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Abstract. We report a surprising, persistent pattern in large sparse so-
cial graphs, which we term FEigenSpokes. We focus on large Mobile Call
graphs, spanning about 186K nodes and millions of calls, and find that
the singular vectors of these graphs exhibit a striking EigenSpokes pat-
tern wherein, when plotted against each other, they have clear, separate
lines that often neatly align along specific axes (hence the term “spokes”).
Furthermore, analysis of several other real-world datasets e.g., Patent Ci-
tations, Internet, etc. reveals similar phenomena indicating this to be a
more fundamental attribute of large sparse graphs that is related to their
community structure.

This is the first contribution of this paper. Additional ones include (a)
study of the conditions that lead to such EigenSpokes, and (b) a fast
algorithm for spotting and extracting tightly-knit communities, called
SpokEn, that exploits our findings about the EigenSpokes pattern.

1 Introduction

Given a large phone-call network, how can we find communities of users? While
the behavior of users in landline networks has been examined before [4], we
study here the phone call network of mobile users in cellular networks. The
analysis of mobile phone graphs is interesting for multiple reasons as mobile
phones are ubiquitous and are a key conduit for Internet access too. Several
recent studies have used mobile call graph data to examine and characterize
the social interactions of cell phone users, with a focus on understanding the
structural properties of the graph [13,11, 21], the evolution of social groups and
the spread of new products and services [14].

This material is based upon work supported by the National Science Foundation un-
der Grants No. CNS-0721736 and CNS-0721889 and a Sprint gift. Research partly
done during a summer internship by the first author at Sprint Labs. Any opinions,
findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foun-
dation, or other funding parties.



Our objective in this paper is to identify if and to what extent do well-defined
social groups of callers exist in such networks. We emphasize that understanding
the entire graph structure is not our goal. Indeed, in large social networks, not
every node can be expected to belong to a community. Hence, extraction of
community-like structures, which can be independently analyzed, is the focus
of this paper rather than graph-partitioning. This approach based on chipping
off communities is also supported by recent studies [10] that have shown the
presence of small communities loosely connected with the remaining “core” of the
graph. Furthermore, when we applied well-known graph clustering techniques on
our datasets, none of them provided much insight into chipping off interesting
community structures for further analysis, since these techniques are geared
towards partitioning the entire graph. What was surprising, though, was our
discovery of the ‘spokes’ (or EigenSpokes) phenomenon (see Figure 1(b)): the
singular vectors of the Mobile Call graph, when plotted against each other,
often have clear separate lines, typically aligned with axes. We term such plots
EigenEigen (or EFE) plots.

We concentrate on three key questions in this paper:

1. Cause: What causes these spokes?

2. Ubiquity: Do they occur across varied datasets to be worth studying?

3. Community Extraction: How can we exploit them, to chip off meaningful
communities from large graphs?

We answer these three questions on graphs of Table 1. Our primary dataset in
this paper is an anonymized social graph based on mobile calls made from/to
callers located within a geographically contiguous urban area. In this social
graph, callers are represented as nodes, and edges represent calls between nodes.
This Mobile Call graph captures activity over the duration of a month (mil-
lions of successfully completed calls) and consists of about 186,000 nodes and
464,000 edges. We also investigate similar Mobile Phone graph datasets obtained
from other geographic areas, to support our findings. Since these graphs are dis-
connected, we focus on the largest connected component. Our graphs exhibit
characteristics such as degree distributions and generative processes similar to
those of other mobile call graphs [11, 21].

In addition to the above, we also investigate several other datasets (Table 1)
in the public domain* which allow us to determine the generality of our obser-
vations and the underlying phenomenon. Also, they have meta-information that
helps us demonstrate that our algorithm chips-off meaningful communities.

Name Description Nodes Edges
Mobile Call graph|Calls between callers/callees | 186,000 | 464,000
Patent Citations |Citations between patents 3,774,768(14,970,767
Internet routers |Network links between routers| 124,651 | 207,214
Dictionary words |Words are connected if they 52,652 | 178,076
differ by a single letter
Table 1. Graph datasets used in this paper

4 http://www.cise.ufl.edu/research /sparse /matrices/



The following sections discuss the related work, problems with traditional
methods, explain the EigenSpokes pattern, develop the SpokEn algorithm and
finally present many surprising communities found in the datasets.

2 Related Work

Graph partitioning is a popular approach for studying community structure in
graphs. Popular methods include Spectral clustering (see [24] for a survey), a
“cut-based” method for understanding graph structures, which has been suc-
cessful in machine-learning and image segmentation. Similar approaches (e.g.
[19,16]) use the eigenvectors of the adjacency matrix. Lastly, spectral inspired
methods have been used to learn model parameters for well-separated Gaussian
mixtures [22]. Alternative cut-based multilevel approaches like Metis [8] and Gr-
aclus [5,20] coarsen the graph by coalescing nodes and then apply refinement
steps to recover partitions. We address both the Spectral and multi-level parti-
tioning techniques in greater detail in § 3.

Cross-Association [2] partitions the graph so as to maximize information
compression, but is limited to bi-partite structures. Co-clustering [6] trys to
maximize mutual information, but like k-means, requires a priori information
on the number of clusters. More generally in terms of clique extraction, [15]
trys to extract quasi-cliques from graphs. Our focus however is on chipping out
general community structures.

Modularity based approaches compare a graph’s community structure against
a random graph. Studies have proposed using modularity based Laplacian-like
matrices [12,25] or greedy heuristics [3] for graph clustering. However all these
techniques also partition the entire graph rather than extract relevant commu-
nities, which is our objective.

In terms of social network analysis, [18] extracts communities from an In-
stant Messenger Network by applying Co-clustering. [7] proposes flow-based
techniques to identify Web-based communities. However, it identifies commu-
nities for a set of known nodes, while our objective is to extract all nodes that
constitute communities. Also, although the focus of [26] is on randomness mea-
sures, they observed quasi-orthogonal spectral lines in context of small cavemen-
like graphs. To the best of our knowledge the EigenSpokes pattern has not been
observed in any real, large social networks.

3 Why not Traditional Methods?

We analyzed the mobile call graph using well-known spectral clustering [24]
and multi-level graph partitioning [8, 5] techniques. Our goal here is to explore
if these methods can help us extract communities of nodes for further analysis.
Although remarkably successful in other settings like image segmentation etc.,
we find, as shown below, that these methods do not yield good communities in
our graph.



Eenkemias
SN
@ Y
(a) Lyw: Note the long (b) EE-plot (c) Spy Plots of sub-
chains graph of Top 20 Nodes

Fig. 1. (a) Typical Partition using L., (b),(c) EigenSpokes in Region 1 & Time 1.

Spectral Clustering: L,,, Lsym, ... Many “Laplacian” matrices can be de-
fined on a graph G = (V,&) (see [24]). We applied the L,, method [24] on
our primary data set to obtain k-way partitions from k£ = 2 to kK = 100. As in
recent studies ([9], [10]), we found that the application of the technique yields :a)
skewed partitions consisting of very small clusters and a large ’core’ and b) the
clusters lack internal coherence. The partitions we got from L,.,, while lowering
the N-cut value had no or little internal coherence with long chains and most
nodes connected to 1 or 2 other nodes (see Figure 1(a)). We experimented with
several other Laplacians including Ly, [24] and L (based on modularity) [25]
but obtained similar results of limited utility.

Graph Partitioning Methods Prevailing multilevel algorithms for graph
partitioning like Metis [8] and their improvements like Graclus [5] and MCR-
MCL [20] are based on repeated coarsening and refinements of nodes with em-
phasis on balanced cuts. To explore how well multilevel algorithms perform, we
ran Graclus on the Mobile Call graph to obtain k£ partitions. We invoked the
algorithm with various values for k from k& = 2 to k = 10,000. While Graclus
yields more balanced clusters than Spectral partitioning, we observed that, as
before, the clusters lack internal coherence. This can be attributed, again, to the
following two causes : a) these algorithms also utilize a cut-based metric and b)
their objective is to partition the entire graph; as shown by our results as well
as [10], this is not feasible when applied to social graphs that comprise of a large
set of random nodes and small communities.

4 EigenSpokes

As demonstrated in the previous section (and prior work), Laplacians in certain
large graphs yield communities that have a low cut but possess little internal
coherence. Hence, we investigate using the adjacency matrix itself. This leads
to several interesting observations, and motivates our approach for community
identification.

4.1 A Surprise: Spokes

Recall that the Singular Value Decomposition (SVD) of an m X n matrix W
is a factorization defined as: W = UXV?T, where U and V are m x m and



n X n size matrices respectively, and X is an m x n diagonal matrix comprised
of the singular values. Taking the top K values of X' yields the best rank-K
approximation (w.r.t. the Frobenius norm) to the original matrix [23].

We define the EFE-plot as
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that the EFE-plots for our Mo-
bile Call graph show clear sep-
arate straight lines that are of-
ten aligned with axes®! We call
this the FigenSpokes pattern.
This is demonstrated in Fig-
ure 1(b), where we plot the first K = 18 singular vectors pairwise. Even more
striking is that, as shown in Figure 2, these spokes occur in many Mobile Call
graphs collected at various points of time (separated by several months) and at
various geographic regions.

Some intuition: We delve further into the EigenSpokes pattern by identify-
ing the nodes that lie on the extremities of the “spokes”; more precisely, for each
of the first 9 singular vectors, we identify the 20 nodes that had the highest mag-
nitude projection along that vector. We then plot the induced sub-graph of these
nodes (see Figure 1(c)). Clearly, almost all of the induced sub-graphs contain
near-cliques. These observations hint toward a strong connection between Figen-
Spokes and communities, and raise the following questions : are these spokes
representative of fundamental community structures; do they occur elsewhere?
What is their origin and how exactly can they be used for chipping off commu-
nities?

We answer these questions next: in § 4.2, we provide a rigorous basis for the
link between EigenSpokes and communities; in § 4.3, we show that FigenSpokes
can be observed in several real-world graphs; and in § 4.4, we demonstrate the
various conditions that lead to the presence (and absence) of the EigenSpokes
phenomenon.

(a) Region 2, Time 2 (b) Region 3, Time 3

Fig. 2. EE-plots for Mobile Call graphs for
different geographic regions and time periods:
note the persistence of EigenSpokes.
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Fig. 3. (a) EEE-plot for Mobile Call graph and EigenSpokes in other Real-World Data
Sets (b),(c),(d)

5 Axis-alignment is distinct from orthogonality of the vectors.



4.2 Justification and Proofs

Our focus in this paper is on undirected graphs, which implies that the adjacency
matrix A is a square, symmetric matrix. For such a matrix, it is well known that
the singular values are absolute values of the non-zero eigenvalues: o; = |\
and the singular vectors coincide with the non-null eigenvectors. Due to the
equivalence between singular vectors and eigenvectors for the (symmetric) graphs
considered in this paper, we abuse language and often refer to singular vectors
as being the spectra of A.

Given the presence of EigenSpokes, is it reasonable to expect the nodes lying
along the extremes to have similar connectivity patterns?

FEigenSpokes, Connectivity and Communities: The presence of spokes
in EE-plots (axis-aligned or not) implies that nodes close to each other on a
line have similar scores along two eigenvectors (‘score’ of node n along vector
U, is Usyp). In fact, plots of the first 3 eigenvectors, or EEE-plots (see Figure 3)
show lines too. This strongly suggests similar scores for the nodes in many vec-
tors. Specifically, consider two nodes ¢ and j whose connectivity information is
represented by their rows A; and A; in A. If the k' eigenvector is denoted by
Uy, then A;Uj, and A;Uy are the i*" and j" components of Ug. These will be
equal if A; = A;. Hence, the two nodes will have the same components along
the eigenvectors. In general, we expect that nodes with similar connectivity will
have similar scores along the vectors of U.

Is the converse also true? We can prove the following lemma to this end (note
that (x,y) = 27y denotes the dot-product of two column vectors z and y):

Lemma 1. For any real, symmetric adjacency matriz A, if for any i and j,
VE, [((A; — A)T,Up)| < e, then Vk, |Ay — Ajr| < (eV/N) as well.

Proof. As A is real symmetric, by the Spectral Theorem, it is orthogonally diago-
nalizable. Hence, it is non-defective and has a full basis of eigenvectors. Consider
any vector C' = ), ¢, Uy written using the basis consisting of the eigenvectors.
Then,

((Ai = A)",0) = enl{(Ai — A)",U)
k

< \/Zci\/Z((Ai—Aj)T,UkP < D odVNe
k k k

where we use the Cauchy-Schwartz inequality in step 2 and given bound in step
3. Use the above inequality for C' = ¢, (indicator vector which is zero everywhere
except at index k where it is 1), for every k. Also, note that orthogonal transfor-
mations preserve the norm of a vector - hence, \/>_, ¢t =|| C ||, which would be
equal to 1 for our choice of C’s. Therefore, we get: V&, |A;, — Ajx| < (ev/N). O

Note that the above proof holds for any orthogonal basis set of vectors U; but
our basis set U is also a carefully chosen set: it is the set of singular vectors.
Hence, we expect the bound to be tighter in practice.



In view of the above, we expect that nodes lying close to each other on a spoke
will have similar neighbor sets. But what is the link between similar neighbor sets
and communities in the graph? Consider the following two (sufficient) conditions
that result in similar neighbor sets:

1. Cliques (or near-cliques) result in exactly the same ¢ (or similar) adjacency
rows for nodes in the cliques.

2. Perfect (or near-perfect) Bipartite-cores also result in the same (or similar)
adjacency rows for nodes in the two cores.

Consequently, we expect to see communities in the form of (near-)cliques or
(near-)bi-partite cores among the nodes in the spokes.

Axis-alignment (or not): Recall another striking feature of the EE-plots:
the presence of largely azis-aligned spokes. From the preceding discussion, given
the presence of FigenSpokes, we should traverse the extreme points on each spoke
to extract communities. This reduces to searching for "high-scoring’ nodes in each
singular vector separately, since axis-alignment implies that the extreme points
have high values only in one of the vectors. In fact, prior work [1] has already
shown that nodes with scores at the extreme ends of the principal eigenvector
of Erdos-Renyi graphs do belong to the same clique. However, some spokes are
not axis-aligned (as in the last FE-plot of Figure 1(b)). This implies that some
nodes have significant scores along multiple singular vectors. In the specific case
of EE-plots the linear nature of spokes means that the scores of the nodes are
linearly correlated. Hence, exploring dominant nodes along one singular vector
should be sufficient to extract nodes of a community.

4.3 Ubiquity of Spokes

Apart from Mobile Call graphs, we have observed the FigenSpokes pattern
with singular vectors of several other real world graphs. We show the EE-plots
for Patents, Dictionary and Internet router connectivity in Figure 3(b), 3(c)
and 3(d) ([17] contains more detailed plots). In all three cases, we see that
most pairwise combinations align in a spoke pattern, with some exceptions in
the Dictionary graph. We also observe that some of these spoke patterns are
not axis-aligned; as discussed earlier though, the linear correlation between the
scores of the nodes is preserved. Thus the FEigenSpokes pattern is persistent
across a wide array of diverse datasets.

4.4 Recreating Spokes

So far, we have provided some insight into why spokes arise. We now demon-
strate exactly which features of graphs and community structure result in spokes
using both synthetic and real graphs. Synthetic graphs, in particular, allow us to
experiment with various parameters and characteristics, and observe their effect
on their EFE-plots. We show that the key factors responsible for these patterns
are a large number of well-knit communities embedded in very sparse graphs.

5 not considering self-edges
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pattern (Figure 4(a)) yandom graphs with community structure.
but, when we synthet-

ically introduce 40 communities (near-cliques of sizes 31 — 50, with a probability
0.8 of an intra-community edge) into the above random graph, in Figure 4(b),
we observe the emergence of the spokes pattern. When we increase the number
of communities to 400, in Figure 4(c), the spoke pattern becomes more clear,
and resembles Figure 2. Further, we verified that the nodes at the extremities
do indeed form the artificially embedded communities. We also found that the
nature of the communities, including the level of internal connectivity, does not
affect the emergence of the spokes pattern as long as such connectivity is signif-
icant. Thus we infer that one of the important causes for a spokes pattern is
the presence of a large number of tightly knit communities in the graph.

Due to lack of space we omit details about the effect of sparsity and degree
density; they are demonstrated in greater detail in [17].

5 SpokEn: Exploiting EigenSpokes

Based on the insights from previous sections, we now develop our community
identification approach SpokEn, that exploits FigenSpokes. While developing
SpokEn, we also use experiments with synthetically generated graphs to help
us choose from the various algorithmic choices. Our approach differs from prior
work on graph partitioning as for certain classes of graphs, we observe a specific
structural property and exploit it. While this may not apply to all graphs, our
approach is highly effective for the large sparse graphs we consider, as shown by
our results later in the paper.

5.1 Designing SpokEn

Our proposed approach is based on the key property of FigenSpokes highlighted
in § 4.2: the existence of EigenSpokes indicates the presence of well-knit com-
munities whose nodes have a significant component in that singular vector. Thus
an appropriate traversal of each singular vector in isolation can extract these
communities. A good traversal should select only the nodes which belong to a
coherent community. We now discuss where to start the traversal, how to grow
the community and finally, when to stop.



Initialization: We choose the node with the score of maximum magnitude as
the seed for the community. We multiply the given singular vector U; by —1 if
necessary to ensure that the score with the largest magnitude is positive.
Discovery: A simple algorithm for discovery is one that picks nodes in decreas-
ing order of their scores. Such an algorithm can pick a node that is disconnected
from all the nodes chosen previously. Hence, we propose the following: let C
denote the set of all nodes that have been discovered so far; the next node that
we select is the node with the largest score that is connected to some node in C'.
Formally, we augment C' with a node n* that satisfies n* = arg max,ecn. U;(n),
where N¢ is the neighborhood of C7. This algorithm is intuitive and keeps C
always connected.

Termination and Trimming: For termination, we need to use a metric that
quantifies the quality of the community extracted so far. We propose to use a
novel hybrid approach based on conductance [24] for cut and modularity (actu-
ally relative modularity) for coherence. The process discovers and adds nodes to
the set C' as long as the relative modularity increases and terminates once it re-
duces indicating reduction in community structure. We finally use a conductance
based method to trim out the remaining false positives.

5.2 Discussion

Relative Modularity: In large graphs such as ours, underlying communities
are typically small (10 ~ 100 in a million node-graph) [10]. The equation for
modularity® indicates that when extracting a single small community from a
large graph, the modularity metric computed on such a highly unbalanced par-
tition would be dominated by the larger partition and not the discovered com-
munity, thus rendering it useless. This was also empirically observed in extensive
evaluations over our datasets.

To resolve this problem, we once again utilize the concept of scores. When
traversing a singular vector (say U;), as a pre-processing step, we construct
a new sub-graph G, = (V,, E,) from G wherein we discard all nodes n with
values U;(n) below a certain threshold e. The modularity computation is then
conducted w.r.t. G¢ (hence relative modularity). This is justified since in the first
place, we do not expect the discarded nodes to belong to the community under
consideration. The removal of such nodes induces a more balanced partition
and makes the modularity values more meaningful. We set ¢ = 10~% in our
experiments as several tests showed the results were insensitive around it.
Trimming using Conductance: As shown later in § 5.3, conductance as a
termination criterion results in premature termination of the discovery process,
causing several false negatives while relative modularity as a termination metric

7 N¢ is the set of nodes not in C and are connected to at least one node in C
8 The modularity of a graph partition C = {C1,Co,...} is Q(C) =
ﬁ DY |:Aij — %} , where k; is the degree of a node and A;; an element

2
Ceci,jecny
of the adjacency matrix.



often results in overshooting and hence false positives. These two observations
indicate that modularity and conductance are complementary in the role of a ter-
mination metric which is why we adopt a hybrid approach. Hence as mentioned
before, after a community is extracted using relative modularity (to discover all
relevant nodes at the cost of false positives), a standard spectral technique (L,.,)
is used to trim-out false positives by further bisection to determine a better cut.
We give the pseudo-code of SpokEn in Algorithm 1.

Algorithm 1 SpokEn

Require: Symmetric binary adjacency matrix A

1: U = get first several eigenvectors of A

2: Stop if U has no FigenSpokes pattern

3: for all eigenvectors v = Uy, do

Construct Ge = (Ve, E.) such that Ve = {i : v(i) > €}
Initialize outputSet using seed //see Initialization
//see relative modularity in Termination
while modularity (outputSet, G¢) increases do

Expand outputSet //see Discovery

9:  end while

10: Ck = trim outputSet using conductance //see Triming using Conductance
11: end for
12: return {C}

5.3 Empirical Results

To evaluate the performance of our discovery process and termination crite-
rion, we applied SpokEn on various synthetically generated graphs with known
ground truths in each case (like the ones described in § 4.4 including an ER
graph embedded with bi-partite cores). While the detailed results are provided
in [17], we found that conductance as a termination criterion undershot and
hence detected fewer communities (about 60% with almost no false positives).
On the other hand, modularity discovered about 80% communities but with 4%
false positives. Their combination, SpokEn, was able to identify 76-90% of the
embedded communities with almost no false positives.

Speed : The computation time is mainly dominated by the eigenvector calcula-
tion which is linear in edges. We ran SpokEn on graphs of various sizes on a Dell
Server with an Intel Xeon 3 GHz processor and 4 GB of RAM. In each case, we
computed 100 singular vectors and mined communities from them. Figure 5(a)
plots the computation time required by SpokEn to extract communities as a
function of the number of edges of the graph. As expected, it clearly shows the
processing time is linear in the number of graph edges, which is a key indication
of scalability.

6 Successes with Real-World Graphs

We applied SpokEn to our real-world datasets and found that it extracts several
interesting communities that reveal useful and relevant information about the
connectivity patterns.



We illustrate four typical communities extracted by SpokEn from our Mo-
bile Call graph. Figure 5(b) presents the spy plots which clearly show that the
communities are well-connected (the communities are red nodes on the top de-
lineated by black boxes). To show the success of our terminating criterion, we
plot additional nodes that would have been explored by the discovery process
without termination. Notice that SpokEn does indeed typically stop at points
where a community appears to have ended. In the bottom left case, however,
it overshoots and combines what appear to be two near-cliques into the same
community. We observe similar results for the other singular vectors as well:
SpokEn extracts communities of nodes with good internal coherence though it
sometimes clubs together two such communities into one.

The prevalence of such close-knit communities of more than 10 nodes in a
Mobile Call graph was quite unexpected to us. Temporal analysis of the usage
of at least a few communities leads us to believe that these communities arise
from users of the same organization.
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Fig.5. (a) SpokEn: Computation Time is linear in #(edges) (b) Four communities
(delimited by black box and red dots) extracted by SpokEn from Mobile Call graph
(spy plots). To illustrate the success of the termination criterion, we plot additional
nodes in the order of discovery. Notice the near-clique (= near block diagonal) behavior.

Next, we analyze a few typical communities from other data sets. Figure 6(a)
plots the connectivity between nodes of a community extracted from the Patent
citation dataset. Notice the striking bipartite nature of the community. Upon
further investigation, we find that the bipartite nature arises because of patents
filed by the same organization on related topics reuse the bibliography entries.
In the example shown here, one-half of the bi-partite graph comprises of about
25 patents that were filed in a period of 1998 — 1999 by (the same) authors
from Kimberly-Clark in the area of photosensitive pigments for color printers.
The bi-partite nature of the graph arises because all these 25 patents cited the
same set of past references. This also illustrates a crucial aspect of SpokEn: it
extracts communities of nodes with similar connectivity. This may or may not
imply mutual connectivity.

Figure 6(b) shows a typical community extracted from the Dictionary graph.
Recall that this dataset connects two words if they differ by exactly one letter.
The clique shown in Figure 6(b) arises from three-letter words that all end
with ‘on‘. We found many similar cases including words that end with ‘an‘, ‘II‘,
etc. Finally, Figure 6(c) shows a community extracted from the router graph.



The community highlights the tiering relationship typical in the Internet. The
community consists of 4 UUNET back-bone routers (first and third row) from
the Tier-1 layer that serve as gateways for a large community of Tier-2 Verizon
Business and other small business (the second row) and are also connected to
other Tier-1 routers (Sprint, AT&T etc., last row).

VERIZON ~—~UUNET
BUSINESS

LEVEL-3

- SR )
KIMBERLY-CLARK PATENT FILINGS

[
SPRINT  AT&T

(a) B ©

Fig. 6. Structures extracted by SpokEn from real-world graphs. (a) A typical bipar-
tite community extracted from the Patent graph. It arises due to “cut-and-paste”
bibliography generation. On the left, we plot a portion of the community for visual un-
derstanding, and the entire spy plot on the right. (b) A typical near-clique subgraph
of words from the Dictionary graph. The words all differ by exactly one letter from
each of the others. (c) Internet router connectivity from one provider to customers
causing a bipartite community.

7 Conclusions

In answer to the questions we posed earlier in § 1, we find that:

1. Cause: Spokes can be strongly associated with the presence of well-defined
communities like cliques and bi-partite cores in sparse graphs.

2. Ubiquity: Apart from Mobile Call graphs, they occur in a variety of data-
sets such as Patent citations, Dictionary and Internet.

3. Community Extraction: The spokes pattern allows us to construct an
efficient and scalable algorithm “SpokFEn” that helps us chip off communities
thereby revealing several interesting structures in Mobile Call graphs as well
as the other datasets.
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