oscillating posting behavior, which is best captured in Figure 6
(3a). The user alternates between zero and 25 posts per day
as highlighted by the red circles. Furthermore, this kind of
oscillations appear in subsequent periods, such as between day
60 and 80 with daily status posts that go from seven to 19.
This is the reason that the FFT plot has a spike at frequency
60 and 61, which correspond to period T=2 days (see red
arrow in Figure 6(3b)). The spike at 47 probably corresponds
to period 3, when the user skips-a-beat. We accentuate these
oscillations in Figure 6(3d) as well. Upon investigation, the
oscillating behavior is due to dlvr.it, which is a Facebook app
that enables and automates sharing of news and information.
In fact, we find that 78% of all the status posts were done via
this app!

VI. RELATED WORK

There is limited work on modeling the posting behavior of
Facebook users, which is our focus here. We briefly review
related work, which falls into the following research directions.
Facebook user activity profiling. A lot of work has been
done in identifying user preferences and traits by profiling the
user’s online social activity. Kosinksi et al. [24] used Facebook
‘Likes’ to predict user traits like age, gender, ethnicity, political
and religious affiliations etc. [5] proved the existence of Dun-
bar’s number in Facebook ego-networks. Dunbar’s number,

150, defines the number of individuals with whom it is possible
to maintain stable interpersonal relationships [25].
Extracting information from user activity. Wang et al.[14]
studied how social and smartphone activity of students corre-
lates to changes in their life throughout the semester. Similarly,
De Choudhury et al. tried to infer pathological conditions such
as postpartum depression [13].
Psychological and social studies. Acquisti and Gross [26]
studied user attitudes towards privacy in Facebook. Gosling
et al. made qualitative observations on human trends and
behaviors using Facebook data [27].
Modeling Facebook friendship network. Several studies at-
tempt in modeling the macroscopic properties of the Facebook
friendship network [1], [28]. These studies found that, unlike
other topologies of complex systems, the Facebook friendship
graph cannot be accurately modeled by a power law. Other
efforts focus on communities, ego-nets and their evolution in
Facebook [29], and popular blog networks [4]. Several works
have studied the tie strength between Facebook users based
on their interactions between users and their friends [30].
Note that none of these works focus on modeling the posting
behavior of Facebook users.
Other social networks and communication platforms. Fi-
nally, there is a plethora of studies on other social networks,
most notably Twitter, and various communications mediums,
such as the telephone call graphs and calling patterns for both
wired and cellular networks, text messages etc [11], [31], [32].
In addition, Twitter has received significant more attention
due to its data accessibility. Note however, that Twitter is
predominantly a broadcast mechanism, and thus a significantly
different medium.

VII. CONCLUSIONS

We studied the behavior of real users, posting on Facebook
walls. Our key contributions are:

1) Distribution - PowerWall: Many behaviors, such as the
number of posts and comments, obey our PowerWall with
consistently close fit (R2 over 0.95).

2) Pervasiveness of PowerWall: The slope of the Odds
Ratio plot is near-invariant, with value ∼1 (from 0.9
to 1.2). Moreover, these properties hold not only for
many different features, but also for: (a) a span of three
years, (b) three largely different user groups, and (c) for
two different time granularities, a four-month and weekly
intervals.

3) Usefulness: Deviations from PowerWall point to strange
users, who, upon investigation, exhibit non-organic/script-
like behavior. Thus, our model can be used for outlier
detection.

Reproducibility: We have open-sourced our code, at https:
//github.com/pdevineni/powerwall/ , and we will share as
much of the data as we can (subject to user-privacy consider-
ations).
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